当前位置:文档之家› X荧光光谱仪(XRF)的基本原理

X荧光光谱仪(XRF)的基本原理

X荧光光谱仪(XRF)的基本原理
X荧光光谱仪(XRF)的基本原理

X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。

X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻璃、塑料、金属、矿石、耐火材料、水泥和地质物料等。凡是能和x射线发生激烈作用的样品都不能分析,而且要分析的样品必须是在真空(4~5pa)环境下才能测定。

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管通过产生入射X射线(一次X射线),来激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X 射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

近年来,X荧光光谱分析在各行业应用范围不断拓展,广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得zui多也zui广泛,是一种中型、经济、高性能的波长色散X射线光谱仪。

X荧光光谱仪具有以下优点:

a)分析速度高。测定用的时间与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。

b)X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。大多数分析元素均可用其进行分析,可分析固体、粉末、熔珠、液体等样品,分析范围为Be到U。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特别是在超软X射线范围内,这种效应更为显著。波长变化用于化学位的测定。

c)非破坏分析。在测定中不会引起化学状态的改变,也不会出现试样飞散现象。同一试样可反复多次测量,结果重现性好。

d)X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。

e)分析精密度高。

f)制样简单,固体、粉末、液体样品等都可以进行分析。

当然,也有一些不足之处,具体如下:

a)难于作分析,故定量分析需要标样。

b)对轻元素的灵敏度要低一些。

c)容易受相互元素干扰和叠加峰影响。

X射线荧光光谱仪介绍

X-射线荧光光谱仪(XRF) 1、仪器介绍 X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。 2、仪器功能和技术参数: (1) 功能:定性分析、半定量分析和定量分析; (2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管; (3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220); (4) 进样器:48位自动样品交换器; (5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ); (6) 分析元素范围:Be4-U92; (7) 线性范围:10-2 - 10-6; (8) 仪器稳定度:≤0.05%; (9) 测量误差:<5%。 3、应用和优势: XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。 X-ray Fluorescence Spectrometer (XRF) 1、I nstrument Introducation: The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI. 2、Instrument Technical Parameters: (1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis; (2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

X射线荧光光谱分析法

X射线荧光光谱分析法 利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。 简史20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。1948年H.弗里德曼和L.S.伯克斯制成了一台波长色散的X射线荧光分析仪,此法才开始发展起来。此后,随着X射线荧光分析理论和方法的逐渐开拓和完善、仪器的自动化和计算机水平的迅速提高,60年代本法在常规分析上的重要性已充分显示出来。70年代以后,又按激发、色散和探测方法的不同,发展成为X射线光谱法(波长色散)和X 射线能谱法(能量色散)两大分支,两者的应用现已遍及各产业和科研部门。 仪器X射线荧光分析仪(见彩图)主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。X射线光谱仪与X射线能谱仪两类分析仪器有其相似之处,但在色散和探测方法上却完全不同。在激发源和测量装置的要求上,两类仪器也有显著的区别。

X射线荧光分析仪按其性能和应用范围,可分为实验室用的X射线荧光光谱仪和能谱仪、小型便携式X射线荧光分析仪及工业上的专用仪器。 X射线荧光光谱仪实验室用的X射线荧光光谱仪的结构见图1 。由X射线管发射出来的原级X射线经过滤光片投射到样品上,样品随即产生荧光X射线,并和原级X射线在样品上的散射线一起,通过光阑、吸收器(可对任何波长的X射线按整数比限制进入初级准直器的X射线量)和初级准直器(索勒狭缝),然后以平行光束投射到分析晶体上。入射的荧光X射线在分析晶体上按布喇格定律衍射,衍射线和晶体的散射线一起,通过次级准直器(索勒狭缝)进入探测器,在探测器中进行光电转换,所产生的电脉冲经过放大器和脉冲幅度分析器后,即可供测量和进行数据处理用。对于不同波长的标识X射线,通过测角器以1:2的速度转动分析晶体和探测器,即可在不同的布喇格角位置上测得不同波长的X射线而作元素的定性分析。

X-荧光光谱仪基本理论及工作原理

自从1895年伦琴发现X-射线以来,产生的X-射线仪器多种多样。但是进入80年代,由于20世纪末,半导体材料和计算及技术的迅速发展,出现了Si(Li) 探测器技术和能量色散分析技术。最近十几年在国际上一种新的多元素分析仪器迅速发展起来。已经成为一种成熟的,应用广泛的分析仪器。他就是X-射线荧光能谱仪,全称为:能量色散X-射线荧光光谱仪。以下介绍一下这种仪器的情况: 一. X-荧光能谱技术基本理论 1.X-荧光 物质是由原子组成的,每个原子都有一个原子核,原子核周围有若干电子绕其飞行。不同元素由于原子核所含质子不同,围绕其飞行的电子层数、每层电子的数目、飞行轨道的形状、轨道半径都不一样,形成了原子核外不同的电子能级。在受到外力作用时,例如用X-光子源照射,打掉其内层轨道上飞行的电子,这时该电子腾出后所形成的空穴,由于原子核引力的作用,需要从其较外电子层上吸引一个电子来补充,这时原子处于激发态,其相邻电子层上电子补充到内层空穴后,本身产生的空穴由其外层上电子再补充,直至最外层上的电子从空间捕获一个自由电子,原子又回到稳定态(基态)。这种电子从外层向内层迁移的现象被称为电子跃迁。由于外层电子所携带的能量要高于内层电子,它在产生跃迁补充到内层空穴后,多余的能量就被释放出来,这些能量是以电磁波的形式被释放的。而这一高频电磁波的频率正好在X波段上,因此它是一种X射线,称X-荧光。因为每种元素原子的电子能级是特征的,它受到激发时产生的X-荧光也是特征的。 注意,这里的X-荧光要同宝石学中所描述的宝石样品在X射线照射下所发出可见光的荧光概念相区别。 2.X荧光的激发源 使被测物质产生特征X-射线,即X-荧光,需要用能量较高的光子源激发。光子源可以是X-射线,也可以是低能量的γ-射线,还可以是高能量的加速电子或离子。对于一般的能谱技术,为了实现激发,常采用下列方法。 a. 源激发放射性同位素物质具有连续发出低能γ-射线的能力,这种能力可以用来激发物质的X荧光。用于源激发使用的放射性同位素主要是: 55Fe(铁)、109Cd(镉)、241Am(镅)、244Cm(锔)等,不同的放射性同位素源可以提供不同特征能量的辐射。一般将很少量的放射性同位素物质固封在一个密封的铅罐中,留出几毫米或十几毫米的小孔径使射线经过准直后照射到被测物质。源激发具有单色性好,信噪比高,体积小, 重量轻的特点,可制造成便携式或简易式仪器。但是源激发功率低,荧光强度低,测量灵敏度较低。另一方面,一种放射性同位素源的能量分布较为狭窄,仅能有效分析少量元素,因此,有时将两种甚至三种不同的放射性同位素源混合使用,以分析更多的元素。 b. 管激发 管激发是指使用X-射线管做为激发源。X-射线管是使用密封金属管,通过高压使高速阴极电子束打在阳极金属材料钯上(如Mo靶、Rh靶、W靶、Cu靶等),激发出X-射线,X-射线经过(X射线)管侧窗或端窗、并经过准直后,照射被测物质激发X-荧光。 由于X-射线管发出的X-射线强度较高,因此,能够有效激发并测量被测物质中所含的痕量元素。另一方面X-射线管的高压和电流可以随意调整,能够获得不同能量分布的X-射线,结合使用滤光片技术,可以选择激发更多的元素。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X荧光光谱仪培训测试题解析

X荧光光谱仪培训测试题 姓名:得分: 一.填空题 1.RoHs指令检测的元素及其管控范围_____ 2.仪器指示灯分别代表:____________ 3.测试软件的名称为:___ 4.测量模式有:________,选择____. 5.仪器预热时间一般为:__,测试时间为:__;当待机__以上 需重新预热;测试时当计数率低于__时,需将测量时间改为__. 6.初始化需要放入__,峰通道为:__,当不是此值时需再次初始 化直到它为正确值,初始化一般做__次;选侧不同的曲线前需重 新初始化,一般__小时需初始化一次. 7.测试塑料类型的样品时间为__,前200S测__,需在系统-系统 设置-检测元素-测量塑料中的CrCl含量选项前打勾. 8.测试时将样品放入测试窗口,轻轻的合上盖子,确认___已闭合 好,软件上点开始测量,输入____,选择相应的____. 9.测试完成时会自动弹出____,需点击____,测试报告才会 生成;____,____此时也可以根据需要做相应的修改. 10.仪器工作的温度范围是:___,当超出__℃时仪器会报警,并 自动停止测量,起到保护仪器的作用. 二.问答题 1. 简述仪器操作的步骤 2. 列举仪器使用过程中的注意事项 3. 仪器数据如何恢复?

答案: 一.填空题 1. Pb<1000.Cd<100.Cr<1000.Hg<1000.Br<1000. 2.绿色是220V电源,黄色是高压工作 3.Mearohs2008 4.自动测量,手动测量,手动测量 5.1800S,200S,4H,1000,300S 6.Ag银校正片,1105,3次,1-2H 7.400S,CrCl 8.微动开关,样品名称,校正曲线 9.检测结果,保存报告,报告设置,标准设置 10.15-30℃,45℃ 二.问答题 1.开机—预热—初始化—测试 2.A.不要碰触探测器,即使是擦拭也不要。 B.测试样品轻拿轻放,盖子轻开轻关,确保微动开关闭合良好 C.每天测试样品前一定要预热初始化 D.测试过程中,黄灯亮时不能打开盖子 3.进F盘,解压缩备份的数据,将解压出来的所有文件复制,粘贴到Mearohs软件的安装文件夹中,取代所有的文件。查找软件所安装的文件夹的方法:单击Mearohs-点击鼠标右键-属性-查找目标,这样软件安装的地方就找到了,再将解压缩出来的文件全部复制粘贴至此,取代现在的文件就恢复到仪器初始调试的数据了

X荧光光谱仪解疑

1、RoHS限制的六种物质是哪些? 答:六价铬、镉、汞、铅、多溴联苯和多溴联苯醚。 2、RoHS限制的六种物质的最高含量限制分别是多少? 答:六价铬是1000ppm、镉是100ppm、汞是1000ppm、铅是1000ppm、多溴联苯是1000ppm、多溴联苯醚是1000ppm。 3、E8-SPR能检测元素的范围是? 答:可以检测到从钠到铀之间的元素。 4、我们的设备可以做哪些测试? 答:可做ROHS检测、各种材料的全元素分析和测金属的镀层厚度。 5、EDX设备工作原理是什么? 答:原理:通过高压产生电子流打入到X光管中靶材产生初级X光,初级X光经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数据换输入到计算机。计算机计算出我们需要的结果。 6、我们的设备是进口还是国产? 答:我们的设备是国产的。但重要部件是进口的,如:探测器、高压电源是美国进口的。 7、EDX设备是否会对人体造成伤害,对环境造成污染? 答:我们公司产品已经通过国家环境辐射研究与监测中心认证,而且辐射远远低于国家2500ngy【限量率】标准,同时仪器具有三重射线防护功能,对人体不会造成任何伤害,也不会对环境产生直接或间接的污染。 8、我们的设备是否进行过相关的安规和环保认证? 答:X荧光分析设备不属于强检产品。但我们的设备已经通过国家环境辐射研究与监测中心的认证。 9、仪器使用和软件操作复杂吗? 答:不复杂。针对不同的行业应用,我们有不同的软件应用,适应每个行业的要求,普通操作人员只要经过我们简单的培训后便能熟练操作使用。 10、可以测镀层吗? 答:可以。单镀层,双镀层及多镀层样品;而且,一次测量中测试所有镀层厚度,测试速度快,测试结果准确方便。 11、检测报告有英文和繁体的吗? 答:有英文的,有繁体的; 12、为什么会出现本底? 答:X荧光分析食品在测试时,会有散射,游离电子,线路干扰等都会造成出现本底,可以俗称“背景噪声”。13、什么是我们作为元素分析的基础? 答:特征X射线,其由被测量物质的基本组成元素决定,元素不同,其特征X射线能量不同。 14、仪器在五金行业、钢铁行业的分析检测的优势 答:快速、准确、无损样品、前处理简单,操作简单方便。 15、X荧光测试仪在重金属、石油勘探行业的应用实例讲解。 答:可以参看公司的宣传资料。 16、现在有些工厂和实验机构,已用什么方式测试元素的?好与坏? 答:测试方法很多,而且应用在不同的产品和行业,其检测方法也是不同的,每种仪器的优势也是各不相同,何种仪器好,还要看客户真正应用领域和实际测试的样品。 17、仪器检测后能提供测试报告和相关认证书吗? 答:能够提供测试报告,但不能提供报告的认证书。因为认证是对测试机构认证的,它不是对仪器进行认证的。因此它的报告也不具备权威性。 18、E8-SPR型号能检测一个完整的成品吗? 答:能检测一个完整的成品,按照欧盟和IEC的测试方法,必须将成品物理拆分到不可拆分的地步,再进行测试。 19、假如购买了你们仪器,在使用中对产品进行检测出来的报告能够做出担保吗? 答:不能,因为X荧光光谱仪是对比分析仪器,在RoHS检测中是一种粗测,测量结果只是作为企业内部控制的一种参考,没有权威性。同时,你公司的检测员的操作是否正常,都是决定其是否报告与权威机构相近,所以,

X荧光分析仪的检测器的种类及原理

X荧光分析仪的检测器的种类及原理 X射线检测器又称探测器,是种能量转换器,能对光子进行计数。在与光电子作用时,它可以储存每次入射光子的全部能量。光子流越弱,检测器工作的精度越高。目前常用的Ⅹ射线检测器有气体能量转化器、半导体能量转换器和闪烁计数器。 一、气体能量转化器 气体能量转化器也称充气型正比计数器(gas proportion counter ,PC),分为气流型和封闭型两种,气流型适用于轻元素的检测,而封闭型常用于高原子序数的元素,探测波长较长。以波长色散谱仪为例,气流型和封闭型充Xe气的正比计数管常常串联使用以提高Ti ~ Cu的K系线和La ~ W的L系线的灵敏度。气流型正比计数管通常用90%氩气和10%甲烷混合气体,其中甲烷起猝灭作用。对于原子序数很低的元素也可以用96%氦气和4%丁烷混合气体。封闭型正比计数管则可分别充氖、氪和氙气。 二、闪烁计数器 闪烁计数器适用于重元素的检测。闪烁计数器结构是由一片用tuo激活的且密封于Be窗口的dianhuana晶体和光电倍增管组成。当一入射X射线光子被Na晶体吸收时,便产生若千个数量的可见光子(闪烁),可见光子轰击光电倍增管,产生光电流。因此,每个入射X射线光子能在光电倍增管的输出端形成一个很大的脉冲电流。 闪烁计数器用于测量大于6kcV的X射线,对于低于6keV的X射线光子,由于光电倍增管极的噪声脉冲较大,对弱光子脉冲的检测会很困难。在闪烁计数器前附加一个气体正比计数器构成复合检测器,这时长波长的X射线用正比计数器检测,短波长的X射线则由闪烁计数器检测。闪烁计数器装在气体正比计数器旁边,缩短了它与晶体之间的距离达三倍,有效地提高了灵敏度, 三、半导体能量转换器 能量色散荧光光谱仪通常采用半导体能量转换器。硅中掺入少量的其他元素可形成晶体二极管。当探测器加上300~400V的电压时,无电流通过。当一个X射线光子射

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

X荧光光谱仪建立分析方法的过程

Axios建立分析方法的过程 1.标准样品的选择和准备 采用自制内控标样建立工作曲线,数量不少于10个,且有一定的浓度梯度,可人工配制一些,再从生产线上自然取得一些。 2.样品制备程序 *取样人员应将分析试样研磨至120目以上。 *准确称量10克样品和0.5克甲基纤维素。 *将称好的样品和粘结剂倒入WC料钵中,再加入3滴三乙醇胺,于振动磨上混合180秒。 *压片条件:压力25吨;保压时间30秒。 3.汇编测量条件 *启动,输入用户名和口令。 *单击Application,再选择New Application弹出New Application对话框。 *为新的应用起一个名字,例如Clinker。 *单击,添加一个通道设置,建议此名称与应用名一致,例如仍为Clinker。 *单击OK,打开汇编条件窗口,例如。 *单击标签,做一个样品制备描述。 *单击标签,定义样品识别方案,一般选择发free。 *单击标签,定义Airlock抽真空时间(一般选择8秒)和延迟时间(一般选择0秒), 将前的对勾去掉。

*单击标签,定义样品类型(Pressed Powder)和样品杯(Steel 32mm)。输入样 品重量(10g), 单击,从化合物表中添加粘结剂名称,在Weight(g)单元格中输入粘结剂的的重量(0.5g),按回车键。 *单击标签,再单击按钮打开Add compound对话框,添加要分析的化合物名称。 *单击标签,将所有通道的kV和mA修改为50/48。 *找一个标准样品来检查角度和PHD。 *整行选中一个通道,单击,去掉前的对勾,再单击Measure。待扫描结束后,确定峰和背景的2 角,以及峰和背景的的测量时间,搜索干扰谱线。 确定测量时间通常有三种途径: ①输入样品中该元素的浓度,给定分析精度,加锁,然后计算其他未加锁的参数。 ②对于微量成分给定LLD,加锁,然后计算其他未加锁的参数。 ③根据你的经验直接给定测量时间,加锁,然后计算其他未加锁的参数。 加锁的参数在测量过程中是不变化的,未加锁的参数由智能化软件根据试样的浓度自动调整。 *单击,去掉前的对勾,再单击Measure。待扫描结束后,确定LL和UL,要注意逃逸锋、高次荧光及晶体荧光的甄别。

液相色谱原子荧光光谱联用方法通则

《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿) 编制说明 中国广州分析测试中心 《液相色谱-原子荧光光谱联用方法通则》 广东省地方标准起草小组 2017年10月 《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿)编制说明 一、任务来源和起草单位 本标准根据广东省质监局《关于批准下达2016年省地方标准制修订计划项目(第二批)的通知》(粤质监标函[2017] 106号)立项,要求中国广州分析测试中心承担广东省地方标准《液相色谱-原子荧光光谱联用方法通则》的制定任务。 《液相色谱-原子荧光光谱联用方法通则》标准由广东省分析测试标准化技术委员会(GD/TC22)归口管理,中国广州分析测试中心负责组织制定。 二、标准制订的目的和意义 目前国内重金属污染情况较为严重,受能源及冶金工业影响,进入环境中的砷、汞等重金属已成为全球性的污染物质。其中1956年日本发生甲基汞中毒引起“水俣病”震惊全球,不同形态的砷其毒性也大不同。在各个领域内对重金属污染物以及其形态的分析检

测技术应用迫在眉睫。 同时,液相色谱-原子荧光光谱联用仪(简称:LC-AFS)具备对能形成氢化物或原子蒸气如砷、硒、锑、汞等元素的不同形态进行定性定量分析的能力。 本标准拟研究制订液相色谱-原子荧光光谱联用方法的使用通则,为各应用液相色谱-原子荧光光谱联用仪器进行分析的方法提供依据,以此规范液相色谱-原子荧光光谱联用仪器 三、标准的制定过程 (1)成立《液相色谱-原子荧光光谱联用方法通则》标准制定工作组。 依据项目计划和标准化工作程序,工作组于2017年2月成立,工作组成员中国广州分析测试中心的有关技术人员。 (2)调研和资料收集。 根据粤质监标函[2017] 106号下达的广东省地方标准制修订计划(第二批)任务的通知,中国广州分析测试中心组织标准编制工作小组,查询、收集和认真研究国内外标准及相关资料,并结合实验室的自身条件、仪器特性和方法技术特点,初步设计编制方案。 (3)形成标准草案。 在标准的制定过程中,中国广州分析测试中心结合我国的实际情况,邀请中心和行业内相关专家进行探讨,吸取专业意见建议,并结合液相色谱-原子荧光光谱联用方面相对成熟的检测方法及其相关文献资料,修编形成标准的草案。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X 光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X 射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X 射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X 射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X 射线,正常工作时,X射线管所消耗功率的%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

怎样正确使用X荧光分析仪

怎样正确使用X荧光分析仪 X射线荧光分析仪是通过X射线管产生的X射线作为激光源,激发样品产生荧光X射线。根据荧光X射线的波长和强度来确定样品的化学组成。 作为一种质量检测手段,我国大,中型水泥厂(新型干法)几乎都配套使用了X射线荧光分析仪。X射线荧光分析过程中产生误差的原因主要有操作方面、仪器方面、以及试样本身等三方面因素。 一、操作方面带来误差的因素: 1.粉磨时未设定好粉磨时间和压力,达不到要求的粉磨粒度或相应的料度分布。实验表明当粉磨时间短于试验设定时间,测定结果就会产生波动。同时,粉磨时未按规定加适量助磨剂或所加助磨剂中含有所要分析的元素,都会给测定结果带来较大影响。磨头和磨盘里留有前期样品或被其它物质污染),结果也会产生误差。 2.压片时,未设定好时间和压力,压力效果不好或压片时样品布入不均匀而产生了样品的堆积分布不均,或压片板(压片头)不洁净(或上面粘有前期样品)等,都会影响分析结果。 3.制样未保护好,制样装入试样盒的位置不当,结果给分析带来误差。制样未保护好有两层含义:A.未保护好制样光洁度。如用手指摸分析面、或用手指甲划、用口吹、用湿毛巾擦分析面等;B.制样在空气中放置太久,使分析面与空气中物质发生了物理化学变化。制样装盒位置不当,把测样片装倒了或测样片表面与试样盒表面成一倾斜角等,都会影响到射线管与分析面的距离,从而产生误差。 4.荧光分析中,由于分析面上的样品灰未除掉,久之影响到仪器真空度;或由于操作者粗心,分析程序选错,如测生料时用上测熟料的分析曲线或用了测石灰石的曲线,显然结果不正确。 二、仪器方面的误差因素:

1.压片板(或压片头)不光洁,导致分析面不光滑,从而影响测量结果。 2.光路真空度不合适,分光晶体、滤光片选择不佳,使各种射线产生干扰,影响分析。 3.X射线管电压、电流不稳定,从而产生结果波动。 4.随着时间的延长,X光管内部元件尺寸位置变化引起初级X射线强度的变化,或X射线管阳极出现斑痕,靶元素在窗口沉积,给分析结果带来误差。 5.温度的变化,引起分光晶体晶面间距变化,从而影响分光效率。正比计数管高压漂移,温度变化引起管内气体成分变化,影响放大倍数。 6.电子电路的漂移,计数的统计误差,检测过程的时间损失引入的计数误差等。 7.气体的压力、氮气、甲烷气体的流量、温度等辐射通道条件的变化,都会影响光路中气体对X射线的吸收。因此,气瓶的减压阀一旦调好,不要随意再动,特别是更换新气时,一定要尝试着多次调气压,否则,由于气流、气压不稳,使结果产生误差。 三、试样本身的误差因素: 1.试样易磨性。有的试样易磨性较差,对测定构成影响。 2.试样成分。有的试样基本组成成分与标准试样组成成分不一致,也会影响测定结果。 3.基体效应。基体中其它元素对分析元素的影响,包括吸收和增强效应,吸收效应直接影响对分析元素的激发和分析元素的探测强度。增强效应使分析元素特征辐射增强。 4.不均匀性效应。X射线强度与颗粒大小有关,大颗粒吸收大,小颗粒吸收小,这是试样粒度的影响。

X射线荧光光谱分析的基础知识

《X射线荧光光谱分析的基础知识》讲义 廖义兵 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li 的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要分析手段。 一、X射线荧光光谱分析的基本原理 元素的原子受到高能辐射激发而引起层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z? s) ?2 式中K和S是常数。 而根据量子理论,X射线可以看成由一种量子或光子组成的粒子流,每个光具有的能量为: E=hν=h C/λ 式中,E为X射线光子的能量,单位为keV;h为普朗克常数;ν为光波的频率;C 为光速。 因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。 图1为以准直器与平面单晶相组合的波长色散型X射线荧光光谱仪光路示意图。 图1 平面晶体分光计光路示意图 A—X射线管;B—试料;C—准直器;D—分光晶体;E—探测器 由X射线管(A)发射出的X射线(称为激发X射线或一次X射线)照射到试料(B),试料(B)中的元素被激发而产生特征辐射(称为荧光X射线或二次X射线)。荧光X射线通过准直器(C)成为近似平行的多色光束投向晶体(D)时,对于某一

CPL圆偏振荧光光谱仪测量原理

主要用途: 圆偏振荧光在发光材料、生物蛋白、信息显示存储、电子学、非线性光学等领域有广泛的用途和应用前景,引起科学家极大的关注和兴趣。采用圆偏振荧光光谱仪可提供分子激发态的结构信息,表征聚合物结构,成为研究有机化合物的立体构型的一个重要方法。工作原理: 光是一种电磁波,可用振动的电场和与之垂直的磁场来描述,若光波在其传播途径中具体某一点上只有一个振动方向,但振动方向随光波的传播而有规律的偏转一定角度但振幅不变,其电场矢量末端的运动轨迹为螺旋状,该螺旋的横截面为圆形,这种偏振光为圆偏振光。人们在圆二色的基础上,发现圆偏振荧光的左、右圆偏振光的强度不同。通常以左、右圆偏振荧光的强度差CPL=△F= FL-FR,作为圆偏振荧光的量度。

之前文献报道的圆偏振荧光检测都是在相关科研工作者自己设计和建造的仪器上进行的。直到1972年以色列魏茨曼科技学院Steinberg和Gafni (SG) 提出图一A所示的圆偏振荧光调制测量方法,基本组成部分为:激发源、单色器、样品、光学弹性调制器、偏光片、发射单色器、光电倍增管、锁相放大器及计算机。该方法将调制后的光电信号和PEM光学弹性调制器信号输入给锁相放大器,通过二者频率与相位锁相从荧光中提取圆偏振荧光。 1982年荷兰莱顿大学的Schippers,van den Beukle和Dekkers (SBD)提出了图一B所示的圆偏振荧光测量方法,该方法利用光子计数取代锁相放大器,解决了锁相放大器的输出不稳定问题。其后复杂蛋白结构测量主要采用的是该方法,但是对于弱的圆偏振荧光测量还是速度很慢。 1992-1995年期间,随着TDC时间数字转换器等电子技术的发展,美国密西根大学的Schauerte,Steel,和Gafni (SSG) 进一步提出了图一C所示的圆偏振荧光直接相减测量方法。该方法采用DGG延迟选通脉冲发生器,分别测量△F= FL-FR公式中的FL左圆偏振荧光和FR右圆偏振荧光,两者相减直接得到真正的圆偏振荧光△F,利用公式glum=2(FL-FR)/(FL+FR)求得不对称因子。该方法同时解决了以上两种方法中锁相环输出不稳定与测量速度慢的问题,使用该方法商业化生产的圆偏振荧光光谱仪主要是美国Olis公司圆偏振荧

X射线荧光光谱仪操作步骤

1.开机顺序 1.1 打开空压机电源,检查二次压力为5.0bar。 1.2 打开水冷机电源,并调节水流压力至4 bar(4公斤)。 1.3 打开P10气体钢瓶主阀,设定二次压力为0.7-0.8bar。 1.4 如果配置了冲氦系统,打开He气钢瓶,设定二次压力为0.8bar。 1.5 打开主电源开关(配电柜空气开关),使主机处于待机状态。 1.6 按下“POWER ON”开关,使主机处于“开机” 状态。 1.7 开计算机,运行分析软件,用户名及密码为“SUPERQ”。 1.8 打开光谱仪状态图,检查仪器真空度(小于100Pa?),P10气体流量(1L/Min左右)。 1.9 转动HT钥匙,打开高压,仪器自动设定高压为20kv/10mA,同时启动循环水。 A检查水流量,内循环水(3-5L/Min),外水(1-4L/Min)。 B等待仪器内部温度稳定(30度)后可正常分析。 2. 停机 2.1 逐步降低高压到20kv/10mA(或运行Sleep程序) 。 2.2 等待3分钟后,转动钥匙关闭HT高压。 2.3 关闭SuperQ,使分析软件与主机脱机。 2.4 按下“Standby”开关,仪器处于待机状态。 2.5 如晚上及周末不使用仪器,建议设定高压为20kv/10mA低功率状态, 不要关机。 3. X-Ray Tube 老化 如主机停机超过24小时,需对X-Ray Tube 进行老化处理。

3.1 手动老化 开机后运行TCM2403按以下顺序进行: 20kv/10mA→30kv/10mA→40kv/10mA→40kv/20mA→50kv/30mA→60kv/40mA→60kv/50mA 如停机时间大于24小时小于100小时,每步停留时间为1分钟。如仃机时间大于 100 小时,每步停留时间为5分钟。 3.2 自动老化(Breeding) A.开机后运行TCM2403,如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 B.启动XRF system setup,运行System菜单下的Tube breeding, 如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 C.在光谱仪状态图,以手动方式进行老化。 4. P10气体瓶更换 为了防止气瓶内的杂质进入分析仪, 建议在瓶压为10个气压时即更换新气。4.1 逐步把高压降至20kv/10mA,等待3分钟后,关闭高压。 4.2 设定分光室介质为空气状态。 4.3 关闭钢瓶主阀门,取下减压阀。 4.4 更换新的P10气体瓶。 4.5 快速打开气瓶主阀并迅速关闭以冲洗接口。 4.6 安装减压阀,打开主阀门,检查二次压力为0.7-0.8bar。(通常为0.75bar) 4.7打开主机电源 4.8在谱仪状态图中点Start Detector Gas按钮启动P10气,

相关主题
文本预览
相关文档 最新文档