当前位置:文档之家› 运算放大器部分(DOC)

运算放大器部分(DOC)

运算放大器部分(DOC)
运算放大器部分(DOC)

运算放大器部分

第一节:理想运算放大电路

一、运算放大器的理想性能运算放大器的内部线路图、外部符号图

特别提示:

运算放大器的内部是用很多三极管组成的差动放大器,结构复杂。在学习魔鬼电路的起步阶段,要避免研究它的内部结构。只需象记住三极管的特性一样,记住运算放大器非常有限的几个外部电气特性就可以了。

理想运算放大器的外部电气特性

1、同相端与输出端电压的变化相位相同

当运算放大器同相输入端的电压高于反向输入端电压的时候,输出端会向正电压方向变化。

2、反向端与输出端电压的变化相位相反

当运算放大器反相输入端的电压高于同相输入端电压的时候,输出端会向负电压反向变化。

3、输出端电压可以达到接近等于电源电压正极或负极的位置

4、开环电压放大倍数无穷大

运算放大器的同相输入端只要高于反相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。

反过来,运算放大器的同相输入端只要低于反相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。

运算放大器的反相输入端只要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。

反过来,运算放大器的反相输入端只要低于同相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。

5、运行速度无穷大

6、输入失调电压等于零

当运算放大器同相输入端和反相输入端的电压差等于零的时候,输出电压会稳定在电源正负压之间的某一点。

7、输入偏置电流等于零

8、输入失调电流等于零

9、电源共模抑制比无穷大

10、输入共模抑制比无穷大

11、输出负载能力无穷大

12、输入开环阻抗无穷大

13、输出阻抗等于零

二、同向比较器a、同向过零比较器电路运行原理

如图所示:

根据开环电压放大倍数无穷大的性能特点:

如果在运算放大器同相输入端加入一个很小的交流信号,每当交流信号越过零电压进入正半周的时候,输出端电压就会到达电源电压的正极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的负极。这个电路被称为同向过零比较器。

三、反向过零比较器电路运行原理

如图所示:

根据开环电压放大倍数无穷大的性能特点:

运算放大器的反相输入端是要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。如图C所示如果在运算放大器反相输入端加入一个很小的交流信号,每当交流信号越国林电压就如正半周的时候,输出端电压就会大大电源电压的负极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的正极。这个电路被称为反向过零比较器。

四、回差比较器

五、反向放大器

a、静态工作点

b、动态运行原理反向放大器电路结构如图所示:

a、反向放大器电路运行原理

反相比例运算放大器电路结构中,运算放大器的同相输入端接地。

当反向输入端信号电压为零的时候,输出端的电压如果大于OV,就会通过R1和R2串联回路;使得反向输入端的电压大于OV,从而使输出端的电压向负极变化。如果输出端电压小于OV,就会通过R1和R2串联回路;使得反向输入端的电压小于OV,从而使输出端的电压向正极变化。

所以,只有当输出电压等于的0V时候,反向输入端的电压才会等于同相输入端的电压;等于0V。才会既不具备使输出端电压为正;也不具备使输出端电压为负的条件。

电路结构性能会使输出端的电压总是稳定在 U L=O 的状态。

当反向输入信号电压为正1V的时候,反向输入端的正极电压会使输出端的电压向负极变化,R1和R2组成的反馈回路也会使反向输入端的电压随之向负极变化。

如果输出端的电压没有达到-10V,反向输入端的电压就仍然高于OV,输出端的电压就会继续向负极变化。

如果输出端的电压超过-10V,反向输入端的电压就会低于OV,输出端的电压就会反过来向正极变化。

只有当输出电压等于的-10V时候,反向输入端的电压才会等于同相输入端的电压,才会既不具备使输出电压继续向正极方向变化;也不具备使输出电压继续向负极方向变化的条件。

所以,电路结构性能会使输出端的电压稳定在-10V的状态。

电压放大倍数Av=-R2/R1

当反向输入信号电压为-1V的时候,根据同样的原理,电路结构性能会使输出端的电压稳定在+10V的状态。

电压放大倍数Av=R2/R1

由此可见:反向比例运算放大器的电压放大倍数Av=R2/R1

d、输入阻抗

反向的运算放大器的同相输入端是直接接地的,电压总是等于零。放大器在正常运行的时候,反向输入端得到的反馈电压总是等于同相输入端的电压(A点的电压总是等于零,这就是虚地现象)

所以反向比例运算放大器的输入阻抗Ri=R1

e、输出阻抗

比例运算放大器在正常运行的时候;输出电压总是满足使反馈在反向输入端的电压等于同相端的电压(UL=R2Ui/R1)。如果在放大器输出端接上负载引起输出电压下降,那么下降的输出电压就会使反馈在反向输入端的电压不等于同相端的电压,于是又会引起输出端的电压回到UL=R2Ui/R1的参数。

所以,在运算放大器输出负载能力的范围之内,负载阻抗不会对放大器输出电压产生影响。结论:比例运算放大器的输出阻抗在理想情况下等于零。

f、运行维持电流

六、同相放大器

a、静态工作点

b、动态运行原理

同相比例运算放大器电路结构中,运算放大器的反向输入端接地。

当同相输入端信号电压 Ui=O 的时候,输出端的电压如果大于OV,就会通过R1和R2串联回路;使得反向输入端的电压大于OV,从而使输出电压向负极变化。如果输出端电压小于OV,就会通过R1和R2串联回路;使得反向输入端的电压小于OV,从而使输出电压向正极变化。

所以,只有当输出电压等于的0V时候,反向输入端的电压才会等于同相输入端的电压;等于0V。才会既不具备使输出端电压为正;也不具备使输出端电压为负的条件。

电路结构性能会使输出端的电压总是稳定在 U L=O 的状态。

当同相输入信号电压为正1V的时候,会使输出电压向正极变化,R1和R2组成的反馈回路也会使反向输入端的电压随之向正极变化。

如果输出端的电压没有达到+11V,反向输入端的电压就仍然同相端的电压;低于+1V,输出端的电压就会继续向正极变化。

如果输出端的电压超过+11V,反向输入端的电压就会高于同相端的电压;高于+1V,输出端的电压就会反过来向负极变化。

只有当输出电压等于的+11V时候,反向输入端的电压才会等于同相输入端的电压,才会既不具备使输出端电压继续向正极方向变化;也不具备使输出端电压继续向负极方向变化的条件。

所以,电路结构性能会使输出端的电压稳定在+11V的状态。

电压放大倍数Av=R2/R1+1

当同相输入信号电压为-1V的时候,根据同样的原理,电路结构性能会使输出端的电压稳定在-10V的状态。

电压放大倍数Av=R2/R1+1

由此可见:同相比例运算放大器的电压放大倍数Av=R2/R1+1

d、输入阻抗

放大器在正常运行的时候,反向输入端得到的反馈的总是等于同相输入端的电压。因此,同相输入端与反向输入端的电压差总是等于零。所以,同相输入端与反向输入端总是不存在输入电流,相当于输入阻抗无穷大。如果设置同相端对地电阻,那么同相比例放大器的输入阻抗就等于输入电阻。

e、输出阻抗比例运算放大器的输出阻抗

比例运算放大器在正常运行的时候;输出电压总是满足使反馈在反向输入端的电压等于同相端的电压(UL=R2Ui/R1)。如果在放大器输出端接上负载引起输出电压下降,那么下降的输出电压就会使反馈在反向输入端的电压不等于同相端的电压,于是又会引起输出端的电压回到UL=R2Ui/R1的参数。

所以,在运算放大器输出负载能力的范围之内,负载阻抗不会对放大器输出电压产生影响。结论:比例运算放大器的输出阻抗在理想情况下等于零。

f、运行维持电流

七、加法器

a、静态工作点

b、动态运行原理

如图所示:

无论同相输入端的信号电压是多少,输出端的电压只有变化到使反向输入电压等于同相输入电压的时候,才不具备使输出电压继续向正极、或者向负极变化的条件。输出电压总是精确地等于同相输入电压。

c、电压放大倍数

d、输入阻抗

e、输出阻抗

f、运行维持电流

八、积分器

a、静态工作点

b、动态运行原理

c、电压放大倍数

d、输入阻抗

e、输出阻抗

f、运行维持电流

九、微分器

a、静态工作点

b、动态运行原理

c、电压放大倍数

d、输入阻抗

e、输出阻抗

f、运行维持电流

十、简易波形发生器

a、静态工作点

b、动态运行原理

c、电压放大倍数

d、输入阻抗

e、输出阻抗

f、运行维持电流

第二节:非理想放大器参数的意义和计算

一、运算放大器的极限参数及对放大器工作的影响

1、最高电源电压

运算放大器的最低和最高工作电源电压都是有限制的。电源电压过低会使运算放大器不能正常工作,电源电压过高会使运算放大器造成损坏。

精密运算放大器的最佳电源工作电压在几十左右。

通用型运算放大器的最佳电源工作电压在几百左右。

高速运算放大器的最佳电源工作电压在几十左右。

最佳电源工作电压对比例运算放大器在应用方面的限制如图所示:

b、输出最高和最低电压与电源电压的接近程度

理想状态下,运算放大器输出端的电压最高可以到达电源电压的正极,最低可以到达电源电压的负极。当运算放大器输出端的电压实际上不能达到这样的要求。

运算放大器最高和最低输出电压对实际应用方面的限制如图所示:

2、最大输出电流

运算放大器的电流输出能力通常是十分有限的。

精密运算放大器的电流输出能力在几十左右。

通用型运算放大器的电流输出能力在几百左右。

高速运算放大器的电流输出能力在几十左右。

电流输出能力对比例运算放大器在应用方面的限制如图所示:

3、精密输出电流

4、电源消耗电流

6、运行速度

理想运算放大器的运行速度是无限的,但运算放大器的实际运行速度也是非常有限的。运算放大器的运行速度用V/uS来表示,也就是输出端电压在最高速运行的时候,每微秒的时间能够发生多大幅度的电压变化。

精密运算放大器的运行速度在几十左右。

通用型运算放大器的运行速度在几百左右。

高速运算放大器的运行速度在几十左右。

运行速度对比例运算放大器在应用方面的限制如图所示:

d、开环放大倍数

理想运算放大器的开环电压放大倍数无穷大,但实际的运算放大器开环电压放大倍数不是无穷大。

精密运算放大器的开环电压放大倍数在几十左右。

通用型运算放大器的开环电压放大倍数在几百左右。

高速运算放大器的开环电压放大倍数在几十左右。

开环电压放大倍数对比例运算放大器性能指标的影响如图所示:

二、运算放大器的失调参数及对放大器工作的影响

1、输入偏置电流

输入偏置电流对比例运算放大器输出静态工作点的影响如图所示:

理想运算放大器的输入偏置电流等于零,但实际上,只有场效应管组成的运算放大器输入偏置电流接近等于零。普通三极管组成的运算放大器都存在输入偏置电流。

精密运算放大器的输入偏置电流在几十nA左右。

通用型运算放大器的输入偏置电流在几百nA左右。

高速运算放大器的输入偏置电流在几十uA左右。

1、当偏置电流恰好方便补偿的时候

2、当偏置电流为正方向的时候

3、当偏置电流为负方向的时候

2、输入失调电流

实际的运算放大器不仅有输入偏置电流,而且同相输入端和反相输入端的偏置电流还不一样。这种输入键值电流之差被称为输入失调电流。

精密运算放大器的输入失调电流在几十左右。

通用型运算放大器的输入失调电流在几百左右。

高速运算放大器的输入失调电流在几十左右。

输入失调电流对比例运算放大器输出静态工作点的影响如图所示:

3、输入失调电压

理想运算放大器的输入失调电压等于零,但实际的运算放大器输入失调电压值不等于零的。也就是同相输入端和反相输入端只有相差某个电压值的时候,输

出端的电压才会处于电源电压政府及之间的位置。这个相差的电压值就是输入失调电压。

精密运算放大器的输入失调电压在几十uV负左右。

通用型运算放大器的输入失调电压在几mV左右。

高速运算放大器的输入失调电压在十几~几十mV左右。

4、共模输入抑制比

理想运算放大器的电源电压共模抑制比和输入信号共模抑制比无穷大,但实际运算放大器的共模抑制比不是无穷大。

精密运算放大器的共模抑制比在几十左右。

通用型运算放大器的共模抑制比在几百左右。

高速运算放大器的共模抑制比在几十左右。

共模抑制比对比例运算放大器性能指标的影响如图所示:

5、共模电压抑制比

第三节:运算放大器的系统设计

1、反向放大器

比例运算放大器的反相输入端和输出端之间的具有反馈电阻(不能用电容器隔将直流电压开),因为输出电压的静态工作点就是通过反馈电阻来得到稳定的。

1、反向放大器

A、直流反向比例运算放大器的结构如图A所示:

a、输入信号与放大器的输入端不能加耦合电容。

b、为保证同相输入端的电压等于零,同相输入端与地之间必须有电联系,同相端直接接地为最优选择,理想情况下不宜设置电阻(设置电阻会影响放大器的性能)。

c、电压放大倍数Av=R2/R1,因为反向运算放大器的输入阻抗Ri=R1,所以,设计电阻Ri和R1参数的时候,首先要使输入阻抗;也就是R1的电阻值符合要求,然后根据放大倍数计算R2。

交流比例运算放大器

B、交流反向比例运算放大器如图A所示:

a、输入信号与放大器的输入端加上耦合电容,能够隔开输入信号直流成分的干扰,有利于放大交流信号。

b、理想情况下同相输入端与地之间不宜设置电阻(设置电阻会影响放大器的性能)。

c、电压放大倍数Av=R2/R1,因为反向运算放大器的输入阻抗Ri=R1,所以,设计电阻Ri和R1参数的时候,首先要使输入阻抗;也就是R1的电阻值符合要求,然后根据放大倍数计算R2

2、同相放大器

比例运算放大器的反相输入端和输出端之间的具有反馈电阻(不能用电容器隔将直流电压开),因为输出电压的静态工作点就是通过反馈电阻来得到稳定的。

如图B所示:

a、因为要放大的是直流信号,输入信号必须直接加在运算放大器的同相输入端,所以不必设置同相输入电阻(同相端设置对的电阻只会降低输入阻抗)。

同相放大器

A、同相直流比例运算放大器的结构如图B所示:

a、因为要放大的是直流信号,输入信号必须直接加在运算放大器的同相输入端,所以不必设置同相输入电阻(同相端设置对的电阻只会降低输入阻抗)。

B、同相交流比例运算放大器

交流同相比例运算放大器如图B所示:

a、输入信号与放大器的输入端加上我和电容,能够隔开输入信号直流成分的干扰,有利于放大交流信号。

b、由于输入信号与同相端加上的隔直流电容,要保证同相输入端的静态电压等于零,同相输入端与地之间必须设置电阻。因为同相比例运算放大器的同相输入端的阻抗无穷大,所以,设置了同相端接地电阻的比例放大器的输入阻抗直接等于接地电阻。

该电阻越大,越有利于提高放大器的输入阻抗,但越不利于放大器的性能指标。所以,该电阻阻值的设计,以满足放大器输入阻抗的最低值为标准。

c、电压放大倍数Av=R2/R1+1,基本不受其他因素的制约。

3、加法器

4、积分器

5、微分器

6、跟随器

7、简易波形发生器

二、运算放大器的单电源设计:

如图所示:

1、R3和R4的作用

如果按图A所示设计反向运算放大器,由于同相端电压等于零,根据运算放大器的基本规则,放大器输出端的静态电压也应当等于零。放大器只能输出半个波形的电压。

如果按图B所示设计反向运算放大器,分压电阻R3和R4给同相输入端提供了一个位于电源电压中间位置的基准电压。根据运算放大器的基本规则,放大器输出端的静态电压也等于这个电压,放大器输出电压有最大的动态范围。

2、C1和C2的作用

C1和C2使基准电压与电源电压之间提供了顺畅的交流通路,为保障放大器的正常工作提供了有利条件。

具体原理是:如果没有C1和C2。

a、当信号进入放大器输入端的时候,由于反向输入端处于虚地状态,R1上会产生电流IR1=Ui/R1,但由于反向输入端是虚地状态,电流并不能从反向输入端流向同相输入端。于是又会信号发生器的电流必须来自分压电阻R3和R4,于是分压电阻上就会产生电压变化。

b、当输入信号被放大输出的时候,会在负载电阻RL上产生电流。由于这个电流不能从同相输入端流入运算放大器的内部,而只能通过分压电阻由运算放大器的电源端流入运算放大器的内部,于是分压电阻上就会产生电压变化。

c、上述两种原因在分压电阻上引起的电压变化会使运算放大器基准点的电压发生波动。

对运算放大器的正常运行是不利的。C1和C2的重要性显而易见。

运算放大器部分

运算放大器部分 第一节:理想运算放大电路 一、运算放大器的理想性能运算放大器的内部线路图、外部符号图 特别提示: 运算放大器的内部是用很多三极管组成的差动放大器,结构复杂。在学习魔鬼电路的起步阶段,要避免研究它的内部结构。只需象记住三极管的特性一样,记住运算放大器非常有限的几个外部电气特性就可以了。 理想运算放大器的外部电气特性 1、同相端与输出端电压的变化相位相同 当运算放大器同相输入端的电压高于反向输入端电压的时候,输出端会向正电压方向变化。 2、反向端与输出端电压的变化相位相反 当运算放大器反相输入端的电压高于同相输入端电压的时候,输出端会向负电压反向变化。 3、输出端电压可以达到接近等于电源电压正极或负极的位置 4、开环电压放大倍数无穷大 运算放大器的同相输入端只要高于反相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。 反过来,运算放大器的同相输入端只要低于反相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。 运算放大器的反相输入端只要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。 反过来,运算放大器的反相输入端只要低于同相输入端的电压,无论电压有多小,输出端电压就会向正极方向发生无穷大的变化。 5、运行速度无穷大 6、输入失调电压等于零 当运算放大器同相输入端和反相输入端的电压差等于零的时候,输出电压会稳定在电源正负压之间的某一点。 7、输入偏置电流等于零 8、输入失调电流等于零 9、电源共模抑制比无穷大 10、输入共模抑制比无穷大

11、输出负载能力无穷大 12、输入开环阻抗无穷大 13、输出阻抗等于零 二、同向比较器a、同向过零比较器电路运行原理 如图所示: 根据开环电压放大倍数无穷大的性能特点: 如果在运算放大器同相输入端加入一个很小的交流信号,每当交流信号越过零电压进入正半周的时候,输出端电压就会到达电源电压的正极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的负极。这个电路被称为同向过零比较器。 三、反向过零比较器电路运行原理 如图所示: 根据开环电压放大倍数无穷大的性能特点: 运算放大器的反相输入端是要高于同相输入端的电压,无论电压有多小,输出端电压就会向负极方向发生无穷大的变化。如图C所示如果在运算放大器反相输入端加入一个很小的交流信号,每当交流信号越国林电压就如正半周的时候,输出端电压就会大大电源电压的负极。相反,每当交流信号越过零电压进入负半周的时候,输出端电压就会达到电源电压的正极。这个电路被称为反向过零比较器。 四、回差比较器

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

集成运放的基本组成部分

集成运放的基本组成部分 偏置电路 偏置电路的作用是向各放大级提供合适的偏置电流,确定各级静态工作点。各个放大级对偏置电流的要求各不相同。对于输入级,通常要求提供一个比较小(一般为微安级)的偏置电流,而且应该非常稳定,以便提高集成运放的输入电阻,降低输入偏置电流、输入失调 电流及其温漂等等。 在集成运放中,常用的偏置电路有以下几种: 镜像电流源也称为电流镜(Current Mirror),在集成运放中应用十分广泛,它的电路如下图所示。 电源VCC通过电阻R和VT1,产生一个基准电流IREF,由图可 得 然后在VT2的集电极得到相应的IC2,作为提供给某个放大级的偏置电流。由于UBE1=UBE2,而VT1和VT2是做在同一硅片上两个相邻的三极管,它们的工艺、结构和参数都比较一致,因此可以认 为 由于输出恒流IC2和基准电流IREF相等,它们之间如同是镜像的关系,所以这种恒流源电路称为镜像电流源。

镜像电流源的优点是结构简单,而且具有一定的温度补偿作用。 二、比例电流源 在镜像电流源的基础上,在VT1、VT2的发射极分别入两个电阻R1和R2,即可组成比例电流源,如下图所示。 由于VT1、VT2是做在同一硅片上的两个相邻的三极管,因此可 以认为UBE1≈IE2R2,则 IE1R1≈IE2R2 如果两管的基极电流可以忽略,由上式可得可见两个三极管的集电极电流之比近似与发射极电阻的阻值成 反比,故称为比例电流源。 以上两种电流源的共同缺点是,当直流电源VCC变化时,输出电流IC2几乎按同样的规律活动,因此不适用于直流电源在大范围内变化的集成运放。此外,若输入级要求微安级的偏置电流,则所有电阻将达兆欧级,在集成电路中无法实现。 差分放大输入级 集成运放的输入对于它的许多指标诸如电阻、共模输入电压、差模输入电压和共模抑制比等等,起着决定性的作用,因此是提高集成 运放质量的关键。

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器基本电路大全

运算放大器基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电

运算放大器知识点总结

u o t u u i1 i2运算放大器知识点总结 1、 部分组成 偏置电路,输入级,中间级,输出级。 2、零点漂移: (1)表现: 输入u i =0时,输出有缓慢变化的电压产生。 (2)原因: 由温度变化引起的。当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。因而零点漂移也叫温漂。 (3)衡量方法: 将输出漂移电压按电压增益折算到输入端计算。 例如 100,=u1A 100=u2A 10000=u A 如果输入等效为100uV ,漂移为1V 。 (4)减小漂移的措施: 采用差动放大电路 采用温度补偿,非线性元件 3、差动放大电路 运放的输入级一般采用差动放大电路。 差动放大电路又称差分放大电路,它的输出电压与两个输入电压之差成正比。它能较好地克服直接耦合放大器的零点漂移问题,是集成运算放大器的基本组成单元。 结构如右图: (1)对称性结构 β1=β2=β U BE1=U BE2= U BE r be1= r be2= r be R C1=R C2= R C R b1=R b2= R b (2)信号分类 差模信号:i2i1id =u u u - o u V CC V EE o u V CC V EE

i2 u EE 共模信号:) ( 2 1 = i2 i1 ic u u u+ 差模电压增益: id od ud = u u A 共模电压增益: ic oc uc = u u A 总输出电压: ic uc id ud oc od o =u A u A u u u+ = + 2 1 1 EE AB R R R V U + = 3 AB C3 V 7.0 R U I - = 2 C3 C2 C1 I I I= = ②动态 恒流源等效电阻:) // 1( 3 2 1 be3 3 ce R R R r R r R + + + = β 等效 ,且 2 1 2 1 2 1 // R R R R R R + ? = (5)差动放大器输入、输出方式的接法 u i1=u i2 =u ic,u id=0 设u i1 ↑,u i2↑ →u o1↓,u o2↓。 因u i1 = u i2, →u o1 = u o2 → u o= 0 (理想化) 共模电压放大倍数A UC=0 i2 i1 u

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的主要参数 第六节场效应管简介 第一节学习要求 1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。 学习重点:

掌握集成运放的基本电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采用直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。 3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采用复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、基本镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 当β>>2时, 式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。 改进电路一:

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

几种运算放大器比较器及经典电路的简单分析

运算放年夜器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在阐发它的工作原理时倘没有抓住核心,往往令人头年夜。为此自己特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放年夜器电路的时候,无非是先给电路来个定性,比方这是一个同向放年夜器,然后去推导它的输出与输入的关系,然后得出V o=(1+Rf)Vi,那是一个反向放年夜器,然后得出Vo=Rf*V i……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾面试过至少100个以上的年夜专以上学历的电子专业应聘者,结果能将我给出的运算放年夜器电路阐发得一点不错的没 有超出10个人!其它专业结业的更是可想而知了。 今天,芯片级维修教各位战无不堪的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得入迷入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放年夜倍数很年夜,一般通用型运算放年夜器的开环电压放年夜倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压缺乏1 mV,两输入端近似等电位,相当于“短路”。开环电压放年夜倍数越年夜,两输入真个电位越接近相等。

“虚短”是指在阐发运算放年夜器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不克不及将两输入端真正短路。 由于运放的差模输入电阻很年夜,一般通用型运算放年夜器的输入电阻都在1MΩ以上。因此流入运放输入真个电流往往缺乏1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越年夜,两输入端越接近开路。“虚断”是指在阐发运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不克不及将两输入端真正断路。 在阐发运放电路工作原理时,首先请各位暂时忘失落什么同向放年夜、反向放年夜,什么加法器、减法器,什么差动输入……暂时忘失落那些输入输出关系的公式……这些东东 只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放年夜器(其实在维修中和年夜大都设计过程中,把实际放年夜器当作理想放年夜器来阐发也不会有问题)。 好了,让我们抓过两把“板斧”“虚短”和“虚断”,开始“庖丁解牛”了。 令狐采学

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

集成电路运算放大器

第六章集成电路运算放大器 本章内容简介 (一) 目标:集成元器件,构成特定功能的电子线路 (二) 侧重点不同:区别于单元电路,研究对象为高开环电压放大倍数的多级直接耦合 放大电路 (三)主要内容 ?组成集成运放的基本单元电路; ?典型集成运放电路以及集成运放的主要指标参数; ?几种专用型集成运放。 (四)学习目标 ?了解电流源的构成、恒流特性及其在放大电路中的作用。 ?正确理解直接耦合放大电路中零点漂移(简称零漂)产生的原因,以及有关指 标。 ?熟练掌握差模信号、共模信号、差模增益、共模增益和共模抑制比的基本概念。 ?熟练掌握差分放大电路的组成、工作原理以及抑制零点漂移的原理。 ?熟练掌握差分放大电路的静态工作点和动态指标的计算,以及输出输入相位关 系。 ?了解集成运放的内部结构及各部分功能、特点。(选讲内容) ?了解集成运放主要参数的定义,以及它们对运放性能的影响。(选讲内容) (五)参考资料说明 ?清华大学童诗白主编《模拟电子技术基础》有关章节 ?高文焕、刘润生编《电子线路基础》 ?王远编《模拟电子技术基础学习指导书》 ?陈大钦编《模拟电子技术基础问答、例题、试题》

6.1 集成运放中的电流源 主要内容: 本节主要定义了电流源电路并做了分类。 基本要求: 正确理解电流源的定义及种类。 教学要点: 1.镜象电流源 (1). 电路组成:镜象电流源是由三级管电流源演变而来的,如图1所示。 (2)电流估算 由于两管的V BE相同,所以它们的发射极电流和集电极电流均相等。电流源的输出电流,即T2的集电极电流为 当>>1时 当R和V CC确定后,基准电流I REF也就确定了,I C2也随之而定。由于Ic2≈I REF, 我们把I REF看作是I C2的镜象,所以这种电流源称为镜象电流源。 (3)提高镜象精度 在图1中,当不够大时,I C2与I REF就存在一定的差别。为了减小镜象差别,在电路中接入BJT T3,称为带缓冲级的镜象电流源。如下图所示。 该电路利用T3的电流放大作用,减小了I B对I REF的分流作用,从而提高了I C2与I REF镜象的精度。 原镜象电流源电路中,对I REF 的分流为2I B 带缓冲级的镜象电流源电路中,对I REF 的分流为2I B/β3, 比原来小。 2.微电流源 镜象电流源电路适用于较大工作电流(毫安数量级)的场合,若需要减小I C2的

运算放大器组成的比较器

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。 2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。在这儿有必要重复展现运放开环电压传输特性。见图8.2.1,请注意横、纵坐标标度的不同 (1) 从途中可化称 (2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区 时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。 (3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。 (4) 若用正反馈使Aod↑,则可缩短状态的转换时间。 3. 分类: (1) 单限比较器

(2) 迟滞比较器(Schmitt) (3) 双限比较器(窗口比较器) 二. 单限比较器 1. U i与U R分别接运放两输入端的开环串接比较器,见图8. 2.2 ΔU i>U R Uo=+Uom ΔU i

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

10种运算放大器

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班 一.uA741M ,uA741I ,uA741C (单运放)高增益运算放大器 用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 Package 封装 Part Number 零件型号 Temperature Range 工作温 度范围 N D UA741C 0℃ - +70℃ ? ? UA741I -40℃ - +105℃ ? ? UA741M -55℃ - +125℃ ? ? 例如 : UA741CN uA741主要参数 ABSOLUTE MAXIMUM RATINGS 最大额定值 Symbo l 符号 Parameter 参数 UA741M UA741I UA741C Uni t 单位 VCC Supply voltage 电源电压 ±22 V Vid Differential Input Voltage 差分输入电压 ±30 V Vi Input Voltage 输入电压 ±15 V Ptot Power Dissipation 功耗 500 mW Toper Output Short-circuit Duration 输出 短路持续时间 Infinite 无限制 Operating Free-air Temperature Range 工作温度 -55 to +125 -40 to +105 0 to +70 ℃ Tstg Storage Temperature Range 储存温度范围 -65 to +150

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

相关主题
文本预览
相关文档 最新文档