当前位置:文档之家› 高考物理(知识点总结+例题精析)电磁感应专题2 电磁感

高考物理(知识点总结+例题精析)电磁感应专题2 电磁感

高考物理(知识点总结+例题精析)电磁感应专题2 电磁感
高考物理(知识点总结+例题精析)电磁感应专题2 电磁感

专题二:电磁感应中的力学问题

电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。

一、处理电磁感应中的力学问题的思路 ——先电后力。

1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;

2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系,

求出相关部分的电流大小,以便安培力的求解。

3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、

导体线圈等)的受力情况,尤其注意其所受的安培力。

4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。

5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。导体受

力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。

二、分析和运算过程中常用的几个公式:

1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系.

电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S t

B

n ???) E = Blυ 、 E = 12Bl 2ω .

全电路 E =I (R +r )

力学对象:受力分析:是否要考虑BIL F =安 .

运动分析:研究对象做什么运动 .

2、可推出电量计算式 R

n t R E t I q ?Φ=?=

?= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极

方向而获得推进动力的新型交通工具。如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。当匀强磁场B 1和B 2同时以某一速度沿直轨道向右运动时,金属框也会沿直轨道运动。设直轨道间距为L ,匀强磁场的磁感应强度为B 1=B 2=B ,磁场运动的速度为v ,金属框的电阻为R 。运动中所受阻力恒为f ,则金属框的最大速度可表示为( )

A 、2222()m

B L v f R v B L -?= B 、2222

(2)

2m B L v f R v B L

-?= C 、2222

(4)4m B L v f R v B L -?= D 、2222

(2)

2m B L v f R v B L +?= 【解析】:由于ad 和bc 两条边同时切割磁感线,故金属框中产生的电动势为E =2BLv ′ ,其中v ′是金属框相对于磁场的速度(注意不是金属框相对于地面的速度,此相对速度的方向向

左),由闭合电路欧姆定律可知流过金属框的电流为R

E

I =

。整个金属框受到的安培力为

21

R

v L B BIL F '

==224。当

F =f 时,a =0 ,金属框速度最大,即

f R v v L B R v L B m m =-=')(442222,v m 是金属棒相对于地面的最大速度,则易知2

22244L

B Rf v L B v m -=,选

C .

【例2】如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计。整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中。当用水平向右的恒力F =3m g 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:

(1)杆a 做匀速运动时,回路中的感应电流; (2)杆a 做匀速运动时的速度;

(3)杆b 静止的位置距圆环最低点的高度。 【解析】:(1)匀速时,拉力与安培力平衡,知F =BIL ,得

I BL

=

………… ① (2)金属棒a 切割磁感线,产生的电动势E =BLv .

回路电流 2E

I R

=

………… ②

联立得:v =

.

(3)平衡时,对b 棒受力分析如图所示,

设置棒和圆心的连线与竖直方向的夹角为θ ,有 3tan ==

mg

F

θ,得θ=60° 杆b 静止的位置距圆环最低点的高度为(1cos )2

r h r θ=-=

【例3】如图所示,两根完全相同的“V”字形导轨OPQ 与KMN 倒放在绝缘水平面上,两导轨都在竖直平面内且正对、平行放置,其间距为L ,电阻不计。两条导轨足够长,所形成的两个斜面与水平面的夹角都是α 。两个金属棒ab 和a ′b ′ 的质量都是m ,电阻都是R ,与导轨垂直放置且接触良好。空间有竖直向下的匀强磁场,磁感应强度为B .

(1)如果两条导轨皆光滑,让a ′b ′ 固定不动,将ab 释放,则ab 达到的最大速度是多少? (2)如果将ab 与a ′b ′ 同时释放,它们所能达到的最大速度分别是多少?

【解析】:(1)ab 运动后切割磁感线,产生感应电流,而后受到安培力,当受力平衡时,加速度为0 ,

速度达到最大,受力情况如图所示。有

mgsinα=F cos α F =BIL R

E

I 2=

E =BLv m cos α

联立上式解得 α

α

2

22m cos sin 2L B mgR v = (2)若将ab 、a ′b ′ 同时释放,因两边情况相同,所以达到的最大速度大小相等,这时

ab 、a ′b ′都产生感应电动势,很明显这两个感应电动势是串联的。有

mg sin α=F ′cos α

F ′=B I 'L

R

v BL I m

2cos 2α'=

'

联立以上三式,解得

α

α2

2

2cos sin L B mgR v m ='

【例4】如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T 。一质量为m =0.1k g 的金属直杆垂直放置在导轨上,并以v 0=2m /s 的初速度进人磁场,在安培力和一垂直于杆的

水平外力F 的共同作用下作匀变速直线运动,加速度大小为a =2m /s 2

,方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好,求: (1)电流为零时金属杆所处的位置;

(2)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。 【解析】:(1)感应电动势E =Blv ,则感应电流 R

E

I =

. I =0时,v =0 ,此时,==a

v S 220

1(m ) 则电流为零时金属杆距离x 轴原点1m

(2)初始时刻,金属直杆切割磁感线速度最大,

产生的感应电动势和感应电流最大。

R

Blv I m

=

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

工程电磁场复习提纲及考点

第一部分:电磁场的数学工具和物理模型 来源:工程电磁场原理教师手册 场的概念;场的数学概念;矢量分析; 数学工具:在不同坐标系下的数学描述方法;巩固标量场梯度的概念和数学描述方法;掌握散度在直角坐标系下的表达形式;掌握旋度在直角坐标系下的表达形式;强调几个矢量分析的恒等式:0=???V (任何标量函数梯度的旋度恒等于零);0)(=????A (任意矢量函数旋度的散度恒等于零);() A A A 2?-???=????;?????+??=??A A A )(; V V 2?=???。 亥姆霍兹定理推导出:无旋场(场中旋度处处为零),但散度不为零;无散场(无源场):场中散度处处为零,但其旋度不为零;一般矢量场:场中散度和旋度均不为零。无限空间中的电磁场作为矢量场)(r F 按定理所述,其特性取决于它的散度和旋度特性,而用公式可以表示为:)()()(r A r r F ??+-?=?,其中标量函数?-??= V dV r r r F r '') '('41)(π?,矢量函数?-??= V dV r r r F r A '' ) '('41)(π,由此可见,无限空间中的电磁场)(r F 唯一地取决于其散度和旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。 电场强度E 与电位?的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其电场分布的特点。了解极化电荷、极化强度P 的定义及其物理意义。连接通过极化电荷求极化电场分布的积分形式。 理解电位移矢量D 的定义,以及D 、E 和P 三者之间的关系。对电介质中的静电场,会求解其相应对称的场的分布。

电机学主要知识点复习提纲

电机学主要知识点复习提纲 一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2 U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua

励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2 可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、 软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动; 启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ==

电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:2111 2100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑ 他励DM 的转速调整率: 0N N 100%n n n n -?=? DM 的机械特性:em 2 T j a j a a ) (T ΦC C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0: 二、变压器 A. 主要概念 1. 单相、三相;变压器组、心式变压器;电力变压器、互感器; 干式、油浸式变压器 2. 铁心柱、轭部 3. 额定容量、一次侧、二次侧 4. 高压绕组、低压绕组

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

电机学期末复习总结

《电机学》期末复习材料 第三篇 交流电机理论的共同问题 1、同步电机的结构: 定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。 转子——直流励磁,是一个恒稳磁极。 极对数p 与转速n 之间的关系是固定的,为 60 1 pn f = 2、异步电机的结构: 定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。 转子——三相对称短路绕组,产生一个旋磁磁通。 【三相对称:空间上差120度电角度;时序上差120度电角度。】 3、电角度与机械角度: 电角度:磁场所经历的角度称为电角度。 机械角度:转子在空间所经历的几何角度称为机械角度。 电角度?=p 机械角度 4、感应电势: ①感应电势的频率:60 1 pn f = ②感应电势的最大值:m m m f lv B E φπ==(τφl B P m =) ③每根导体感应电势的有效值: m m m d f f E E φφπ 22.22 2 == = 5、极距: ①概念:一个磁极在空间所跨过的距离,用 τ来表示。(了解整距、短距、长距) ②公式:p z p D 22= = πτ 6、线圈电势与节距因数: ①节距因 数 : 1 90sin 90)1(cos 11≤?? ??????=????????-=ττy y k y 物理意义:表示了短距线圈电势的减少程度。 ②分布因数:12 sin 2sin ≤= a q a q k q 物理意义:表示了分布绕组电势的减少程度。 ③绕组因数:q y w k k k = ④合成电势:w m k fN E φ44.4= ⑤槽距角:z p a 360 = 电角度 ⑥每极每相的槽数:pm z q 2= 【练习1】一台三相同步发电机, Hz f 50=,min /1000r n =,定子铁芯长 cm l 5.40=,定子铁芯内径cm D 270=, 定子槽数72=z ,101=y 槽,每相串联匝数144=N ,磁通密度的空间分布波的表示式为xGs B sin 7660=。试求:(1)绕组因数w k ;(2)每相感应电势的有效值。

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习 —电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 R v a b θ d 图12-1 M v B

B .通过导线某一横截面的电荷量之比是1:1 C .拉力做功之比是1:4 D .线框中产生的电热之比为1:2 4. 图12-5,条形磁铁用细线悬挂在O 点。O 点正下方固定一个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的是 ( ) A .在磁铁摆动一个周期内,线圈内感应电流的方向改变2次 B .磁铁始终受到感应电流磁铁的斥力作用 C .磁铁所受到的感应电流对它的作用力始终是阻力 D .磁铁所受到的感应电流对它的作用力有时是阻力有时是动力 5. 两相同的白炽灯L 1和L 2,接到如图12-4的电路中,灯L 1与电容器串联,灯L 2与电感线圈串联,当a 、b 处接电压最大值为U m 、频率为f 的正弦交流电源时,两灯都发光,且亮度相同。更换一个新的正弦交流电源后,灯L 1的亮度大于大于灯L 2的亮度。新电源的电压最大值和频率可能是 ( ) A .最大值仍为U m ,而频率大于f B .最大值仍为U m ,而频率小于f C .最大值大于U m ,而频率仍为f D .最大值小于U m ,而频率仍为f 6.一飞机,在北京上空做飞行表演.当它沿西向东方向做飞行表演时(图12-6),飞行员左右两机翼端点哪一点电势高( ) A .飞行员右侧机翼电势低,左侧高 B .飞行员右侧机翼电势高,左侧电势低 C .两机翼电势一样高 D .条件不具备,无法判断 7.图12-7,设套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看)应是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .有先逆时针后顺时针方向的感应电流 D .无感应电流 8.图12-8,a 、b 是同种材料的等长导体棒,静止于水平面内的足够长的光滑平行导轨上,b 棒的质量是a 棒的两倍。匀强磁场竖直向下。若给a 棒以4.5J 的初动能,使之向左运动,不 L 1 L 2 图12-4 v 0 a b 图12-8 图12-6 S N O 图12-5 图12-7

工程电磁场期末知识点总结

工程电磁场课程总结大作业 1. 静电场 本章研究的对象是静电场,静电场是相对于观察者静止且量值不随时间变化的电荷所产生的电场,静电场中最主要的场量是电场强度E 和标量电位?。首先是从库伦定律 1212 21204πq q R ε= ?e F 2112 =-F F 出发,注意此式适用条件:两个可视为点电荷的带电体之间的相互作用力; 且在真空中成立,真空中的介电常数 12 08.8510ε-=?F/m 。进而引入电场强度: 000 =lim q f E q → 根据此式不难推出真空中单个点电荷引起的电场强度的一般表达式: 3 0()(')4π' p q ε= --E r r r r r n 个点电荷产生的电场强度 ( 矢量叠加原理 ): 3 10() 1()4πN k k k k q ε='-='-∑r r E r r r 连续分布电荷产生的电场强度: 体电荷分布: 2 01 d 4πR V V R ρε' ' = ? E e 面电荷分布: 2 01d 4πR S S R σε' ' = ? E e 线电荷分布: 2 1d 4πR l l R τε' ' = ? E e 由上面公式可以看出,当电荷分布不具有规律时,此时求电场的分布是非常困难的,所以这个时候就要寻求一种新的求解电场的方法,根据亥姆霍兹定理可以知道,从旋度和散度的角度去求电场可以使得问题变得简单。

首先从静电场的环路定律,在静电场沿任何一条闭合路径做功为零,即:0 l Edl =?这样由Stokes’定理,静电场在任一闭合环路的环量: d ()d 0l s ?=???≡??E l E S 0??=E 此式说明了静电场中电场强度的旋度等于0,即电场力作功与路径无关,静电场是保守场,是无旋场。又根据数学知识知,标量函数的梯度的旋度等于0, φ=-?E 因此可以用一个标量函数的负梯度来表示电场强度,即静电场的标量电位或简称电位,E 就是φ的最大减小率,负号表示电场强度的方向从高电位指向低电位。又由上面推导不难看出,φ与 E 的积分关系---电位差,设P0为电位参考点,即0 P φ=,则P 点电位 为: d P P P φ=??E l d d ()()Q Q P P E l P Q φφφ?=-=-? ? 由上式可以看出,P 、Q 两点间的电位差等于电场力将单位正电荷从P 点移至Q 点所做的功,电场力使单位正电荷由高电位处移到低电位处。电位参考点是非常重要的,工程上一般取大地为参考点,理论上取无穷远为参考点。另外,也可以根据上面的计算可以得到点电荷周围的电位为: 0()4π' q C φε= +-r r r 接下来是静电场中的高斯定律,真空中的高斯定律为: 1 1 d n i S i q ε=?= ∑? E S (') ()ρε??= r E r 由于实际生活中,总存在某种介质,故为了计算当有介质存在时,对已有电场的影响,引入了电极化强度P 和D ,这样只需考虑电介质中的高斯定律即可:

高考物理大题突破--电磁感应(附答案)

1、(2011上海(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。(取210/g m s =)求:(1)金属棒在此过 程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时 的加速度a .3)为求金属棒下滑的最大速度m v ,有同学解答如下由动能定理21-=2 m W W mv 重安,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。 解析:(1)下滑过程中安培力的功即为在金属棒和电阻上产生的焦耳热,由于3R r =,因此30.3()R r Q Q J == ∴=0.4()R r W Q Q Q J =+=安 (2)金属棒下滑时受重力和安培力22 =B L F BIL v R r =+安 由牛顿第二定律22 sin 30B L mg v ma R r ?-=+∴ 2222210.80.752sin 3010 3.2(/)()20.2(1.50.5)B L a g v m s m R r ??=?-=?-=+?+ (3)此解法正确。金属棒下滑时重力和安培力作用,其运动满足22 sin 30B L mg v ma R r ?-=+ 上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动。无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大。由动能定理可以得到棒的末速度,因此上述解法正确。21sin 302m mgS Q mv ?-= ∴ 2.74(/)m v m s === 2、(2011重庆第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上 镀有间距为d 的平行细金属条,磁场中始终仅有一 根金属条,且与电极接触良好,不计金属电阻,若 橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电 功率;(3)一根金属条每次经过磁场区域克服安培 力做的功。 解析:(1)设电动势为E ,橡胶带运动速率 为v 。由:BLv E =,U E =,得:BL U v =

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

工程电磁场基本知识点讲课教案

工程电磁场基本知识 点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理含义是。 14 旋度在直角坐标系中的表示为??= A。 15 矢量场A在一点沿 e方向的环量面密度与该点处的旋度之间的关 l 系为。 16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????g g 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点 P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。

北京市高考物理一轮复习 第22讲 电磁感应经典精讲1

第22讲 电磁感应经典精讲(下) 1、如图所示,垂直纸面的正方形匀强磁场区域内有一位于纸 面内的电阻均匀的正方形导体框abcd ,现将导体框分别朝两 个方向以3υυ、速度匀速拉出磁场, 则导体框从两个方向移出磁场的两过程中() A .导体框所受安培力方向相同 B .导体框中产生的焦耳热相同 C .导体框ad 边两端电压相同 D .通过导体框截面的电荷量相同 2、如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab ,质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是( ) A.作用在金属棒上各力的合力做功为零 B.重力做的功等于系统产生的电能 C.金属棒克服安培力做的功等于电阻R 上产生的焦耳热 D.金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热 3、物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量,如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q , 由上述数据可测出被测磁场的磁感应强度为 ( ) A.qR 2nS B. qR nS C.qR 2S D.qR S 4、如图所示,边长L =0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r =0.20Ω.导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里.金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒上的中点始终在BD 连线上.若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 位置时,求(计算结果保留两位有效数字): (1)金属棒产生的电动势大小;

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

电机学知识点总结

电机学知识点总结 电机学课程是高等学校电气类专业的一门重要技术基础课课程的特点是理论性强、概念抽象、专业性特征明显它涉及的基础理论和知识面较广牵涉电、磁、热、机械等综合知识。下面请看我带来的电机学知识点总结。 电机学知识点总结 直流电动机知识点 1、直流电动机主要结构是定子和转子;定子主要包括定子铁心、励磁绕组、电刷。转子主要包括转子铁心、电枢绕组、换向器。 2、直流电动机通过电刷与换向器与外电路相连接。 3、直流电动机的工作原理:通过电刷与换向器之间的切换,导体内的电流随着导体所处的磁极性的改变而同时改变其方向,从而使电磁转矩的方向始终不变。 4、通过电刷和换向器将外部通入的直流电变成线圈内的交变电流的过程叫做“逆变”。 5、励磁方式分为他励式和自励式;自励式包括并励式、串励式和复励式。(只考他励式和并励式,掌握他励式和并励式的图形) 6、直流电机的额定值:①额定功率PN 对于发电机额定功率指线端输出的电功率;对于电动机额定功率指轴上输出的机械功率。②额定电压、额定电流均指额定状态下电机的线电压线电流。 7、磁极数=电刷数=支路数(2p=电刷数=2a,p为极对数,a为支路对数) 8、空载时电极内的磁场由励磁绕组的磁动势单独作用产生,分为主磁通和

漏磁通两部分。 9、电枢反应:负载时电枢磁动势对气隙主磁场的影响。 10、电刷位置是电枢表面电流分布的分界线。 11、交轴电枢反应的影响:①使气隙磁场发生畸变;②物理中线偏离几何中线;③饱和时具有一定的去磁作用。 12、电刷偏离几何中线时,出现直轴。 13、Ea=CeΦn Te=CTΦIa CT=9.55Ce 14、发电机 Ea=U+IaRa 电动机 U=Ea+IaRa 15、他励发电机的特性(主要掌握外特性U=f(I)) 曲线向下倾斜原因①U=Ea‐IaRa;随着负载电流I增大,电枢电阻压降 IaRa 随之增大,所以U减小。②交轴电枢反应产生一定的去磁作用;随着负载的增加,气隙磁通Φ和电枢电动势Ea将减小,再加上IaRa的增大使电压的下降程度增大。 16、并励发电机自励条件:①电机的磁路中要有剩磁;②励磁绕组的接法要正确,使剩磁电动势所产生的电流和磁动势,其方向与剩磁方向相同;③励磁回路的总电阻必须小于临界电阻。 17、并励发电机的外特性U=f(I),曲线下降原因①②同上他励发电机;③励磁电流减小,引起气隙磁通量和电枢电动势的进一步下降。 18、为什么励磁绕组不能开断? 若励磁绕组开断,If=0,主磁通将迅速下降到剩磁磁通,电枢电动势也将下降到剩磁电动势,从而使电枢电流Ia迅速增大,如果负载为轻载,则电动机转

2019年北京高三二模物理分类汇编:电磁感应

2019年北京高三二模物理分类汇编: 电磁感应 【题1】(2019·东城二模19)图甲所示是工业上探测物件表面层内部是否存在缺陷的涡流探伤技术的原理图。其原理是用通电线圈使物件内产生涡电流,借助探测线圈测定涡电流的改变,从而获得物件内部是否断裂及位置的信息。如图乙所示的是一个带铁芯的线圈L、开关S和电源用导线连接起来的跳环实验装置,将一个套环置于线圈L上且使铁芯穿过其中,闭合开关S的瞬间,套环将立刻跳起。对以上两个实例的理解正确的是 A.涡流探伤技术运用了电流的热效应,跳环实验演示了自感现象 B.能被探测的物件和实验所用的套环必须是导电材料 C.以上两个实例中的线圈所连接的电源都必须是交流电源 D.以上两个实例中的线圈所连接的电源也可以都是稳恒电源 【题2】(2019·海淀二模17)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,金属棒与两导轨始终保持垂直,并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在水平匀强磁场中,棒在竖直向上的恒力F作用下匀速上升的一段时间内,下列说法正确的是 A.通过电阻R的电流方向向左 B.棒受到的安培力方向向上 C.棒机械能的增加量等于恒力F做的功 D.棒克服安培力做的功等于电路中产生的热量 R F

【题3】(2019·海淀二模反馈17)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触,棒与导轨的电阻均不计,整个装置放在水平匀强磁场中,棒在竖直向上的恒力F 作用下匀速上升的一段时间内,金属棒受恒定大小的滑动摩擦力f ,下列说法正确的是 A .通过电阻R 的电流方向水平向右,棒受到的安培力方向竖直向上 B .通过电阻R 的电流方向水平向左,棒受到的安培力方向竖直向下 C .棒机械能增加量的大小等于棒克服重力所做的功 D .棒机械能的增加量等于恒力F 和滑动摩擦力f 做的总功【题4】(2019·朝阳二模18)如图所示,空间存在垂直纸面向里的磁场,磁场在竖直方向均匀分布,在水平方向非均匀分布,且关于竖直平面MN 对称。绝缘细线上端固定在M 点,下端与一个粗细均匀的铜制圆环相接。现将圆环由P 处无初速释放,圆环第一次向右摆动最远能到达Q 处(图中未画出)。已知圆环始终在同一竖直平面内摆动,则在圆环从P 摆向Q 的过程中,下列说法正确的是 A .位置P 与Q 可能在同一高度 B .感应电流方向始终逆时针 C .感应电流方向先逆时针后顺时针D .安培力方向始终与运动方向相反 R F

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析一、电磁感应现象的两类情况 1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求: (1)金属棒pq到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq运动到时,金属棒gh的速度大小; (3)金属棒gh产生的最大热量。 【答案】(1) (2) (3) 【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量; 解:(1)金属棒pq下滑过程中,根据机械能守恒有: 在圆弧底端有 根据牛顿第三定律,对圆弧底端的压力有 联立解得 (2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有 对于金属棒pq有 对于金属棒gh有

相关主题
文本预览
相关文档 最新文档