当前位置:文档之家› AC-DC电源转换器及其环路补偿电路-CN201010511943[1].2

AC-DC电源转换器及其环路补偿电路-CN201010511943[1].2

AC-DC电源转换器及其环路补偿电路-CN201010511943[1].2
AC-DC电源转换器及其环路补偿电路-CN201010511943[1].2

频率补偿电路设计报告---电子设计大赛资料

频率补偿电路设计报告 摘要 本系统基于零极点补偿的理论,设计了一个频率补偿电路,能够补偿“模拟某传感器特性的电路模块”(以下简称“模拟模块”)的高频特性。该系统主要由前端模拟模块、中间级频率补偿模块、后端低通滤波模块组成。其中,频率补偿模块由并联的三个滤波电路和一个比例加法电路组成,通过调节增益比例关系,可以将补偿网络的传递函数分解成易于硬件实现的一阶并联系统,最终使其频率特性向高频拓展。通过测试,该系统的模拟模块能达到4.53KHz的截止频率;而串联补偿网络电路后,整个系统的截止频率能达到98.5KHz,且电压波动很好的控制在了12%以内,噪声均方根电压也小于10mv。其它方面,系统依赖MSP430F149单片机最小系统和辅助电路,完成了补偿电路的输出采样,能够记录各个频率点的电压波动,并通过液晶显示出通频带内的幅频特性。

一、方案论证与比较 方案一:程控增益控制抬高补偿频率范围内的电压。通过分析,程控增益能够实现频率补偿,利用单片机通过AD实时采样输出信号,与输入信号比较,从而控制程控放大器的放大倍数使输出与输入信号幅度基本一致。但是该方案在低频段很不稳定,且单片机的控制增益的速度有限,不能满足本题目的要求,舍去。方案二:幅值补偿法。根据模拟模块的输出Vb,通过一个移相网络使Vb的相位与输入信号Vs相同,经过一个减法器得到两者之差,然后在通过一个移相网络,使减法器的输出与Vb相位相同,最后它们经过一个加法器输出,达到输出信号与输入信号幅度基本相同,且不随频率的变化而大幅度变化,从而拓宽通频带,达到频率补偿的目的。但是输入信号经过模拟模块的输出Vb与Vs的相位差随着频率的变化而变化,锁相环构成的移相网络锁定频率很难跟上其变化,故输出信号的幅度达不到设计要求,舍去该方案。 方案三:零极点补偿法的串联实现。根据模拟模块的传递函数() G s,用补偿网 O 络() H s的零点消去原传递函数的极点,补偿传递函数的极点就变成了补偿后传 S 递函数的极点。因此,通过改变传递函数极点的方式可以拓展系统的高频特性。但是采用串联方式设计硬件电路时,可能会在传递函数化简时得到一阶积分系统,容易出现过冲,很难保证补偿网络的电压稳定。故舍去该方案。 方案四:零极点补偿法的并联实现。理论同方案三,只需将串联补偿传递函数化简成并联形式。其结构框图如图1。该方案将传递函数分解出真分式形式,且分子项不含零点,电路容易实现,所以最终选择该方案。 图1、并联补偿结构框图 虽然系统要求中不包含软件设计,但该系统进行了拓展,设计了一个单片机控制的显示器,能够很好的显示输出电压。系统框图如图2所示。

开关调节器设计中的频率补偿(二)

开关调节器设计中的频率补偿(二)作者:Nigel Smith 便携式电源业务开发经理 德州仪器公司 在该系列文章的第一部分中,我们探讨了开关转换器的正向通道。在该第二部分(即最后一部分)中,我们将要探讨的是在环路处于关闭状态且全部电路被补偿时的反馈通道。 第二部分:反馈通道补偿 一旦正向通道的增益和相位响应为已知,那么就可以设计出误差放大器的响应。频率补偿的主要目的是为了确保:(a) 足够的相位裕度(通常大于 45°);及 (b) 一个足够的增益裕度(通常大于 10 dB)。除此以外,环路增益还应该通过单位增益 (unity),斜率为 -20dB/decade。 在将频率补偿设计出来以前,必须选择一个合适的交叉频率f c。高交叉频率的开关转换器可以对运行状态的变化迅速地做出响应,因此一般为较好的选择;但是,采样原理限制了可以使用的最大交叉频率。在实践中,f c 一般位于 1/10 和1/6 f sw之间,但是,如果该频率上误差放大器的开环路增益不足,那么则可能要进一步减小f c。 可以从其 Bode 曲线中选择理想的交叉频率、增益、相位和f c处正向通道的斜率。通过对两者进行比较,现在可以很容易地获得所要求的增益、相位和f c处补偿误差放大器的斜率。 通常使用的三种补偿方案为类型I、类型 II和类型 III(见图1)。类型 I 通常不用于开关调节器电路,这里将不作讨论。

图1、常用的补偿电路及其响应 类型 II 补偿在源端 (origin) 具有一个极点(以获得高 DC 增益),以及一个额外的零点和极点。其产生的频率响应包含一个介于零点和极点的偏平区域。类型II 补偿一般被用于那些在交叉频率上输出滤波器具有一个单极点衰减的应用中。通过确保交叉频率出现在误差放大器响应偏平部分的区域,可以获得f c上理想的 -20dB/decade 衰减。 表1、一个类型 II 补偿电路的相位变化 表2、一个类型 III 补偿电路的相位变化

频率补偿电路设计报告

频率补偿电路(B题) 电子科技大学余波何剑锋郝昊奇 摘要:本系统充分应用TI的高精度低噪放大器OPA2227,设计了噪声抑制比较好的频率补偿电路。本系统实现了题目要求的所有基本要求和发挥要求,并且频率在0到85KHz电压波动小于10%;系统所有滤波器均采用压控反馈形式,有效的防止了系统自激振荡而又可以适当的增大电压放大倍数;自制直流稳压电源及基于MSP430的液晶显示模块,可显示输入信号的频率。 关键词:频率补偿,压控反馈,低噪声 Abstract:This system makes application to TI's high-precision low-noise amplifier, OPA2227, and noise suppression better frequency compensation circuit. This system subject to the requirements of all the basic requirements and play requirements, and voltage fluctuations from 0 to 85KHz less than 10%; system, all filters are used to voltage-controlled feedback in the form of preventing the self-excited oscillation system and appropriate increase the voltage amplification factor; homemade DC power supply and MSP430-based liquid crystal display module can display the frequency of the input signal. Keywords: frequency compensation, voltage-controlled feedback, low-noise

频率补偿电路

频率补偿电路(B题) 摘要:本系统以TI高性能音频运算放大器OPA2134为核心,组成多级模拟信号运算电路,对已知模拟模块的高频特性做补偿。模拟模块的信号输出分为两路处理,一路经过高通滤波器,补偿原电路的高频特性。另一路经过一个一阶RC低通网路,用来获取原通带特性。然后将低通信号衰减,最后将两路信号做加法线性放大、低通滤波,完成对高频特性的补偿。整个系统采用了高性能运算放大器,系统噪声小,运算电路稳定,失调电压小,波形失真小,较好的完成了设计要求。 关键词:频率补偿,OPA2134,模拟信号运算电路,高性能运算放大器

目录 一、系统方案设计与论证 (1) 1.1频率补偿电路 (1) 1.2总体方案描述 (1) 二、理论分析与计算 (2) 2.1“模拟模块”电路分析 (2) 2.2频率补偿电路 (2) 2.2.1 高通滤波器 (2) 2.2.2 低通滤波器 (3) 2.2.3 衰减电路、加法电路、比例放大电路、低通滤波器 (3) 三、各部分电路设计 (4) 3.1高通滤波 (4) 3.2低通滤波与衰减电路 (4) 3.3加法电路与比例放大电路 (4) 3.4100K H Z低通滤波电路 (5) 四、系统软件设计 (5) 五、测试方案与测试结果 (6) 5.1测试仪器 (6) 5.2“模拟模块”电路测试 (6) 5.3频率补偿测试 (6) 5.4输出噪声电压测量 (7) 六、参考文献 (7)

一、系统方案设计与论证 1.1 频率补偿电路 方案一:使用VCA810组成AGC(自动增益控制)电路自动稳定输出峰值,使频率补偿模块在一个较宽的频带内输出峰值稳定,然后经过低通滤波器调整通频带宽度。达到补偿高频特性的目的,此种方案补偿相对简单,频率补偿电路输出增益波动较小,但是AGC输入电压范围较小,随输入信号变化时需要动态切换衰减网络,电路复杂,实测低频段容易失真,故不采用。 方案二:使用FIR数字滤波器,由已知电路特性可推得其传递函数,然后计算数字滤波器传递函数,使用FPGA或是DSP做数字滤波,实现高频补偿,此方法实现复杂,程序的复杂度较高,鉴于时间有限和调试的难度,所以不采用。 方案三:使用模拟运算电路和模拟滤波电路对“模拟模块”输出信号进行分段处理,先补偿高频段,然后叠加上低频段,实现设计要求,此方案电路模块较多,但都是线性电路,波形失真小,低频特性好,单元电路简单,故选此方案。 1.2 总体方案描述 系统框图如图1所示,由四部分组成:“模拟模块”电路,频率补偿模块,单片机测频模块,电源模块。输入信号先经过“模拟模块”电路,模拟出传感器特性,然后送给频率补偿模块,频率补偿模块分为两路,一路经过高通,得到一个带通特性,另一路先经过低通滤波器再经过衰减器,使输出信号和高通输出信号匹配,然后将两路信号相加,两路频率特性相互补偿,通频带得到拓宽,然后将信号放大,最后经过100kHz的低通滤波器,限制输出的频带宽度。单片机实时显示测试频率。 图1 系统框图

频率补偿电路的设计

频率补偿电路的设计 摘要: 本设计是基于TI提供的芯片的模拟传感器频率补偿的模拟系统;该系统主要由模拟某传感器特性的电路模块模块、衰减网络模块、一阶有源RC低通滤波模块和加法器模块构成;电路频率补偿运用了自动控制、模拟电路、信号与系统知识分析通过改变原模拟某传感器特性的电路模块的零极点分布实现提高-3dB高频截止频率的功能,并通过matlab仿真计算出正确的系数保证输入基准信号在通频带范围内无失真输出、该作品具有的低功耗、低噪声等特色;最终本系统实现了50kHz 与100kHz频率段的补偿,且各项指标基本达标。 方案使用的TI芯片:OPA2227 TL082 NE5532

1.方案比较与论证 1.1系统总体方案 模拟某传感器特性 的电路模块 + ? R f 1 5.1M Ω C f 1 4.7pF V b A 5.1M Ω R f 2 C f 2 4.7pF 10M Ω R s V s 正弦波电压信号发生器 T K 频率补偿电路 V o TP1 TP2 图1 系统结构框图 1.2频率补偿电路 方案一:自动增益控制(AGC ) 自动增益电路具有使放大电路的增益自动地随信号强度而调整的自动控制稳定输出的能力,可以把模拟传感器特性的电路模块衰减的幅度以稳定电压输出,通过放大电路来提升衰减的电压并通过低通滤波器滤除所需截止频率以下的频率,从而实现频率补偿功能。 方案二:系统传递函数及零极点并联补偿法 计算出模拟模块的传输函数H 1(s ),推算出系统增益为常量时的频率补偿网络的传输函数H 2(s ),根据H 2(s )的特性求算出频率补偿网络的电路结构。由于模拟模块部分等效于一个低通滤波器,初步推测出频率补偿网络部分主要是低通滤波器,信号经模拟模块部分可变为幅度变化较小的信号,再通过截止频率50KHz 以上的低通滤波器,以及截止频率为13.27的的通滤波器和一个全通系统并联输入加法器叠加并放大便可以输出符合题干要求的信号,实现频率补偿。方案的系统框图如图2所示。 方案三:零极点串联补偿法 计算出模拟模块的传输函数H 1(s ),推算出系统增益为常量时的频率补偿网络的传输函数H 2(s ),根据H 2(s )的特性求算出频率补偿网络的电路结构。对各个通过串联模式连接并放大同样可以输出符合要求的信号,从而实现频率补偿 方案四:发射极电容补偿方法 发射极电容补偿方法是给发射极电阻并联一个小电容,电容的阻抗随频率的

运算放大器稳定性及频率补偿学习报告

信息科学与技术学院 模拟CMOS集成电路设计——稳定性与频率补偿学习报告 姓名: 学号: 二零一零年十二月

稳定性及频率补偿 2010-12-3 一、自激振荡产生原因及条件 1、自激振荡产生原因及条件 考虑图1所示的负反馈系统,其中β为反馈网络的反馈系数,并假定β是一个与频率无关的常数,即反馈网络由纯电阻构成,不产生额外的相移(0β?= );H (s )为开环增益,则()H s β为环路增益。所以,该系统输入输出之间的相移主要由基本放大电路产生。 图1 基本负反馈系统 该系统的闭环传输函数(即系统增益)可写为: ()()1() Y H s s X H s β=+ 由上式可知,若系统增益分母1()H s j βω==-1,则系统增益趋近于∞,电路可以放大自身的噪声直到产生自激振荡,即:如果1()H j βω=-1,则该电路可以在频率1ω产生自激振荡现象。则自激振荡条件可表示为: 1|()|1H j βω= 1()180H j βω∠=- 注意到,在1ω时环绕这个环路的总相移是360 ,因为负反馈本身产生了180 的相移,这360 的相移对于振荡是必需的,因为反馈信号必须同相地加到原噪声信号上才能产生振荡。为使振荡幅值能增大,要求环路增益等于或者大于1。所以,负反馈系统在1ω产生自激振荡的条件为: (1)在该频率下,围绕环路的相移能大到使负反馈变为正反馈; (2)环路增益足以使信号建立。 2、重要工具波特图 判断系统是否稳定的重要工具是波特图。波特图根据零点和极点的大小表示一个复变函数的幅值和相位的渐进特性。波特图的画法: (1)幅频曲线中,每经过一个极点P ω(零点Z ω),曲线斜率以-20dB/dec(+20dB/ dec)变化; (2)相频曲线中,相位在0.1P ω(0.1Z ω)处开始变化,每经过一个极点P ω(零点Z ω),相位变化-45 (±45 ),相位在10P ω(10Z ω)处变化-90 (±90 ); (3)一般来讲,极点(零点)对相位的影响比对幅频的影响要大一些。

1 LDO原理与频率补偿

1 LDO原理与频率补偿 LDO线性稳压器的传统电路结构如图1所示,由误差放大器,缓冲器,调整管M0,分压电阻RF1,RF2,以及片外滤波电容C0和其寄生的等效串联电阻RESR组成。片外电容C0和RESR组成的零点用来抵消LDO中第2个极点,从而达到环路稳定。当没有片外电容补偿时,由于输出负载电流变化大,LDO的输出极点变化大,环路稳定性设计变得困难。Leung提出了衰减系数控制频率补偿法(Damping Factor Control Compen-sation,DFC)和引入零点补偿,在稳定性,响应时间方面具有较好的特性。Milliken采用在调整管的输入端和输出端之间加入一个微分器,将调整管输入节点和输出节点的2个极点分离,从而在只使用片内电容时依然保持稳定。Kwok使用动态密勒电容补偿技术,通过串联一个在线性区工作的PMOS 管作为动态可调电阻,在误差放大器的输出端引入一个动态零点抵消LDO的输出极点,实现系统稳定。本文中则采用在负载端引入零点,补偿误差放大器输出极点的方法,避免了为补偿LDO输出极点,而需要大电容和动态调整电阻的要求,且减小了需要的补偿电容值,降低了芯片面积。 图2 LDO中电阻电容反馈网络

2 电路设计 图2为所设计的LDO线性稳压器电路,误差放大器为折叠式共源共栅结构,由M1~M14组成,M0为输出调整管,反馈网络由RF1,RF2和CF1组成,电容Cc为误差放大器的补偿电容。 图2中电阻电容反馈网络的传输函数为: 这种反馈网络产生了一个零点zf和一个较高的极点pf,设置极点pf大于单位增益频率,即RF2//RF1>1/(CF1·pf)。 不施加片外电容时,LDO的传输函数为: 式中:Ca,roa为分别误差放大器输出a端的寄生电容和输出电阻;gp0,rp0分别为调整管M0的跨导和小信号输出电阻;Aamp为误差放大器的增益。由式(7)增益L0随着负载电流增大而降低,而极点p1随负载电流增大而升高,极点p2基本保持不变,对于不施加片外电容,其等效串联电阻RESR所提供的零点不存在,在输出负载电流IOUT=0时,调整管输出电阻rp0最大,gmp0最小,故小负载电流时,环路稳定性变差。为满足LDO稳定性要求,IOUT必须有一个最小输出电流,以保证M0的输出极点P1不会太低。为保证极点P2和零点zf相近而抵消,须适当减小调整管M0尺寸。在本应用中,LDO输入电压为2.5 V,用于为1.2 V核心电路供电,调整管M0的VDS=1.3 V,所以M0可以取较小尺寸。

I杯陕西赛题B题--频率补偿电路

2012年15省赛区大学生电子设计TI 杯竞赛试题 参赛注意事项 (1)2012年8月5日8:00竞赛正式开始。本科组参赛队只能在A 、B 、C 、D 、E 题目中任选一题; 高职高专组参赛队原则上在F 、G 、H 题中任选一题,也可以选择其他题目。 (2)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的 有效证件(如学生证)随时备查。 (3)每队严格限制3人,开赛后不得中途更换队员。 (4)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作, 不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 频率补偿电路(B 题) 【本科组】 一、任务 设计并制作一个频率补偿电路,补偿“模拟某传感器特性的电路模块”(以下简称“模拟模块”)的高频特性。电路结构如图1所示。 模拟某传感器特性 的电路模块 + ? R f 1 5.1M Ω C f 1 4.7pF V b A 5.1M Ω R f 2 C f 2 4.7pF 10M Ω R s V s 正弦波电压信号发生器 T K 频率补偿电路 V o TP1 TP2 图1 电路结构 二、要求 1. 基本要求 (1) 按图1所示组装“模拟模块”电路,其中正弦波电压信号发生器可使用普通函数信号发生器。在开关K 接V s 的条件下达到如下要求: ① V s 为200Hz 、峰峰值为10V 时,“模拟模块”输出V b 没有明显失真。 ② 以200Hz 为基准,V b 的?3dB 高频截止频率为4.5 kHz ± 0.5 kHz 。 (2) 设计并制作频率补偿电路,使之达到如下要求: ① 频率为200Hz 时的电压增益A (200Hz)=|V o /V s |=1± 0.05。 ② 以电压增益A (200Hz)为基准,将A (f )=|V o /V s |的?3dB 高频截止频率扩展到大于50kHz 。

硬件电路设计具体详解

2系统方案设计2.1 数字示波器的工作原理 图2.1 数 字示波器显示原理 数字示波器的工作原理可以用图2.1 来描述,当输入被测信号从无源探头进入到数字示波器,首先通过的是示波器的信号调理模块,由于后续的A/D模数转换器对其测量电压有一个规定的量程范围,所以,示波器的信号调理模块就是负责对输入信号的预先处理,通过放大器放大或者通过衰减网络衰减到一定合适的幅度,然后才进入A/D转换器。在这一阶段,微控制器可设置放大和衰减的倍数来让用户选择调整信号的幅度和位置范围。 在A/D采样模块阶段,信号实时在离散点采样,采样位置的信号电压转换为数字值,而这些数字值成为采样点。该处理过程称为信号数字化。A/D采样的采样时钟决定了ADC采样的频度。该速率被称为采样速率,表示为样值每秒(S/s)。A/D模数转换器最终将输入信号转换为二进制数据,传送给捕获存储区。 因为处理器的速度跟不上高速A/D模数转换器的转换速度,所以在两者之间需要添加一个高速缓存,明显,这里捕获存储区就是充当高速缓存的角色。来自ADC的采样点存储在捕获存储区,叫做波形点。几个采样点可以组成一个波形点,波形点共同组成一条波形记录,创建一条波形记录的波形点的数量称为记录长度。捕获存储区内部还应包括一个触发系统,触发系统决定记录的起始和终止点。 被测的模拟信号在显示之前要通过微处理器的处理,微处理器处理信号,包括获取信号的电压峰峰值、有效值、周期、频率、上升时间、相位、延迟、占空比、均方值等信息,然后调整显示运行。最后,信号通过显示器的显存显示在屏幕上。 2.2 数字示波器的重要技术指标 (1)频带宽度 当示波器输入不同频率的等幅正弦信号时,屏幕上显示的信号幅度下降3dB所对应的输入信号上、下限频率之差,称为示波器的频带宽度,单位为MHz或GHz。 (2)采样速率: 采样速率是指单位时间内在不连续的时间点上获取模拟输入量并进行量化的次数,也称数字化速率,单位用Sa/s(Sampling/s )表示。 用每秒钟完成的AD转换的最高次数来衡量。常以频率来表示,取样速率越高,反应仪器捕捉高频或快速信号的能力愈强。取样速率主要由AD转换速率来决定。数字存储示波器的测量时刻的

LDO频率补偿方法

极点跟随的LDO稳压器频率补偿方法 1 引言 便携电子设备无论是由蓄电池组,还是交流市电经过整流后(或交流适配器)供电,工作过程中,电源电压都存在变化。例如单体锂离子电池充足电时的电压为4.2 V,放电后的电压为2.3 V,变化范围很大。而各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。因而近年来,低压差线性稳压器(LowDropout Linear Regulator)以其低成本,高电池利用率,洁净的输出电压等特点,被广泛应用于移动电话、掌上电脑等消费类电子产品,以及便携式医疗设备和测试仪器中。 LDO稳压器的频率补偿设计,不仅直接决定了频率稳定性,而且对LD0稳压器的性能参数,尤其是瞬态响应速度,有很大的影响。此外,随着当前半导体集成电路工艺的发展,越来越多的功能电路能够被集成于单一芯片中,而现有的LDO稳压器频率补偿技术,对芯片上频率补偿电容的需要,大大阻碍了LDO稳压器芯片集成度的提高和与其他功能电路的系统集成。 本文对LDO稳压器的频率稳定问题,和现有的频率补偿设计技术进行了理论分析。在此基础上,提出了一种新型的频率补偿方法,并给出了电路实现途径。通过一个采用TSMC0.18 μm混合信号半导体工艺,最大输出电流为100 mA的LDO稳压器设计,对该方法做出了进一步的说明。最后,结合LDO稳压器的HSpice仿真结果,对本文提出的频率补偿方法的效果进行了讨论。 2 LDO稳压器频率补偿 LDO稳压器的典型结构,如图1所示。图1中,Vref为具有良好温度特性的电压参考信号,Vin为不稳定的输入电压信号,Vo为输出电压信号。LDO稳压器利用由压差放大器、电压缓冲器、电压调整管Mpass和反馈网络构成的负反馈环路,维持Vo稳定。

频率补偿电路

1.系统设计 1.1设计要求 1.1.1任务 设计并制作一个频率补偿电路,补偿“模拟某传感器特性的电路模块”(以下简称“模拟模块”)的高频特性。电路结构如图1.1所示。 图1.1 电路结构 1.1.2要求 1. 基本要求 (1) 按图1.1所示组装“模拟模块”电路,其中正弦波电压信号发生器可使用普通函数信号发生器。在开关K接Vs的条件下达到如下要求: ① Vs为200Hz、峰峰值为10V时,“模拟模块”输出Vb没有明显失真。 ②以200Hz为基准,Vb 的?3dB高频截止频率为4.5 kHz ± 0.5 kHz。 (2) 设计并制作频率补偿电路,使之达到如下要求: ①频率为200Hz时的电压增益A(200Hz)=|Vo/Vs|=1± 0.05。 ②以电压增益A(200Hz)为基准,将A(f)=|Vo/Vs|的?3dB高频截止频率扩展到大于50kHz。 ③以电压增益A(200Hz)为基准,频率0~35kHz范围内的电压增益A(f)的波动在±20%以内。

(3) 在达到基本要求(2)的第①、②项指标后,将开关K切换到接地端,输出Vo 的噪声均方根电压Vn≤30 mV。 2. 发挥部分 (1) 在达到基本要求(2)的第①项指标后,以电压增益A(200Hz)为基准,将A(f)的?3dB高频截止频率扩展到100kHz±5kHz。 (2) 以电压增益A(200Hz)为基准,频率0~70kHz范围内的电压增益A(f)的波动在±10%以内。 (3) 在达到基本要求(2)的第①项和发挥部分(1)的指标后,将开关K切换到接地端,输出Vo的噪声均方根电压Vn ≤10 mV。 (4) 其他。 1.1.3说明 1. 根据频带要求,直流特性和外部元件参数,自选“模拟模块”中的运算放大器A,该运放必须为TI公司产品。 2. 要求“模拟模块”输出Vb 的?3dB高频截止频率为4.5 kHz±0.5 kHz。如果所测高频截止频率≥6 kHz,则以后项目将不予评测。 3. 根据对高频响应特性的要求,频率补偿电路中插入适当的低通滤波电路可以有效降低输出Vo的高频噪声。此外,还应注意输入电路的屏蔽。 4. 在图1.1所示开关K切换到接地端的条件下,在T端接入图1.2(a)所示的电路可简化系统频率特性的测试、调整过程。设定函数信号发生器输出Vt为频率500Hz、峰峰值5V的三角波电压,则输出Vb的波形应近似为方波脉冲。如果频率补偿电路的参数已调整适当,则输出Vo的方波脉冲会接近理想形状。若高频截止频率为fH=50kHz,则输出的方波脉冲上升时间应为tr ≈ 7μs;若fH=100kHz,则tr ≈ 3.5μs;tr的定义如图1.2(b)所示。应用fH·tr ≈ 0.35的原理,可将系统的频率响应特性调整到所要求的指标。注意:Ci到运放A反相输入端的引线应尽量短,以避免引入额外干扰。

硬件电路设计具体详解

2系统方案设计 2.1 数字示波器的工作原理 图2.1 数字示波器显示原理 数字示波器的工作原理可以用图2.1 来描述,当输入被测信号从无源探头进入到数字示波器,首先通过的是示波器的信号调理模块,由于后续的A/D模数转换器对其测量电压有一个规定的量程范围,所以,示波器的信号调理模块就是负责对输入信号的预先处理,通过放大器放大或者通过衰减网络衰减到一定合适的幅度,然后才进入A/D转换器。在这一阶段,微控制器可设置放大和衰减的倍数来让用户选择调整信号的幅度和位置范围。 在A/D采样模块阶段,信号实时在离散点采样,采样位置的信号电压转换为数字值,而这些数字值成为采样点。该处理过程称为信号数字化。A/D采样的采样时钟决定了ADC采样的频度。该速率被称为采样速率,表示为样值每秒(S/s)。A/D模数转换器最终将输入信号转换为二进制数据,传送给捕获存储区。 因为处理器的速度跟不上高速A/D模数转换器的转换速度,所以在两者之间需要添加一个高速缓存,明显,这里捕获存储区就是充当高速缓存的角色。来自ADC的采样点存储在捕获存储区,叫做波形点。几个采样点可以组成一个波形点,波形点共同组成一条波形记录,创建一条波形记录的波形点的数量称为记录长度。捕获存储区内部还应包括一个触发系统,触发系统决定记录的起始和终止点。 被测的模拟信号在显示之前要通过微处理器的处理,微处理器处理信号,包括获取信号的电压峰峰值、有效值、周期、频率、上升时间、相位、延迟、占空比、均方值等信息,然后调整显示运行。最后,信号通过显示器的显存显示在屏幕上。 2.2 数字示波器的重要技术指标 (1)频带宽度 当示波器输入不同频率的等幅正弦信号时,屏幕上显示的信号幅度下降3dB 所对应的输入信号上、下限频率之差,称为示波器的频带宽度,单位为MHz或GHz。

相关主题
文本预览
相关文档 最新文档