当前位置:文档之家› 三自由度机器人机构设计

三自由度机器人机构设计

三自由度机器人机构设计
三自由度机器人机构设计

工业机器人设计

摘要

工业机器人是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。因而具有强大的生命力,受到人们的广泛重视和欢迎。实践证明,工业机器人可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机器人是有效的。此外,它能在高温、低温、深水、宇宙、放射性和其它有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。

关键词:机器人,液压泵,自动化,优越性

Industry Robot Design

ABSTRACT

Industry machine hand is industry produce of inevitable outcome, it be the parts of function of a kind of mimicry human body arms, according to schedule to request to transport a work piece or hold to hold tool to carry on operation of automation technique equipments, to realization industry produce automation, push industry produce of further development have already emphasized to want a function.As a result have strong vitality, be subjected to people of extensive value with welcome.Practice certificate, industry the machine hand can replace hand of heavy labor, show Zhao to ease a worker of labor strength, improvement labor condition, exaltation labor rate of production and automation level.The industry produce medium usually appear of bulky work piece of porterage and long-term multifarious, monotonous of operation, adoption machine hand is valid.In addition, it can at heat, low temperature, deep water, cosmos, radio and other poisonous, pollution under the environment condition carry on operation, more manifestation it superiority, have vast of development prospect.

KEY WORDS:Mechanicanl Robot,Pump,Automation,Superiority

目录

前言 (1)

第1章机械手的组成与分类 (2)

1.1机械手的组成 (2)

1.2机器人的特点 (2)

1.3机器人的分类 (3)

第2章抓取机构设计 (5)

2.1手爪设计计算 (5)

2.2手爪驱动缸设计 (7)

2.3腕部设计 (9)

第3章横梁立柱的设计 (11)

3.1液压缸组件及其设计 (11)

3.2托盘及其与液压缸的连接 (11)

3.3立柱液压缸设计 (12)

3.4立柱与横梁托盘的连接 (12)

第4章底座托盘设计 (13)

4.1计算转动惯量 (13)

4.2起动转矩计算 (14)

4.3最小轴径计算与键校核 (14)

4.4选择轴承 (15)

第5章液压马达设计 (16)

5.1马达外径计算 (16)

5.2叶片设计 (16)

5.3紧固及连接方案 (17)

第6章液压泵、电机的选择 (18)

6.1流量计算 (18)

6.2选择液压泵 (19)

6.3选择电机 (19)

第7章机器人的控制 (20)

7.1机器人的控制 (20)

7.2机器人运行时的安全措施 (20)

结论 (21)

谢辞 (22)

参考文献 (23)

前言

机器人技术的发展,可以说是科学技术发展共同的一个综合性的结果,同时,也是为社会经济发展产生了重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,人类的发展随着人们逐渐的这种社会发展的情况,人们越来越不断探讨自然过程中,在改造自然过程中,认识自然过程中,需求能够解放人的一种工具。那么这种工具就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。另一方面,人们有各种各样的好的想法,它也归功于电子技术,计算机技术以及制造技术等相关技术的发展而产生了提供了强大的技术保证。

工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,例如在冲压、压力铸造、热处理、焊接、涂装、塑料制品成形、机械加工和简单装配等工序上,以及在原子能工业等部门中,完成对人体有害物料的搬运或工艺操作。

我国工业机器人起步于70年代初,其发展过程大致可分为三个阶段:70年代的萌芽期;80年代的开发期;90年代的实用化期。而今经过20多年的发展已经初具规模。目前我国已生产出部分机器人关键元器件,开发出弧焊、点焊、码垛、装配、搬运、注塑、冲压、喷漆等工业机器人。一批国产工业机器人已服务于国内诸多企业的生产线上;一批机器人技术的研究人才也涌现出来。一些相关科研机构和企业已掌握了工业机器人操作机的优化设计制造技术;工业机器人控制、驱动系统的硬件设计技术;机器人软件的设计和编程技术;运动学和轨迹规划技术;弧焊、点焊及大型机器人自动生产线与周边配套设备的开发和制备技术等。某些关键技术已达到或接近世界水平。

第1章机械手的组成与分类

1.1机械手的组成

机械手主要由手部和运动机构组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。

1.2机器人的特点

机器人最显著的特点有以下几个:

(1)可编程。生产自动化的进一步发展是柔性自动化。机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。

(2)拟人化。机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等.传感器提高了机器人对周围环境的自适应能力。

(3)通用性。除了专门设计的专用机器人外,一般机器人在执行不同的作业任务时具有较好的通用性。比如,更换机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。

(4)机电一体化。机器人技术涉及的学科相当广泛,但是归纳起来是

机械学和微电子技术的应用,特别是计算机技术的应用密切相关。

因此,机器人技术的发展必将带动其它技术的发展,机器人技术的发展和应用水平也可以从一个方面验证一个国家科学技术和工业技术的发展和水平。

1.3机器人的分类

目前世界各国对处于发展阶段的机器人还没有统一的分类标准,大致有以下几种分类方法。

1、按使用范围分类

(1)固定程序的专用机器人(机械手)通常根据主机的特定要求设计成

固定程序(或简单的可变程序)。这种机器人(机械手)多为气动或液动,用行程开关、机械挡块来控制其工作位置。工作对象单一,动作较少,结构与系统简单,价格低廉。

(2)可编程序的通用机器人工作程序可变,以适应不同的工作对象,

通用性强,适合于以多品种、中小批量生产为特点的柔性制造系统中。

2、按使用行业、部门和用途分类

(1)工业机器人它们又可按作业类别分为锻压、焊接、表面喷涂、装

卸、装配、检测等机器人。

(2)采掘机器人如海洋探矿机器人等。

(3)军事用途机器人

(4)服务机器人如医疗机器人,家用机器人,教学机器人等。

3、按机械结构、坐标系特点分类

按机械结构坐标系特点可分为直角坐标型;圆柱坐标型;球坐标型;多关节型。

4、按机器人运动控制方式分类

(1)点位控制(PTP)机器人就是由点到点的控制方式,这种控制方式只能在目标点处准确控制机器人末端执行器的位置和姿态,完成预定的操作要求。目前应用的工业机器人中,很多是属于点位控制方式的,如上下料搬运机器人、点焊机器人等。

(2)连续轨迹控制(CP)机器人机器人的各关节同时作受控运动,准确控制机器人末端执行器按预定的轨迹和速度运动,并能控制末端执行器沿曲线轨迹上各点的姿态。弧焊、喷漆和检测机器人等均属连续轨迹控制方式。

5、按驱动方式分类

按驱动方式可分为液压驱动式、气动式、电力驱动式(这是目前用得最多的一类)

6、根据机器人的功能水平和技术的先进程度按“代”分类

(1)第一代机器人其特点是采用开关量控制,示教再现控制或数字控制,其作业路径和运动参数需通过示教或编程给定。60年代以来,工业中实际应用的绝大多数工业机器人都属于第一代机器人,它包括可编程序(用于上下料)的工业机器人具有记忆装置的示教再现型机器人,数控型搬运机器人等。

(2)第二代机器人是70年代开始出现的,其技术特点是采用计算机直接控制,是通过具有视觉、触觉的摄像机和传感器,能“感觉”外界信息并通过计算机进行计算和分析自动地控制操作机进行运动和操作,因此,其控制方式较第一代机器人要复杂得多,目前这类机器人已开始在工业生产、排险救灾等场合应用,并将进入普及阶段。

(3)第三代机器人即智能机器人。这是国内外正在积极研究,开发的高级机器人,其主要特点是具有人工智能。包括: 模式识别能力、规划决策能力、知识库、专家系统、人机交互能力等。这一类机器人目前正在研究开发之中。

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。

第2章 抓取机构设计

2.1 手爪设计计算

1、最大夹紧力计算

查机械设计手册知钢和钢之间的摩擦系数为 μ = 0.15 则物重

G = mg = 10×10

= 100N

最大夹紧力F 由公式 G = μ×F 算得,

F = G/μ = 100÷0.15

≈ 666.7N

2、受力分析 图2-1 手爪的受力分析 如图2-1,

F1 = F2 = F3 = 666.7N , F4 = F5 = F3×cos15°/2 = 321.99N 如图2-2由 ∑M=0 算得

F1×L1-F5×L2-F6×L3 = 0 算得 F6 = 703N

由于F6与水平方成30o角, 图2-2 手爪的力矩分析 可算出活塞杆推力

F

F = 2×F2×cos30o

= 1046 N

3、手部尺寸

利用抗弯强度校核计算

手指截面系数

Wz = Mmax/σ,

Mmax = 11458 N·mm,

选取材料Q235,其抗弯强度

[σ] = 140 Mpa,

Wz = 11458/140 = 800

对于矩形截面来说

Wz = Iz/Ymax = bh2/6

取 b = 15mm 时,

h = 18mm

从而得手爪的具体形状如图纸手爪1,手爪2。

4、螺栓选择

经计算手指固定转轴处螺栓受力最大,

F = 1217 N

选择材料Q235,4.6级螺栓,查表得其抗剪强度为48Mpa 根据螺栓抗剪强度计算螺栓直径d

d = 6.2 mm

圆整为

d = 8mm

根据配合要求取M8×100 的螺栓。

5、拉杆设计

取材料Q235,查材料工程材料手册得

σs = 240 Mpa ,

[σ] =σs/Ns

= 120 Mpa

受分析得拉杆受力

F = 1421 N

σ=N / A

得Amin = 1421/120

= 11.85mm2

考虑到实际结构,取20×10的矩形截面拉杆,来紧固两手爪的相对位置。

2.2手爪驱动缸设计

1、初算活塞杆直径

经分析液压缸的最大工作力为

F = 1451 N

由于手爪是靠推力夹紧的,所以驱动液压缸的活塞杆选用材料HT-200查机械工程材料手册得σ= 650 Mpa,

[σ] =σc/Nb

Nb = 3

[σ] = 216.7 N

[σ]min = N/A

Amin = 2.79mm2

2、压杆稳定校核

欧拉公式

Fcr = π2EI/(μL) 2

由于此活塞杆是一端固定,一端铰接,所以μ= 0.7

根据结构要求取

L = 200 mm

查表得HT-200的弹性模量

E = 115-160 Gpa

E = 115 Gpa

F =π2E I/[ (μL)2n st]

为了安全,取

n st = 6

Imax = [ (μL)2n st]F/π2E

I = πd4/64

dmin= 0.0075 m

根据GB/T-2348-1993圆整得

d = 0.008 m = 8 mm

3、液压缸参数确定

d = (0.6—1)D

得缸内径

D = 8/0.6

= 13.3 mm

根据GB/T-2348-1993圆整得

D = 12 mm

B = (0.6—1)D

得活塞宽度

B = 12 mm

导向套长

C = 10 mm

端盖厚度

L = 15 mm

外径根据GB/T-2348-1993 选取D′= 36 mm,

液压缸行程,如图2-3:

用CAD

S = 282-161

=121 mm

根据表

GB/T-2348-1993

圆整得

S = 125 mm

2.3腕部设计

1、拉杆设计图2-3手爪的伸缩

拉杆选用材料Q235,

查机械工程材料手册得

σs = 240 Mpa ,

得[σ] =σs/Ns= 120 Mpa

由F1,F5,F6合成,得拉杆受力

F = 1983 N

得截面

A = 16.5 mm2

考虑到实际结构,取20mm×10mm的矩形截面拉杆,来紧固两手爪与

横梁的相对位置。

2、拉杆支架

此支架以横梁液压缸活塞,也就是手爪驱动缸外径为支承,并焊接到手爪驱动缸外径上,以确保牢固。此处用螺栓紧连接,以保证手爪与横梁的相对位置固定。具体形状及尺寸见图纸。

3、推杆设计

推杆受力

F6 = 703 N

取材料HT-15,由强度校核及压杆稳定计算并圆整

取截面为20mm×10mm 的矩形推杆。

如下图2-4:用CAD准确的画图后,模拟得出推杆两铰制孔距离L = 123 mm

图2-4推杆尺寸设计

考虑到手爪尾部槽宽与活塞杆头部槽宽一致,将推杆与手爪尾部连接的一端设计一个圆台,如下图2-5为一个推杆。具体形状及尺寸见图纸及装配图。

图2-5推杆

第2章横梁立柱的设计

3.1液压缸组件及其设计

1、液压缸活塞杆

由上面的计算知道此液压缸活塞杆直径

d = 36 mm

2、缸体的设计

根据表GB/T-2348-1993 和结构要求选取液压缸内径

D = 63 mm

外径

D'= 76 mm

3、导向块

导向块宽取

C = 36 mm

3.2托盘及其与液压缸的连接

为了使立柱在整个横梁正中,结合横梁结构将横梁设计为

长×宽×高为650mm×180mm×10 mm

的六面体,再焊接两个厚为10 mm 的筋板加强一下,以防止工作时横梁受弯矩变形。具体形状尺寸见托盘零件图。

另外考虑到液压缸和活塞之间的相对转动会影响手爪工作时抓取工件的准确性,特设计一组“V”形导轨滑块以限制活塞与液压缸间的相对转动。导轨与托盘用M6×20的螺钉连接,滑块则与活塞牢固连接,同时液压缸与托盘用4个M10×40的螺栓牢固连接。至于托盘与立柱之间则用M40×2×80的螺纹连接。详见装配图相应内容。

3.3立柱液压缸设计

经估算,手爪、腕部、横梁、托盘加上工件的总质量约50kg,则为驱动由这些部分组成的整体0.1秒内速度由0增加到0.15 m/s 需要的惯性力Pa = mv/t =50×0.15/0.1 = 75 N

若保持这个速度继续上升需要的力则为

F = mg + Pa

= 50×10 + 75

= 575 N

为安全起见,取

F = 1000 N

此机器人只需中低压系统,故初选工作压力为

P = 1 Mpa

则液压缸内径

D = √4F/π≈35.69 mm

根据GB/T-2348-1993 圆整得

D = 40 mm

外径

D'= 63 mm

由于液压缸上部的重量足以使活塞在缸内无油压时自动下降,故此液压缸组件设计成单作用缸即可。

3.4立柱与横梁托盘的连接

立柱与横梁托盘靠螺纹连接的,包括立柱螺纹和两个导向杆螺纹。考虑到液压缸与活塞之间是圆弧接触,可相对转动,但是此机器人工作时有较高的转角要求,因此为保证其较高的转角精度,需限制液压缸与活塞间的相对转动。为实现此功能,在立柱旁树立两组套筒组件,一方面限制转角,另一方面增加立柱的刚度,而且为机械手的升降起到了很好的导向作用。详见立柱液压缸装配图。

第4章底座托盘设计

4.1 计算转动惯量

将横梁等效成Ф76×1200的均匀直杆,估算出其总质量为(包括工作时的夹持的工件)

M = 50 kg

其转动惯量为

Jz = Ml2/12

= 50×(1.2)2

= 72Kg·m2

由于其形心距立柱有效距离为

d = 140 mm

由平行轴定理得出横梁相对立柱形心的转动惯量

Jz'= Jz + Md2

= 72 + 50×0.142

= 72.98 Kg·m2

将立柱视为Ф45×1200的均匀圆柱,估算其质量

m = 10 kg

则其转动惯量为

Jz''= mR2/2

= 10×0.0452

= 0.01 Kg·m2

则底座托盘以上整体的转动惯量为

Jz总= Jz'+ Jz''

= 72.98 + 0.01

=72.99 Kg·m2

4.2起动转矩计算

1、立柱角速度计算

若要求立柱在0.1秒内速度由0增大到15r/min,则

ω= πn/30

= 15π/30

= 0.5πrad/s

角速度

ε=ω/t

= 0.5π/0.1

= 5πrad/s

2、起动转矩

Mz = Iz×ε

= 6.99×5

≈110 N·m

4.3最小轴径计算与键校核

1、最小轴径计算

根据轴的抗扭强度计算最小轴径,选择材料45号钢,查表得其抗扭强度

[τ] = 40 Mpa

由于

τmax = Mz/Wt

又截面系数

Wt = 0.2d×d2

所以

d min = 23.957 mm

又轴有一个键槽就削弱抗扭强度3%,故

d min = 23.957×(1+0.03)= 24.676

圆整得

d = 25 mm

2、键校核

根据最小轴径选择普通平键

[σ] = 110 Mpa

σp = 2Mz/dkl

lmin = 2Mz/dk[σ]

= 22.857 mm

圆整得

l = 25 mm

故选用普通平键8×25(GB/T1096-2003)。

4.4选择轴承

由于此轴要承受单向较大的轴向力,则应用一个推力球轴承,为方便设计轴肩,不受扭力的一端轴径设计为Ф20,选用6104号单列深沟球轴承;另一端轴径设计为Ф30,选用6106号单列深沟球轴承,由于推力球轴承需要支撑,所以要留一个Ф35×20的轴肩以填充支撑物。故推力球轴承处可以设计为Ф40,选用8108号单向推力球轴承。

关于底座托盘的具体形状及尺寸请参考其零件图。

第5章液压马达设计

5.1马达外径计算

此液压马达是用于驱动立柱往复回转180°的机构,采用摆动液压马达。

由公式

T = b(D2-d2)(P2-P1)ηm/8

取马达容积高

b = 50 mm

轴径

d = 35 mm

工作压力

P2 = 3 Mpa

背压

P1 = 1 Mpa

马达工作效率

ηm = 0.9

D = 104.8 mm

查表GB/T 2348-1993 取D = 125 mm

5.2叶片设计

叶片设计如下图5-1,带键槽的通孔套在底座托盘轴径为Ф25的轴上,与之配合。液压马达是整个机器人装置的动力源,所以其承受者最大的工作压力,叶片必须具有很好的抗弯强度、抗震性能和疲劳强度。叶片选取材料为高淬透性调质钢40CrNiMoA(A50403),根据标准GB/T3077—1999。叶片厚度为10 mm。

“慧鱼模型”三自由度机械手

湖北理工学院毕业设计(论文) “慧鱼模型”三自由度机械手 设 计 小 册 学院:机电工程学院 班级:机械设计与制造 指导老师: 姓名:学号:201030120130 湖北理工学院毕业设计(论文) 一、概述 ............................................................ 1 1.1机电一体化技术 ................................................... 1 1.1.1机电一体化技术的定义和内容 (1) 1.1.2机电一体化系统组成 (1) 1.2. 慧鱼机器人 ..................................................... 2 1.2.1慧鱼创意教学组合模型简介 (2) 二、机器人的组成 .....................................................

2.1组成构件 ......................................................... 3 2.2慧鱼机器人分析 ................................................... 6 2.2.1机器人机构组成 (6) 2.2.2主要成分构成及功能 (7) 2.3. 机器人的工作空间形式 ............................................ 9 2.4机器人的机械运动形态和变换控制 .................................. 11 2.5机器人的位移、速度、方向的控制方法 (13) 湖北理工学院毕业设计(论文) 一、概述 1.1机电一体化技术 1.1.1机电一体化技术的定义和内容 机电一体化技术综合应用了机械技术、计算机与信息技术、系统技术、自动控制技术、传感检测技术、伺服传动技术,接口技术及系统总体技术等群体技术,从系统的观点出发,根据系统功能目标和优化组织结构目标,以智能、动力、结构、运动和感知等组成要素为基础,对各组成要素及相互之间的信息处理、接口耦合、运动传递、物质运动、能量变换机理进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质和能量的有规则 运动,在高质量、高精度、高可靠性、低能耗意义上实现多种技术功能复合的最佳功能价值的系统工程技术。 1.1.2机电一体化系统组成 1.机械本体机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。 2.检测传感部分检测传感部分包括各种传感器及其信号检测电路,其作用就是检测机电一体化系统工作过程中本身和外界环境有关参量的变化,并将信息传递给电子控制单元,电子控制单元根据检查到的信息向执行器发出相应的控制。 3.电子控制单元电子控制单元是机电一体化系统的核心,负责将来自各传感器的检测信号和外部输入命令进行集中、存储、计算、分析,根据信息处理结果,按照一定的程度和节奏发出相应的指令,控制整个系统有目的地进行。 4.执行器执行器的作用是根据电子控制单元的指令驱动机械部件的运动。执行器是运动部件,通常采用电力驱动、气压驱动和液压驱动等几种方式。 5.动力源动力源是机电一体化产品能量供应部分,是按照系统控制要求向机械系统提供能量和动力使系统正常运行。提供能量的方式包括电能、气能和液压

自由度搬运物料工业机器人的设计设计

毕业设计论文 四自由度搬运物料工业机器人的设计 摘要:在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。 关键词:机器人示教编程伺服制动

The Design of an Industrial Robot with Four DOFs for Carrying Material for a Punch Abstract:In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jobs of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way. In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servocontrol, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

自由度机械手设计

设计说明书 课题:凸轮轴加工自动线机械手 班级:数控69902 设计:沈晓春 审核: 二00五年九月

目录 一、目录 (2) 二、前言 (3) (一)机械手的用途说明 (3) (二)设计机械手的目的、意义 (3) (三)设计指导思想应达到的技术性能要求 (4) 三、设计方案论证 (5) (一)机械手的原始依据 (5) (二)机械手的运动方案论证 (6) 四、机械手各组成部件设计计算 (8) (一)抓取机械设计 (8) (二)手腕机构 (12) (三)手臂设计 (14) (四)缓冲装置设计 (22) (五)定位机构设计…………………………………………………………………………………

25 (六)机械手驱动系统设计 (25) 五、机械手控制系统设计 (25) 六、设计总结 (26) 七、参考文献 (27) 二、前言 (一)机械手的用途说明 机械手是模仿人手工作的机械设备。实验用机械手的设计,是指机械手臂在一定范围内的摆动,手臂的垂直方向的上下移动及手爪的伸缩运动组成。由启动系统实现各运动的驱动。它的主要作用是将工件按预定的程序自动地搬运到需要的位置,或者保持工具进行工作。机械手是利用PLC控制整个系统实现各种运动的自动化控制,且能用于教学演示。 (二)机械手的目的、意义 机械手是模仿人手的动作,生产中应用机械手可以提高自动化水平和劳动生产率,可以减轻劳动强度,保证产品质量,实现安全生产,尤其在恶劣的劳动条件下,它代替人作业的意义更加重大。因此,在机械加工中得到越来越广泛的应用。

目的是,我们对机械手的设计步骤有一定的平衡了解;也能基本掌握机械设计的方法;综合运用学过的理论知识;全面复习绘图技巧,并较好的运用于毕业设计绘图上。通过这次设计,使我了解到,自动控制的对象主要是单机或某个生产过程,智能控制则包括控制对象及整个工作环境或整个生产过程;自动控制的目标是使在系统控制的某个状态下,尽量消除环境对系统的影响,智能控制关心的使最终状态或现行状态是否合乎要求。因此,要充分考虑环境的影响;自动控制的学习来源重要是对象的状态的反馈,所以智能控制需要一个庞大的数据库;自动控制理论着重描述对象的数学模型,然后,通过各种控制算法进行控制,以达到目的,智能控制着重直接控制经验。(三)设计的指导思想,应达到的技术性能要求 结构简单:设计为三自由度的机械手臂,运动形式简单,可以把手臂设计成为沿导向装置运动,直接选用标准规格的液压缸和内胀式机械手爪,无须另行设计。 外观不要有手臂堵塞外形:设计尽量要求安装方便,各非标准件加工方便。因此,不必设计成套形式,管道也不必安排在手臂内部,可以采用软管直接连接。 本次设计的手臂不要光用于工业生产,因此,对各部件的加工精度及安装要求不高,可以在通用机床上加工完成。

三自由度并联机械手的设计..

学号: 密级: 武汉东湖学院本科生毕业论文(设计) 三自由度并联机械手的设计 院(系)名称:机电工程学院 专业名称:机械设计制造及其自动化 学生姓名: 指导教师: 二〇一六年五月六日

郑重声明 我郑重声明:本人恪守学术道德,崇尚严谨学风,所呈交的学术论文是本人在老师的指导下,独立进行研究工作所取得的结果。除文中明确注明和引用的内容外,本论文不包含任何他人已经发表和撰写过得内容。论文为本人亲自撰写,并对所写内容负责。 本人签名: 日期:2016年5月7号

摘要 随着机器人技术的快速发展,并联机械手的应用领域越来越广,已成为当今机器人领域新的研究热点。针对并联机械手机构比传统串联机械手更复杂的问题,本文以一种轻型高速的三自由度Delta 并联机械手为例,在完成其运动学的基础上,对并联机械手进行了建模以及装配。 首先,本文介绍了三自由度并联机械手机构的工作原理,并对其进行了运动学分析。其中,对机构的自由度进行的计算,采用几何法求得了其运动学正解以及其运动学逆解。其次,对机构进行了速度模型及雅克比矩阵的分析。实现了solidworks对机构的零部件与装配图三维建模。最后,通过个零部件的配合,实现了三自由度并联机械手的装配。 关键词:并联机械手;三自由度;3D建模

ABSTRACT With the rapid development of robot technology, parallel manipulator used more and more widely, has become the hot spot in the field of new robots today. In view of the parallel manipulator mechanism more complex than the traditional serial manipulator problem, based on a lightweight high-speed three degree of freedom parallel manipulator as an example, the Delta at the completion of its kinematics, on the basis of the parallel manipulator has carried on the modeling and assembly. First, this paper introduces the working principle of three degrees of freedom parallel manipulator mechanism, and carries on the kinematics analysis. Among them, the institution of degree of freedom for the calculation of geometric method is used to obtain the positive kinematics solution and its inverse kinematics solution. Second, the institutions for the velocity model and the Jacobi matrix analysis. Implements the solidworks for spare parts and assembly drawing 3 d modeling of the organization. Finally, by a spare parts, implements the three degree of freedom parallel manipulator assembly. Keywords: Parallel manipulator;Three degrees of freedom;3D modeling

六自由度机械手设计

机械设计课程设计说明书 六自由度机械手 TOPWORK 上海交通大学机械与动力工程学院专业机械工程与自动化 设计者: 李晶(5030209252) 李然(5030209316) 潘楷 (5030209345) 彭敏勤 (5030209347) 童幸 (5030209349) 指导老师:高雪官 2006616

、八— 刖言 在工资水平较低的中国,制造业尽管仍属于劳动力密集型,机械手的使用已经越来越普及。那些电子和汽车业 的欧美跨国公司很早就在它们设在中国的工厂中引进了自 动化生产。但现在的变化是那些分布在工业密集的华南、 华东沿海地区的中国本土制造厂也开始对机械手表现出越 来越浓厚的兴趣,因为他们要面对工人流失率高,以及交 货周期缩短带来的挑战。 机械手可以确保运转周期的一贯性,提高品质。另 外,让机械手取代普通工人从模具中取出零件不仅稳定, 而且也更加安全。同时,不断发展的模具技术也为机械手 提供了更多的市场机会。 可见随着科技的进步,市场的发展,机械手的广泛应用已渐趋可能,在未来的制造业中,越来越多的机械手将 被应用,越来越好的机械手将被创造,毫不夸张地说,机 械手是人类是走向先进制造的一个标志,是人类走向现代化、高科技进步的一个象征。因此如何设计出一个功能强大,结构稳定的机械手变成了迫在眉睫的问题。

目录 一.设计要求和功能分析 4 - ?- ■基座旋转机构轴的设计及强度校核 5 三.液压泵俯仰机构零件设计和强度校核 8 四.左右摇摆机构零件设计和强度校核 11五.连腕部俯仰机构零件设计和强度校核 14六.旋转和夹紧机构零件设计和强度校核 19七.机构各自由度的连接过程 25八.设计特色 28九.心得体会 28十.参考文献30 一. 任务分工31 十二.附录(零件及装配图)31

机械工程及自动化专业毕业设计论文-多自由度机械手设计

前言 1.1 课题背景及意义 机械手通过运动控制芯片、单片机、可控制编程器等来控制电机、气缸、液压缸的运动,从而模仿人手和臂的某些动作,按固定程序实现物体的抓取。它可代替人的劳动,也可以在有害环境下保护人身安全,因而广泛应用于机械制造、电子、原子能等部门。目前机械手主要用于以下几个方面。 (1).恶劣的工作环境和危险的工作 在核工业中,核产品具有较强的放射性,为了人员的安全,需要机械手来完成相关的清理工作。 (2).自动化生产领域 主要用于生产上实现自动化。如当机械手末端夹持焊枪时,可以对汽车或摩托车的车体进行点焊或弧焊作业。 (3).在特殊作业场合进行极限作业 在一些高危领域经常要用到机器人去探索。目前研制出了螃蟹机器人,用于水下勘测、海洋搜寻及石油天然气的勘测。 (4).农业生产 目前研制出了太阳能农用机器人,他可以找到隐藏在农作物中的杂草,通过机械手隔断杂草,同时还可以利用机械手喷洒除草剂。 (5).军事应用 在军事应用中,军人执勤经常会遇到危险,这就需要机器人帮助完成执勤任务,当今世界机器人竞争很激烈,要在这个激烈的国际竞争中立于不败之地,就需要有我国自己的机器人产业,未来世界高科技的竞争更重要的则是人才的竞争。因此,从现在开始就应该注意培养后备力量。机械手是机器人产业的典型代表,因此可以用来作为教学应用的示例。 机械手为典型的机电产品,包含了驱动元件,控制元件,信息处理元件,执行机构,传动机构,机械本体等组成元素,并且具有控制能力强,改变控制程序灵活方便、可靠性高等特点,为学生提供了良好的学习工具。它将现代工业与教学联系在了一起,通过控制—执行这整个的过程使学生对所学的知识有一个更好的认识,从而激发学生的学习兴趣。随着当今计算机技术的飞速发展,它已突破纯开关量控制的局限,进入模拟量控制等领域。通过该机械手的教学开拓了学生专业视野,为他们迎接就业和深造的挑战打下坚实的基础。

基于PLC的三自由度的机械手控制系统与设计要点

基于PLC的三自由度机械手控制系统设计与实现 摘要:为了提高机械手在工业生产中定位的精度,介绍一种基于PL C的三自由度机械手控制系统的设计方案。方案中提出了步进电机在机械手定位应用中的一种新思路详细论述三自由度机械手控制系统的硬件结构及软件实现方法并建立MCGS组态环境界面对系统 的运行进行监控。测试结果表明该系统运行稳定,定位精确,具有较高的应用价值。 关键词: PL C 三自由度机械手步进电机MC GS 组态环境 0 引言 机械手是一种能模拟人的手臂动作,按照设定程序、轨迹和要求,代替人手进行抓取、搬运工件或操持工具的机电一体化自动装置。三自由度机械手又称3D机械人,能够实现三个自由度方向(水平、垂直和旋转)的抓取或放置物品,具有操作范围大,灵活性好,应用广泛的特点。 可编程控制器(PLC)是一种专门为工业应用而设计的进行数字运算操作的电子控制装置。由于其具有可靠性高,功能强,编程简单,人机交互界面友好等特性而广泛用于工业控制系统。 步进电机是将电脉冲信号转变为角位移或线位移的开环执行元件。在非超载情况下,电机的转速、停止位置只取决于脉冲信号的频率和脉冲数目。这一线性关系的存在,加上步进电机只有周期性误差而无累计误差的特点,使其在速度、定位等控制领域应用得非常广泛。 机械手按驱动方式可分为液压式、气动式、电动式和机械式机械手。本文设计的三自由度机械手属于混合式机械手,它综合了电动式和气动式机械手的优点,既节省了行程开关和PLC的I/O端口,又达到了简便操作和精确定位的目的。 1 三自由度机械手的系统结构与运动方式 三自由度机械手为圆柱坐标型。图1为机械手结构示意图,机械手手臂的左右运动(水平方向)由伸缩步进电机控制,上下运动(垂直方向)由升降步进电机控制,逆时针和顺时针旋

3个自由度机械手设计

毕业设计(论文) 说明书 第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,

三自由度圆柱坐标工业机器人

三自由度圆柱坐标型工业机器人设计 学院:机电工程学院 班级: 姓名: 学号:

1.末端执行机构设计 采用内撑连杆杠杆式夹持器,用小型液压缸驱动夹紧,它的结构形式如图。内撑连杆杠杆式夹持器采用四连杆机构传递撑紧力,即当液压缸1工作时,推动推杆2向下运动,使两钳爪3向外撑开,从而带动弹性爪4夹紧工件。该种夹持器多用于内孔薄壁零件的夹持。

2.弹性爪的结构设计: 这种结构是在手爪外侧用螺钉固定弹性片两端。当弹性手工作时,由于夹紧过程具有弹性,就可避免易损零件被抓伤、变形和破损。 3.手臂机构的设计 本设计中手臂由滚珠丝杠驱动实现上下运动,结构简单,装拆方便,还设计有两根导柱导向,以防止手臂在滚珠丝杠上转动,确保手

臂随机座一起转动。它的结构如下图。选用轴向脚架型液压缸,活塞杆末端为外螺纹结构,手臂与末端执行器连同活塞杆一起转动。 4.腰部和基座设计 1——支座,2——步进电机,3——谐波齿轮,4——转动机座5——支承槽钢梁,6——滚珠丝杠,7——导向柱,8——锥环无键联轴器 通过安装在支座上的步进电机和谐波齿轮直接驱动转动壳体转动,从而实现机器人的旋转运动;通过安装在顶部的步进电机和联轴器带动滚珠丝杠转动实现手臂的上下移动。采用双导柱导向,防止手臂在滚珠丝杠上转动,确保手臂随机座一起转动。支撑梁采用槽钢,以减轻重量和节省材料,它的结构如上图。 5.驱动方式的选择

由上表知步进电机应用于驱动工业机器人有着许多无可替代的 优点,如控制性能好,可精确定位,体积较小可用于程序复杂和运动轨迹要求严格的小型通用机械手等,所以本设计采用它来实现机器人的旋转和上下移动。选电机为BF反应式步进电机,型号为:90BF001。 由上表知,液压驱动方式反应灵敏,可实现连续轨迹控制,液体压力高,可获得较大的输出力,因此机器人的伸缩运动采用液压驱动方式来实现,从而使机器人容易找准工件。它的型号为Y-HG1-C50/28×100LJ1HL1Q,它的主要技术参数如下表

三自由度3-CS并联平台机构的运动学分析

三自由度3-CS并联平台机构的运动学分析 于靖军;毕树生;宗光华;黄真 【期刊名称】《航空学报》 【年(卷),期】2001(022)003 【摘要】With the development of parallel mechanisms research, spatial imperfect-DOF parallel mechanisms especially some constrained 3-DOF parallel mechanisms have received more attention for the advantages of their simple structure, easy control and low cost. In this paper, a novel model of constrained 3-DOF parallel manipulator—3-CS in-parallel platform mechanism is introduced firstly. The instantaneous possible motion characteristics for this mechanism are analyzed in detail by applying the screw theory. In addition, the first order kinematic analysis of the 3-CS mechanism is discussed thoroughly, which involves deriving three motion constraint equations for the output motions of the manipulator and formulating the kinematic influence matrix (also called Jacobian of the mechanism) reflecting the velocity relationship between three independent input motions and three independent output motions in a closed form. At last, the closed-form solutions are developed for both the inverse and forward position kinematics.%首先介绍了一种新型的并联机构——三自由度3-CS并联平台机构的模型。应用螺旋理论分析了该机构的瞬时运动。同时对该机构进行了运动学分析:给出了操作平台的输出运动参数的3个运动约束方程和3个独立输出运动参数与3个独

3个自由度机械手

优秀设计 引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。 在国外,目前主要是搞第一类通用机械手,国外称为机器人。本课题所做的机械手是属于第三类机械手。 1、简史 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。 1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。 1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。 联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。 前苏联自六十年代开始发展应用机械手,至1977年底,其中一半是国产,一半是进口。

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

相关主题
文本预览
相关文档 最新文档