当前位置:文档之家› 遥感图像频域增强处理

遥感图像频域增强处理

遥感图像频域增强处理
遥感图像频域增强处理

成都信息工程学院

1 实验名称:遥感图像频域增强处理

2 实验目的

对图像进行傅立叶变换,使用低通、高通及其它滤波器,并尝试改变滤波器窗口大小,看滤波后的图像差异,从而了解图像频率域增强的处理方法。

3实验原理:

傅里叶变换是指非周期函数的正弦或余弦和乘以加权函数的积分表示,数字图像处理中所用的傅里叶变换均属于FFT,傅里叶变换分为连续傅里叶变换和离散傅里叶变换,在数字图像处理中经常用到的是二维离散傅里叶变换。

4数据来源:

数据时通过国际科学数据服务平台下载的攀枝花地区的TM图像经过裁剪处理后,分辨率为30米,坐标系统为WGS—84

5.1快速傅里叶变化

5.1.1打开一个图像如下图

框中,选择输入图像文件。

选择文件后点击OK

选择存储位置后点OK

转换过程如下图

5.1.3经过快速傅里叶变换(FFT)之后生成的图像为:

从图上看,中间很亮的部分集中了图像的低频信息;外围较暗的部分集中了图像的高频信息。

5.2 FFT滤波器的选择

5.2.1在Display窗口中显示一幅FFT图像。

5.2.2在主菜单中,选择Filters—FFT Filtering—Filter Definition。在Filter Definition选择对话框中,选择当前显示的FFT图像的Display窗口,单击OK。

5.2.3在Filter Definition对话框中,选择Filter _Type—滤波器类型。选择不同的滤波器。

Circular Pass为低通滤波器

Circular Cut为高通滤波器

Band Pass和Band Cut滤波器

5.3反向FFT变换

5.3.1在主菜单中,选择Filters—FFT Filtering—Inverse FFT,选择houfft文件,点击OK。

5.3.2出现如下对话框,选择刚才保存的滤波器类型,点OK

5.3.3选择输出路径,点OK

完成傅里叶变换。

6实验结果与分析

下图分别为低通滤波、高通滤波、Band Pass滤波的处理图像。

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者

它们的积分的线性组合。通过傅里叶变换可以将图像从空间域转到频率域进行操作处理,不同的滤波器有不同的效果,要根据实际情况选择合适的滤波器才能得到想要的结果。

7实验心得

总的来说,实验做的过程很坎坷,首先是选图的问题,我首次选的图像比较大,处理速度慢是一个问题,而且处理过程中还会出错;再有在进行滤波半径选择的时候选的都是100,所以实验效果不太明显。但是实验的整体思路还是了解的。

通过这次实验我明白了,实验数据的选择的重要性。在今后中会多加注意这方面的问题。

数字图像处理(频域增强)

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名: 班级: 学号:

目录一.频域增强的原理 二.频域增强的定义及步骤三.高通滤波 四. MATLAB程序实现 五.程序代码 六.小结

一.频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及 其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT 变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB矩阵实验室(Matrix Laboratory)的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLAB工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLAB软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。

遥感数字图像处理

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强 3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念

方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点? 计算图像经过下列操作后,其中心象元的值: – 3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 – Sobel边缘检测 – Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用 3.4彩色增强 彩色影像的类型:真彩色、假彩色、伪彩色

数字图像处理频域增强

中国地质大学(武汉) 数字图像处理上机实习 (第三专题) 学生姓名: 班级: 学号: 指导老师:

实验内容 一图计算图象的傅氏变换频谱函数 要求(1-6):设计图象f6(x,y) 为3*30*30/256*256,居中垂直排列,选用Matlab函数直接调用实现,重点观察空域图象和频域频谱的对应关系; 补充完成:设计120*30/256*256,观察空域图象和频域频谱的对应关系。 1.算法设计 2.程序代码 %观察空域图象和频域频谱的对应关系 %设计图象f6(x,y) 为3*30*30/256*256 f=zeros(256,256); f([30:60],[113:143])=1; f([90:120],[113:143])=1; f([150:180],[113:143])=1; subplot(221);imshow(f); % 设计图象f2(x,y)为120*30/256*256,并作fft变换 f2 = zeros(256,256); f2(114:143,69:188) = ones(30,120); subplot(223);imshow(f2); %二维傅里叶变换 F=fft2(f); F2 = fft2(f2); %绘制fft图 subplot(222);imshow(fftshift(log(abs(F)))); %title('频谱图') subplot(224);imshow(fftshift(log(abs(F2)))); %title('频谱图(量化)') figure subplot(121);mesh(fftshift(abs(F))); subplot(122);mesh(fftshift(abs(F2))); 3.结果分析 (1)空域图象和频域频谱对比 (2)频谱图(量化)对比 二计算显示图象的频谱函数 要求(2-6):对f6(x,y)的离散余弦变换,显示其频谱函数 补充完成:实现离散傅立叶变换、离散余弦变换、Walsh变换和Hadamard变换,比较四种变换所得到的频谱。 1.程序代码 clc; clear; f=zeros(256,256); f([30:60],[113:143])=1;

实验六 遥感影像增强处理

实验六遥感影像增强处理 实习目的:掌握常用的遥感影像增强处理的方法。 实习内容:遥感影像空间、辐射、光谱增强处理的主要方法 空间增强:包括卷积增强处理、纹理分析、自适应滤波等 辐射增强:LUT拉伸处理、直方图均衡化处理、直方图匹配、亮度反转处理等 光谱增强:主成份变换、缨帽变换、色彩变换、指数计算等 图像增强是改善图像质量、增加图像信息量、加强图像判读和识别效果的图像处理方法。图像增强的目的是针对给定图像的不同应用,强调图像的整体或局部特性,将原来不清晰的图像变得清晰或增强某些感兴趣区域的特征,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。图像增强的途径是通过一定的手段对原图像附加一些信息或变换数据,有选择的突出图像中感兴趣区域的特征或抑制图像中某些不需要的特征。图像增强的方法包括空间域增强和频率域增强两类。空间域增强包括空间增强、辐射增强和光谱增强。在实际运用中,不是所有的图象增强处理方法都要用到,具体采用哪种图象增强处理方法,视具体的研究区域,研究内容和对象而定。 1.图像解译功能简介(Introduction of Image Interpreter) 利用ERADS IMAGINE 进行图像增强主要采用ERADS IMAGINE的图像解译器(Image Interpreter)模块,该模块包含了50多个用于遥感图像处理的功能模块,这些功能模块在执行过程中都需要通过各种按键或对话框定义参数,多数功能都借助模型生成器(Model Maker)建立了图形模型算法,容易调用或编辑。 图像解译器(Image Interpreter或Interpreter),可以通过两种途径启动:ERDAS图标面板菜单条: Main/Image Interpreter--Image Interpreter 菜单 ERDAS图标面板工具条:点击Interpreter图标一Image Interpreter菜单

数字图像的频域增强论文

数字图像处理结课作业 --数字图像频域增强方法 及在matlab中的实现数字图像的频域增强

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

1.频域图像增强的目的、意义及主要内容 1.1频域图像增强技术的目的: 分析几种频域图像增强方法,并能够用频域法进行图像增强,通过形态学方法进行图像特征抽取和分析。熟练的运用MATLAB,掌握修改图像的傅里叶变换来实现图像的增强技术。 1.2频域图形增强技术的意义: 图像增强是图像处理中用来消除原始图像边缘模糊、对比度差等缺点的常用技术,它需要解决的问题包括边缘增强、噪声的滤除、高斯噪声的平滑和细节的保护等等。本论文主要是针对整体偏暗图像而提出的图像增强的方法。对于整体偏暗的图像,我们可以用直方图均衡化来调节图像的灰度分布,使图像变亮。此外,为了进一步提高图像的视觉效果,即解决包括边缘增强、噪声滤除等问题,我们还可以用频域图像增强方法(高通滤波器和低通滤波器)来处理,因为高通滤波器可以突出图像边缘,增强有用信息,使图像更加清晰,而低通滤波器可以平滑去噪,抑制无用信息,从而提高图像成分的可分辨性。 1.3主要内容

遥感原理与应用-图像增强

实验三:遥感图像的增强处理 (3机时) 实验目的:通过上机操作,了解空间增强、辐射增强几种遥感图象增强处理的过程和方法,加深对图象增强处理的理解。 实验内容:卷积增强处理;锐化增强处理;直方图均衡化;色彩变换。 ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。 实验数据:wx98tm543.img(待校正图像)与wx98spot_pan.img(参考图像)校正的结果 wx98tm543_warp.img;ERDAS安装目录中的若干样例图像数据文件。 1、卷积增强(Convolution) 空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。卷积增强(Convolution)是空间增强的一种方法。 卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。卷积增强(Convolution)处理的关键是卷计算子----系数矩阵的选择。该系数矩阵又称卷积核(Kernal)。ERDAS IMAGINE将常用的卷计算子放在一个名为default.klb的文件中,分为3*3,5*5、7*7三组,每组又包括“EdgeDetect/Low Pass/Horizontal/Vertical/Summary”等七种不同的处理方式。具体执行过程如下: ERDAS图标面板菜单条:Main→Image Interpreter→Spatial enhancement →convolution→convolution对话框。

图3-1 Convolution对话框 几个重要参数的设置: 边缘处理方法:(Handle Edges by):Reflection 卷积归一化处理:Normalize the Kernel 2、直方图均衡化(Histogram Equalization) 直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,是一定灰度范围内的像元数量大致相同。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一较平的分段直方图。注意:认真对比直方图均衡化前后图像差别,仔细观察直方图均衡化的效果。 图3-2直方图均衡化 3、主成分变换 主成分变换(Principal Component Analysis)是一种常用的数据压缩方法,它可以将具有相关性的多波段数据压缩到完全独立的较少的几个波段上,使图像数据更易于解译。ERDAS IMAGE提供的主成分变换功能最多等对256个波段的图象进行转换压缩。 ERDAS 图标面板菜单条:Main →Image Interporeter→Spectral Enhancement →Principial Comp →Pincipal Components对话框。(图3-3)

遥感图像光谱增强处理实验报告

一、实验名称 遥感图像光谱增强处理 二、实验目的 对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。 通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。 三、实验原理 光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。 主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。对于增强信息含量、隔离噪声、减少数据维数非常有用。 使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。 图像融合是将多幅影像组合到单一合成影像的处理过程。它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。 四、数据来源 本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程 1.主成分分析 1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。 2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。在弹出的Principal Components Input File 对话框中,选择图像。 3)在Forward PC Rotation Parameters对话框中在输入统计系数,选择计算矩阵(选择协方差矩阵),输出统计文件及路线,统计波段数等相关参数的设置,单击Ok。

图像增强技术

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

5.图像的频域增强及傅里叶变换

5. 图像的频域增强及傅里叶变换 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频

频域图像增强技术

太原理工大学现代科技学院 数字图像处理课程实验报告 专业班级 学号 姓名 指导教师

实验名称 频域图像增强技术 同组人 专业班级 学号 姓名 成绩 实验三 频域图像增强技术 一、实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3热练掌握FFT 方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MA TLAB 编程实现数字图像的傅立叶变换及滤波锐化和复原处理; 6 了解理想、巴特沃兹、高斯等不同滤波器的结构及滤波效果。 二、实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为: ??∞∞-∞∞-+-=dy dx e y x f v u F vy ux j )(2),(),(π ??∞∞-∞∞-+=dv du e v u F y x f vy ux j )(2),(),(π θθθsin cos j e j += 二维离散傅立叶变换为: 1,...,2,1,0,1,...,2,1,0for ),(1),(1010)//(2-=-==∑∑-=-=+-N v M u e y x f MN v u F M x N y N vy M ux j π 1,...,2,1,0,1,...,2,1,0for ),(),(1010)//(2-=-==∑∑-=-=+N y M x e v u F y x f M u N v N vy M ux j π 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MA TLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif ’); %读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; … … …… …… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

ENVI遥感图像增强处理

任务五图像增强 目录 1.空间域增强处理1 1.1卷积滤波1 2.辐射增强处理2 2.1交互式直方图拉伸2 3.光谱增强处理4 3.1波段比的计算4 3.2色彩空间变换5 3.3NDVI计算6 4.傅里叶变换6 4.1快速傅里叶变换6 4.2定义FFT滤波器7 4.3反向FFT变换8 5.波段组合8 5.1RGB合成显示8

图像增强的主要目的是提高图像的目视效果,以便处理结果图像比原图像更适合于特定的应用要求,方便人工目视解译、图像分类中的样本选取等。 ENVI图像增强的内容主要包括: ●空间域增强处理 ●辐射增强处理 ●光谱增强处理 ●傅里叶变换 ●波段组合 1.空间域增强处理 空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像。 1.1卷积滤波 卷积滤波是通过消除特定的空间频率来增强图像。它们的核心部分是卷积核,ENVI提供很多卷积核,包括高通滤波、低通滤波、拉普拉斯算子、方向滤波、高斯高通滤波、高斯低通滤波、中值滤波、Sobel、Roberts,还可以自定义卷积核。 使用数据:lena.jpg 具体操作: 通过尝试ENVI提供的各种图像增强算子,观察比较图像增强的效果。 (1)打开图像文件lena.jpg。 (2)在主菜单中,选择Filter→Convolutions and Morphology。 (3)在Convolutions and Morphology Tool中,选择Convolutions→滤波类型。 (4)不同的滤波类型对应不同的参数,主要包括三项参数: ●Kernel Size(卷积核的大小) 卷积核的大小,以奇数来表示,如3×3、5×5等,有些卷积核不能改变大小,包括Sobel和Roberts。 ●Image Add Back(输入加回值) 将原始图像中的一部分“加回”到卷积滤波结果图像上,有助于保持图像的空间连续性。该方法常用于图像锐化。“加回”值是原始图像在结果输出图像中所占的百分比。 ●Editable Kernel(编辑卷积核中各项的值) 在文本框中双击鼠标可以进行编辑,选择Kernel可以把卷积核保存为文件(.ker),选择Kernel可以打开一个卷积核文件。 (5)卷积增强图像中的单个波段 a)选择Convolutions→High Pass,其他项按照默认设置,单击Quick Apply按钮,第一次点击此按钮会提示选择增强的波段,增强后的波段在Display中显示。如果要更改卷积增强波段,选择Options→Change Quick-Apply Input Band。 b)选择Quick Result to File,可以将增强结果保存 (6)卷积增强图像文件 a)单击Apply To File按钮,在Convolution Input File对话框中选择图像文件。 b)选择输出路径及文件名。

遥感图像的增强处理

遥感图像的增强处理 实验目的:通过上机操作,了解空间增强、辐射增强几种遥感图象增强处理的过程和方法,加深对图象增强处理的理解。 实验内容:空间增强、辐射增强、空间变换、多光谱四则运算等。 ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。 1、卷积增强(Convolution) 空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。卷积增强(Convolution)是空间增强的一种方法。 卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。卷积增强(Convolution)处理的关键是卷计算子----系数矩阵的选择。该系数矩阵又称卷积核(Kernal)。ERDAS IMAGINE将常用的卷计算子放在一个名为default.klb的文件中,分为3*3,5*5、7*7三组,每组又包括“EdgeDetect/Low Pass/Horizontal/Vertical/Summary”等七种不同的处理方式。具体执行过程如下:ERDAS图标面板菜单条:Main→Im age Interpreter→Spatial enhancement→convolution→convolution对话框。

几个重要参数的设置: 边缘处理方法:(Handle Edges by):Reflection 卷积归一化处理:Normalize the Kernel 2、主成分变换 主成分变换(Principal Component Analysis)也称K-L变换,是一种常用的图像处理方法。 主成分变换用于: (1) 数据压缩:去相关,它可以将具有相关性的多波段数据压缩到完全独立的较少的几个波段上,通常主成分中第一主分量或前两个或前三个主分量已包含该幅图像中的绝大多数地物信息。 (2)图像增强:前几个主分量信息多且信噪比大,噪声少,最后分量几乎全是噪声,去掉最后分量可达到去噪声目的。 ERDAS 图标面板菜单条:Main →Image Interporeter→ Spectral Enhancement →Principial Comp →Pincipal Components对话框,见下图。 Principal Component对话框

数字图像处理(频域增强)

数字图像处理图像频域增强方法的研究 姓名 班级 学号

目录一.频域增强的原理 二.频域增强的定义及步骤 三.高通滤波 四.MATLABS序实现 五.程序代码 六. 小结

频域图像的原理 在进行图像处理的过程中,获取原始图像后,首先需要对图像进行预处理,因为在获取图像的过程中,往往会发生图像失真,使所得图像与原图像有某种程度上的差别。在许多情况下,人们难以确切了解引起图像降质的具体物理过程及其数学模型,但却能估计出使图像降质的一些可能原因,针对这些原因采取简单易行的方法,改善图像质量。图像增强一般不能增加原图像信息,只能针对一些成像条件,把弱信号突出出来,使一些信息更容易分辨。图像增强的方法分为频域法和空域法,空域法主要是对图像中的各像素点进行操作;而频域法是在图像的某个变换域内,修改变换后的系数,例如傅立叶变换、DCT变换等的系数,对 图像进行操作,然后再进行反变换得到处理后的图像。 MATLAB 矩阵实验室( Matrix Laboratory )的简称,具有方便的数据可视化功能,可用于科学计算和工程绘图。它不仅在一般数据可视化软件都具有的功能方面更加完善,而且对于一些其他软件所没有的功能 (例如图形的光照处理、色度处理以及四维数据的表现等),MATLA同样表现了出色的处理能力。它具有功能丰富的工具箱,不但能够进行信号处理、语音处理、数值运算,而且能够完成各种图像处理功能。本文利用MATLA工具来研究图像频域增强技术。图像增强是为了获得更好质量的图像,通过各种方法对图像进行处理,例如图像边缘检测、分割以及特征提取等技术。图像增强的方法有频域处理法与空域处理法,本文主要研究了频域处理方法中的滤波技术。从低通滤波、高通滤波、同态滤波三个方面比较了图像增强的效果。文章首先分析了它们的原理,然后通过MATLA软件分别用这三种方法对图像进行处理,处理后使图像的对比度得到了明显的改善,增强了图像的视觉效果。 二.频域增强定义和步骤 图像增强技术基本上可分成两大类:频域处理法和空域处理法。频域处理法[1] 的基础是卷积定理,它采用修改图像傅立叶变换的方法实现对图像的增强处理。在频域空间,图像的信息表现为不同频率分量的组合。如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。

频域图像增强方法研究

摘要:图像增强处理技术是图像处理领域中一项基本的,也是很重要的技术,一直是图像处理领域中不可回避的研究课题。因为一幅图像总是可能受到各种因素的干扰影响,造成图像质量的下降。图像增强包含两个方面内容:一是消除噪声,二是增强(或保护)图像特征。对图像恰当增强,能使图像去噪的同时特征得到较好保护,使图像更加清晰明显,从而提供给我们准确的信息。常用的图像增强技术各有其特点和效果。 论文在介绍图像频域增强原理的基础上,在频域内通过对Butterworth低通滤波器增强方法进了研究,介绍了相关的理论和数学模型,并给利用MATLAB工具进行实现。通过各种滤波后图像比较,实验证明在质量较差的图像中,选择不同的滤波算法对图像的增强在准确性上均有不同。 关键词:图像增强;Butterworth低通滤波器;MATLAB

Abstract:I mage enhancement in image processing technology is a basic and very important technology, the field of image processing has been a research topic can not be avoided. Because an image is always possible interference by various factors, resulting in a decline in image quality. Image enhancement includes two aspects: First, eliminate the noise, the second is enhanced (or protected) image features. Appropriate image enhancement, image denoising can be well protected at the same time features, to make the image more clearly evident, thus providing us with accurate information. Commonly used image enhancement techniques have their own characteristics and effects. Paper, introducing the principle of image enhancement based on frequency domain, in the frequency domain through the Butterworth low-pass filter enhancement into the study, describes the relevant theoretical and mathematical models and tools to use MATLAB implementation. After filtering through a variety of image comparison, real proof of poor image quality, choose a different algorithm for image enhancement filter of accuracy are different. Key words:Image enhancement; Butterworth low-pass filter; MA TLAB.

envi遥感图像处理之图像增强

ENVI遥感图像处理之图像增强 一、对比度增强 1、快速拉伸 步骤:打开数据—>加载图像到窗口—>图像主窗口Enhance菜单进入图像增强 的菜单选项。 原始显示的影像: 进行线性拉伸后的影像:进行高斯拉伸后的影像:

说明:本 菜单栏中包含的图像 快速拉伸的功能还有 0-255的线性拉伸(这 应该是实际的遥感影 像的灰度值,而刚开 始说的那个原始影像 实际上已经经过了 2%的线性拉伸的)、均 衡化拉伸、均方根拉 伸等。 2、交互式拉伸 步骤:选择图像主窗口中的Enhance菜单—>Interactive Stretching进入交互式拉伸的界面 在Stretch_Type菜单下可以选择交互拉伸的类型,有线性拉伸、分段线性拉伸等。 可以在Stretch旁边的文本框中直接输入拉伸的图像的灰度范围,亦可以在input histogram 窗体中用鼠标左键拖动两条竖直虚线进行拉伸范围的选择。 原始图像:

交互式线性拉伸后的图像: 分段线性拉伸后的影像:

高斯拉伸后的影像: 3、直方图匹配 步骤:进行直方图匹配之前必须打开两个窗口显示两个波段或两幅影像。 在两窗口中显示两幅遥感影像—>在待匹配的遥感影像主窗口中选择Enhance菜单—>选择Histogram matching…进入直方图匹配的对话框—>选择匹配到的窗口和匹配的方式,点击OK完成直方图的匹配。 匹配前直方图: 待匹配影像直方图:匹配到影像直方图:

匹配后的直方图: 匹配的交互式对话框: 匹配前影像:匹配后影像:

二、空间增强 1、锐化 步骤:打开窗口主菜单中的Enhance菜单—>选择Filter选项—>Sharpen即可对图像进行锐化。 锐化前影像:锐化后影像: 2、平滑 步骤:打开窗口主菜单中的Enhance菜单—>选择Filter选项—>Smooth(后面的3*3、5*5等代表的是模板的大小)即可对图像进行平滑。

ENVI_遥感_图像增强转换处理

以下实验使用can-tmr.img影像 一.图像增强转换处理 1.Principal Component Analysis (主成分分析) 主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。这一技术对于增强信息含量、隔离噪声、减少数据维数非常有用。 ENVI 能完成正向的和逆向 (正向的PC 旋转) 正向的PC 旋转用一个线性变换使数据差异达到最大。当你运用正向的PC 旋转时,ENVI 允许你计算新的统计值,或将已经存在的统计项进行旋转。输出值可以存为字节型、浮点型、整型、长整型或双精度型。你也可以基于特征值抽取PC旋转输出的部分内容,生成只有你需要的PC波段的输出。一旦旋转完成,将会出现PC特征值图。显示出每一个输出的PC 波段的差异量。PC 波段将显示在Available Bands List 中。 Compute New Statistics and Rotate (计算新的统计值和旋转) 这一选项用于计算数据特征值、协方差或相关系数以及PC 正向的旋转。 1 选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate. 2 出现Principal Components Input File 对话框时,选择输入文件或用标准ENVI 选择程序建立子集。 3 出现Forward PC Rotation Parameters 对话框时,在“Stats X/Y Resize Factor” 文本框键入小于1 的调整系数,对计算统计值的数据进行二次抽样。键入一个小于1 的调整系数,以提高统计计算的速度。例如,在统计计算时,用一个0.1 的调整系数将只用到十分之一的像元。 4 若需要,键入一个输出统计文件名。 5 点击按钮,选择是否计算“Covariance Matrix”。 计算主成分时,有代表性地要用到协方差矩阵。当波段之间数据范围差异较大时,要用到相关系数矩阵,并且需要标准化。 6 选用“File” 或“Memory” 输出。 ·若选择输出到“File”,在标有“Enter Output Filename”的文本框里键入要输出的文件名;或用“Choose”按钮选择一个输出文件名。 7 从“Output Data Type” 菜单里,选择需要的输出类型(字节型,整型,无符号整型,长整型,无符号长整型,浮点型,双精度型)。 8 用下列选项,选择输出PC 波段数。 ·限定输出PC 波段数,键入需要的数字,或用“Number of Output PC Bands” 标签附近的按钮确定输出的PC 波段数。默认的输出波段数等于输入的波段数。 ·通过检查特征值,选择输出的PC 波段数。 A 点击“Select Subset from Eigenvalues” 标签附近的按钮,选择“YES”。 特征值将被计算,出现Select Output PC Bands 对话框,列表显示着每一个波段和其相应的特征值。同时也为所有波段显示出每个波段中包含的数据变化的累积百分比。 B 在“Number of Output P C Bands” 文本框里,键入一个数字或点击按钮,确定输出的波段

空域和频域图像处理增强

空域和频域图像处理增强 实验目的: 1?熟悉Matlab处理图像的基本原理,并熟练地运用进行一些基本的图像操作; 2?能够用Matlab来进行亮度变换,直方图处理以及一些简单的空间滤波;实验内容: 去噪,灰度变换,直方图处理,空域和频域平滑锐化,同态滤波;结果分析: 1.直方图处理: ⑴ 显示原图直方图以及原图: 代码: >> imread('hui.jpg'); >> imshow(f); >> imhist (f); 原图以及原图直方图为:

⑵直方图均衡化: 代码: >> f=imread('test2.jpg'); >> n=imno ise(f); >> imwrite( n,'n .tif); >> [thr,sorh,keepapp] = dde ncmp('de n','wv',im2double( n)); >> r=wde ncmp('gbl',im2double(Noise),'sym2',2,thr,sorh,keepapp); >> r=wde ncmp('gb l' ,im2double( n),'sym2',2,thr,sorh,keepapp); >> imwrite(r,'r.tif); >> imshow(f); 现在的图片以及直方图为: 结论: 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效 地扩展常用的亮度来实现这种功能

实验报告六频域图像增强的方法

实验报告六 姓名:学号:班级: 实验日期: 2016.5.13 实验成绩: 实验题目:频域图像增强的方法 一.实验目的 (1)熟练掌握频域滤波增强的各类滤波器的原理及实现。 (2)分析不同用途的滤波器对频域滤波增强效果的影响,并分析不同的滤波器截止频率对频域滤波增强效果的影响。 二.实验原理 变换最慢的频率分量与图像的平均灰度成正比,当远离变换的原点时,低频对应于图像中变换缓慢的灰度分量,当从原点离开得更远时,较高的频率开始对应图像中越来越快的灰度变换,频率域滤波是通过傅里叶变换在频域上对频谱进行修改后再回到空间域的一种方法,在频域中直流项决定了图像的平均灰度,衰减高频通过低频的低通滤波器会模糊一副图像,而衰减低频通过高频的高通滤波器则会增加尖锐的细节,但会导致图像对比度的降低。

三.实验内容及结果 (1)选择图像fig620.jpg,对其进行傅里叶变换,在频率域中实现五种不同半径(截止频率)的butterworth低通滤波器的平滑作用。 显示原始图像和滤波图像。 图1不同半径巴特沃斯低通滤波图

(2)选择图像fig620.jpg,对其进行傅里叶变换,在频率域中实现五种不同半径(截止频率)的butterworth高通滤波的锐化效果,显示原始图像和滤波图像。 图2 不同半径巴特沃斯高通滤波图

四.结果分析 (1)观察图1,可以发现巴特沃斯低通滤波器半径越小,图像越模糊,但图像的背景亮度大小和原图像别无二致,这是因为低通滤波器实现的是滤除高频分量,保留低频分量的功能,所以半径越小,通过的低频分量越少,所以越模糊,但不论半径多小,它的整体亮度不变,这是由于决定图像平均灰度的直流分量处于图像中点(经过fftshift平移后),它一直是通过的,同时观察变量区的原图像傅里叶变换后的数据矩阵发现,最大数据小于并接近100,所以第五个滤波器设定为100半径,但是发现,滤波后图像的小a还是有一定的模糊,这是因为巴特沃斯滤波器不是理想滤波器,在截止频率处存在一定的过度带,所以小尺寸的物体可能会有模糊。 (2)观察图二,可以发现进过巴特沃斯高通滤波器后的图像背景均为黑色,这是由于高通滤波器阻止了代表图像平均灰度的直流分量通过,且发现半径越大,图像物体中边缘细节越尖锐,这表明滤波器中高频分量占的比重越来越大,同时观察图中字母a会有一定的缺口,这正是由于巴特沃斯平滑截止程度不够所带来的振铃现象,在低通中没有表现出来是由于背景的亮度掩盖了缺口,并且发现通过高通滤波器后图像的对比度也降低了。

相关主题
文本预览
相关文档 最新文档