当前位置:文档之家› 城市轨道交通基于模糊控制的ATO算法研究_高玉

城市轨道交通基于模糊控制的ATO算法研究_高玉

城市轨道交通基于模糊控制的ATO算法研究_高玉
城市轨道交通基于模糊控制的ATO算法研究_高玉

0 引言

城市轨道交通具有运量大,以及安全、快捷、节能、舒适等优势。对于改善城市交通结构,缓解城市地面交通拥堵具有重要的作用。列车自动驾驶(ATO)系统是城市轨道交通列车自动控制系统(ATC)的重要组成部分,可通过车—地数据传输通道接收ATS 系统的控制命令和联锁系统的移动授权命令,并结合列车自动防护(ATP)系统提供的目标速度、列车速度、前方列车位置、线路数据和车辆参数等指标,合理计算启动、加速、巡航、制动停站等过程的列车运行优化速度曲线,并向列车发送牵引和制动命令,实现列车启动、调速、车站精确停车等过程的自动控制,提高列车运行效率、提高列车运行的舒适度,节省能源。同时ATO 系统通过接收列车自动监督(ATS)系统的控制命令,根据按计划运行图实现列车自动追踪、自动调整的控制。

1 ATO 系统主要功能

ATO 系统车载设备主要由控制计算机、司机驾驶显示器

HMI、测速装置、列车定位设备组成。

列车具有四种驾驶模式,即自动驾驶模式(AM)、ATP 速度监督下的人工驾驶模式(SM)、限制速度模式(RM),自动折返模式(AR)。ATO 系统对列车的控制可分为:列车自动启动、速度调整、巡航和惰行、精确停车等过程:

1)列车启动控制:在列车ATO 驾驶模式条件满足时,司机

按压ATO 启动按钮,ATO 向牵引系统输出牵引命令,启动列车运行,使列车在最短时间内按规定加速度率加速到目标速度。

2)列车速度控制和调整。ATO 并根据准点、节能、舒适等优化指标要求,结合列车自动防护(ATP)系统提供的目标速度、列车速度、前方列车位置、线路数据、车辆参数和ATS 列车运行计划等条件,计算列车运行速度曲线,及时调整列车速度,实现列车速度自动控制和调整。

3)列车巡航和惰行控制。ATO 根据列车当前运行速度和列车运行速度曲线,控制列车惰行巡航运行,实现列车节能运行。

4)车站精确停车控制。ATO 根据列车当前位置和速度、列车制动曲线,控制列车的制动率,保证列车准确地停在车站停车窗口内。

2 ATO 的算法

列车安全、准时、可靠运行是城市轨道交通运营的关键。 AT0系统主要作用是自动调整列车速度,使列车平稳、准确地停靠在站台预定位置。ATO 系统的核心是列车运行速度控制算法,其方法对ATO 的控制效果起关键作用,只有高效的控制方法才能保证准时、舒适、节能、精确停车等各项指标的实现。在ATC 发展过程中,多种ATO 传统控制方法,如PID 控制、自适应控制等算法得到广泛应用,并取得了一定的成果。近年来随着模糊控制、神经网络、专家系统等智能控制技术的进一步发展,国内外许多公司和研究机构将智能技术应用于ATC 系统

城市轨道交通基于模糊控制的ATO 算法研究

高 玉,陈艳华

(西安铁路职业技术学院电子信息系,陕西西安,710014)

摘要:列车自动驾驶(ATO)系统是城市轨道交通列车自动控制系统的重要组成部分,可保证列车运行快捷、准时、舒适和节能运行。ATO 系统的核心是列车速度控制算法,其方法对ATO 的控制效果起关键作用。本文主要介绍了ATO 的主要功能,分析了基于模糊控制的ATO 算法。

关键词:城市轨道交通;模糊控制;ATO 算法;列车自动驾驶中图分类号: U283.1 文献标识码:A

City track traffic based on fuzzy control ATO algorithm

Gao Yu,Chen Yanhua

(Xi'an Institute of Railway Technology Electronic Information Department of Shaanxi Xi'an,7100142)

Abstract :Automatic Train Operation (ATO) system is the urban rail transit automatic train control system is an important part of the guaranteed train running fast,punctual,comfortable and energy-saving operation.ATO system is the train speed control algorithm, the method of the control effect of ATO play a key role.This paper describes the main functions of the ATO analyzes the ATO algorithm based on fuzzy control. Keywords :Urban Rail Transit ;Fuzzy Control ;ATO algorithm ;Automatic Train

基金项目:陕西省教育厅2013年科学研究计划(自然科学专项)项目(2013JK0964)

中,取得了令人满意的效果。以下主要介绍PID 控制算法和模糊控制算法。

2.1 基于PID 控制的ATO 算法

基于PID 控制的ATO 算法是一种典型的、传统的列车控制算法。具有结构简单,易于实现和鲁棒性好等特点。PID 控制器为负反馈闭环控制器,它以经验公式为基础,采用比例控制器-P、微分控制器-D、积分控制器-I 来抑制列车运行过程中各种扰动因素导致的列车速度控制偏差。一旦列车当前运行速度偏离了目标速度曲线,PID 控制器即向牵引系统输出用于减少速度偏差的牵引和制动量,实现列车速度的自动调节。其中比例控制器根据速度的偏差的积分的结果输出控制量,积分器可消除速度的稳态误差,提高列车的控制精度;微分器根据速度的偏差的微分的结果可有效预见速度偏差的变化趋势,提高列车的控制效率。

由于列车运行过程中各种条件,如列车阻力、列车质量是一个非线性的和时变的, 因此经验公式所确定的列车参数和列车运行条件等控制参数与实际有偏差,且缺乏自适应性,因此,列车速度控制效率和精度的受到了影响,另外由于牵引和制动的切换频繁,从而影响了列车运行的舒适性,增加了能耗。

2.2 基于模糊控制的ATO 算法

近年来模糊控制、神经网络和遗传算法等智能控制方法发

展较快。智能控制方法可以解决非线性、多变量等复杂的控制对象。为了客服基于PID 控制的ATO 算法,采用智能控制理论对PID 算法进行优化,下面主要介绍城市轨道交通基于模糊控制的ATO 算法。

模糊控制应用模糊集合理论实现控制的一种方法,也是一种非线性控制模糊控制。模糊控制系统的主要组成部分是模糊控制器,模糊控制器由模糊化、知识库、模糊推理和去模糊化四部分组成。模糊控制系统以被控对象的反馈值与目标值的误差e 和误差改变量ec 作为模糊控制器的输入,e 和ec 经过模糊化处理后得到输入模糊子集E 和EC, U 为模糊控制器的输出模糊子集。知识库由数据库和模糊控制规则库组成。数据库主要包含输入输出的尺度变换因子、输入输出空间的模糊分割, 根据知识库可以确定各个模糊子集的隶属函数。规则库定义了基于以上模糊子集的语言规则,是进行模糊推理的基础。模糊推理是根据模糊控制规则库和当前的输入状态进行的逻辑推理运算。

模糊控制算法可以概括为以下四个步骤:

(l)根据本次采样得到的系统输出值,计算所选择的系统的输入变量;

(2)将输入变量的精确值变为模糊量;

(3)根据输入变量(模糊量)及模糊控制规则,按模糊推理合成规则计算控制量(模糊量);

(4)由上述得到的控制量计算(模糊量)精确地控制量。假设模糊控制规则具有两个前提条件, 一般可表示为:(l)前提1(规则库

)

:

(2)前提2(输入

):(3)结论

:

按照Mamdan i 模型和采用Max-Min 算子时

:

 

从而得出

:

图1为基于模糊控制的ATO 系统。该控制系统采用两输入单输出的模糊控制器,如图2

所示。

图1 基于模糊控制的ATO

算法

图2 模糊控制器框图

当前的列车运行速度与运行速度曲线偏差分为两路,一路乘以 Ke,另一路经过微分后乘以 Kec,这两路信号同时作为模糊控制器的输入,模糊控制器的输出为加速度指令,下一控车周期的列车速度通过 Ke 参数作为控制器的反馈量,因此ATO 控制模型为一个有效的负反馈闭环系统,保证在预期的速度偏离列车目标速度曲线时得到调整,速度差值不断缩小,并达到目标速度,保证列车平稳运行,

3 结语

列车自动速度控制算法是ATO 子系统的关键技术, ATO 的算法对列车安全和高效运行具有重大的影响。基于模糊控制的ATO 算法可使列车运行更加准时、舒适和节能。

参考文献

[1] 黄磊,唐涛.灰色控制在城轨列车自动驾驶系统的应用

研究[J].中国科技信息,2008年第2期:79-80.

[2] 唐涛,黄良骥 列车自动驾驶系统控制算法综述[J].铁

道学报,2003, 25(2):98-102.

[3] 康太平 基于模糊预测控制的列车自动驾驶系统研究

[D].西南交通大学2006年3月.

[4] 姚理 基于智能控制算法的列车自动驾驶系统的优化研

究[D].北京交通大学2009年6月.[5] 陈荣武,刘莉,诸昌钤 基于CBTC 的列车自动驾驶控制

算法[J].计算机应用2007,27(11):2049-2051.

[6] 江坤.国产化城轨交通列车自动驾驶系统车载设备研究

与设计[J].铁路通信信号工程技术,2009年6(1):11-13.

作者简介

高玉,女 ,(1967年—),高级讲师,主要从事的工作:教

学与科研,研究方向:

铁路信号及城市轨道交通控制。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

基于模糊控制的智能车寻迹算法研究

基于模糊控制的智能车寻迹算法研究 摘要:与传统的自动控制相比,模糊控制不用建立在被控对象准确的数学模型的基础上。这一特点在非常适用于实际运用中影响因素很多、结构十分复杂系统。其系统有易于接受,设计简单,维护方便,而且比常规控制系统稳定性好,鲁棒性高等特点。因其与本设计实际条件相似,所以选其做智能小车的寻迹算法研究。 关键词智能小车;模糊控制;寻迹算法 ABSTRACT Compared with the traditional automatic control,fuzzy control without based on a accurate mathematical model of controlled object. This feature is suitable for the systems which have many influencing factors and a very complex structure in the practical application. There are many feature in this system:such as easy to accept, the design is simple, convenient maintenance, more stability and robustness than conventional control system,and so on. Because it is similar to the actual conditions of our design, so we choose it for the smart car tracing algorithm. KEY WORDS smart car;fuzzy control;tracing algorithm

模糊控制算法PID算法比较分析

模糊控制算法PID 算法比较分析 电气学院 控制理论与控制工程专业 徐磊 学号:10310070 一:题目 对于已知系统的传递函数为: e S S S G 5.01101)(-+= ,假设系统给定为阶跃值R=1,系统的初始值R(0)=0,试分析设计 1〉常规的PID 控制器 2〉常规的模糊控制器 3〉比较两种控制器的控制效果 当通过改变模糊控制器的比例因子时,分析系统响应有什么变化? 二:思路 对于模糊控制,采用二维输入,分别是误差e 和误差变化率?e,然后通过增益放大,输入到模糊控制器中,然后模糊控制器输出也通过增益放大。模糊控制器的输入、输出论域取值为[-6,6],隶属度均匀划分为五个区域,隶属度函数采用梯形和三角形函数。 程序框图如下:

三:程序 clear; num=1; den=[10,1]; [a1,b,c,d]=tf2ss(num,den); x=[0]; %状态变量初始 T=0.01; %采样周期 h=T; N=10000; %采样次数 td=0.5; %延时时间 Nd=50; %延时周期 R=1*ones(1,N); % 输入信号 e=0;de=0;ie=0; %误差,误差导数,积分 kp=12.5;ki=0.8;kd=0.01; for k=1:N uu(1,k)=-(kp*e+ki*de+kd*ie); %PID输出序列if k<=Nd u=0; else u=uu(1,k-Nd); end %龙格库塔法仿真 k0=a1*x+b*u; k1=a1*(x+h*k0/2)+b*u; k2=a1*(x+h*k1/2)+b*u; k3=a1*(x+h*k2)+b*u; x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u; e1=e; e=y(1,1)-R(1,k); de=(e1-e)/T; ie=ie+e*T; yy1(1,k)=y; end %设计模糊控制器 a=newfis('Simple'); a=addvar(a,'input','e',[-6,6]); a=addmf(a,'input',1,'NB','trapmf',[-6 -6 -5 -3]); a=addmf(a,'input',1,'NS','trapmf',[-5 -3 -2 0]); a=addmf(a,'input',1,'ZR','trimf',[-2 0 2]); a=addmf(a,'input',1,'PS','trapmf',[0 2 3 5]); a=addmf(a,'input',1,'PB','trapmf',[3 5 6 6]); a=addvar(a,'input','de',[-6 6]);

C实现模糊控制算法

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在 vc6.0,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include #include"math.h" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=0.3,a1=0.55,a2=0.74,a3=0.89 */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

离散化 Pid 模糊控制算法

论文标题: 设计PID ,离散化,模糊化控制器 PID 控制器设计 一 PID 控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )()()()(0 ++=? 相应的传递函数为: ???? ??++=S S s K K K d i p c 1)(D S S S K K K d i p 12++? = 二 数字控制器的连续化设计步骤 假想的连续控制系统的框图

1 设计假想的连续控制器D(s) 由于人们对连续系统的设计方法比较熟悉,对由上图的假想连续控制系统进行设计,如利用连续系统的频率的特性法,根轨迹法等设计出假想的连续控制器D(S)。 2 选择采样周期T 香农采样定理给出了从采样信号到恢复连续信号的最低采样频率。在计算机控制系统中,完成信号恢复功能一般有零阶保持器H(s)来实现。零阶保持器的传递函数为 3将D(S)离散化为D(Z) 将连续控制器D(S)离散化为数字控制器D(Z)的方法很多,如双线性变换法,后向差分法,前向差分法,冲击响应不变法,零极点匹配法,零阶保持法。 双线性变换法 然后D(S)就可以转化离散的D(Z) 三Matlab仿真实验 直接试探法求PID 根据这个框图,求出该传递函数的P=0.35 I=0 D=0

根据 ???? ??++=S S s K K K d i p c 1)(D D (Z )=0.35 T=0.01 数字连续话PID 控制器设计MA TLAB 仿真框图 实验结果 没有经过调节的结果为

模糊控制的应用

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师黄静 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

非线性系统模糊控制算法研究

非线性系统模糊控制算法研究 摘要:随着社会科技的进步,系统自动化越来越强,而要强化系统的自动化,就需要对系统控制进行深入的研究。系统控制是我国目前科学研究的一个重要方向,通过基本结构的建立和仿真实验,控制分析的深度会有明显的增加。在系统控制当中,非线性系统的模糊控制是一项重要的内容,通过对此中控制的算法进行分析和研究,可以提供非线性系统模糊控制的有效性。该文就非线性系统控制算法进行研究,旨在分析此系统算法的应用优势,从而强化其在实践中的应用水平。 关键词:非线性系统模糊控制算法研究 中图分类号:TP273.4 文献标识码:A 文章编号:1672-3791(2017)04(c)-0196-02 在控制研究中,比较典型的基于受控对象精确模型的控制是古典控制和状态空间模型控制。在实际研究中发现,除去受控对象比较精确的控制外,还存在比较复杂的控制,这种控制的受控对象不明确,所以数学模型的建立相对困难。为了对这种控制进行有效的利用,采用模糊控制算法进行数学模型的建立是主要的方法。因此,积极的对非线性系统模糊控制算法进行研究意义重大。

1 模糊控制的数学描述 模糊控制是控制研究中的重要类别,这种控制不仅是一种实时控制,而且不依赖于受控对象的精确模型,所以说它是一种打破了传统束缚的新型计算机控制。此种控制的产生为解决更加复杂的计算机问题带来了全新的方法。从特征上来看,此种方法对于模型的要求比较低,而且在实际利用中的计算非常简便,控制性能也比较优良。该文在非线性系统中进行模糊控制算法的研究,为了使得研究简便,利用了一个非线性系统的式子: 在这个式子当中,u表示的是输入量,而y则表示输出量,整个式子代表是就是工程实际当中难于建模的一大类复杂受控对象。根据这个式子,确定合适的参考轨迹,控制公式便可以得到书写。 2 模糊控制的算法原理 模糊控制的算法原理是研究的重点内容,在实际分析的过程中主要包括了四个方面:第一是进行非线性系统的模糊模型建立,然后对其进行规范化,使其转变为参数辨识问题。比如在考虑一个SISO非线性系统的时候,将系统的输入空间和输出空间按照精度进行分别的量化,那么系统的特性便会转变为一个特定的公式,整个公式反应了系统的条件,也构成了系统的模糊模型。第二是对模型的在线递推进行修正。为了使得整个控制测算更加的精确,利用全新的信息结

模糊控制算法研究报告

《智能控制》 课程设计报告 专业:自动化 班级:学号: 学生: 时间:13年12月30日~13年1月3日 ―――――――以下指导教师填写――――― 分项成绩:出勤设计报告 总成绩: 指导教师:

设计报告要求和成绩评定 1 报告容 设计任务书(设计计划),正文,参考资料。 设计任务书(设计计划)由学生所在系安排指导教师编写,容包括设计地点、时间、安排和设计容和要求等。 正文容一般包括:(1)设计简述(设计时间、设计地点,设计方式等);(2)设计容叙述;(3)设计成品(图纸、表格或计算结果等);(4)设计小结和建议。 参考资料包括参考书和现场技术资料等。 2 书写用纸 A4复印纸;封面、设计任务书要求双面打印。 3 书写要求 正文容手工双面或单面书写,字迹清楚,每页20行左右,每行30字左右,排列整齐;页码居中写在页面下方;纸面上下左右4侧边距均为2厘米。 公式单占一行居中书写;插图要有图号和图题,图号和图题书写在插图下方;表格要有表号和表题,表号和表题在表格上方书写;物理量单位和符号、参考文献引用和书写以及图纸绘制要符合有关标准规定;有关细节可参考我院《毕业设计成品规》。 4 装订 装订顺序:封面,设计任务书,正文及参考资料,封底;左边为装订边,三钉装订,中间钉反向装订。 5 成绩评定 设计成绩一般由出勤(10分)、报告书写规性及成品质量(50分)、考核(40分)三部分成绩合成后折合为优秀(90-100分)、良好(80-89分)、中(70-79分)、及格(60-69分)或不及格(60分以下)。设计考核可采取笔试、机试或其它合适的方式;不参加考核或不交报告者成绩为零分。

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

模糊控制大作业讲解

基于模糊控制的PID 温度控制器的设计 1、引言 常规PID 控制由于具有原理结构简单、鲁棒性好,可靠性高,容易实现的特点,成为迄今为止应用最广泛的控制算法,并且取得了良好的效果。然而在温度控制系统中,由于被控对象具有非线性、时变、大滞后等特点,且受环境温度等外界诸多因素影响较大,导致难以建立精确的数学模型,难以确定最佳的控制器参数。此时,传统的PID 控制对进一步提高控制对象的质量和精度遇到了极大的困难,难以获得良好的效果。为了克服常规PID 调节器的不足,提高其性能,人们进行了进一步的研究。 模糊控制是智能控制理论的一个分支,近十年来正以它全新的控制方式在控制界受到了极大的重视并得到了迅速发展。与传统的PID 控制方式相比,它具有特别适合于那些难以建立精确数学模型、非线性和大滞后的过程等特点。但是经过深入研究,也会发现基本模糊控制存在着其控制品质粗糙和精度不高等弊病。 因此,本文提出一种将模糊控制和PID 控制相结合起来,通过模糊控制实现PID 参数自适应的方法来控制系统温度。这种Fuzzy- PID 策略,模糊控制的采用不是代替PID 控制,而是对传统控制方式的改进和扩展,它既保持了常规PID 控制系统结构简单、使用方便、鲁棒性强、控制精度高的优点,又采用模糊推理的方法实现了PID 参数P K 、I K 、D K 的在线自整定,兼具了模糊控制灵活性、适应性强的特点,相比单纯的任一种控制效果都要好[6-10]。 2、模糊控制基本理论 模糊控制是利用模糊数学的基本思想和理论的控制方法。在传统的控制领域 里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强

二阶系统模糊控制算法研究

机电工程学院 课程设计报告 课程 题目二阶系统模糊控制算法的研究 专业电气工程及其自动化 姓名 指导教师 学期 2015-2016

二阶系统的模糊控制算法的研究 学生 指导老师: 摘要:模糊控制是以模糊数学为基础发展的,为一些无法建立数学模型或者数学模型相当粗糙的系统提供的一种非线性的控制方法。对于这些系统,模糊控制可以得到比较满意的控制效果,并且能够解决一些无法通过传统方法解决的问题。本文利用 MATLAB模糊控制工具箱设计的模糊控制器来控制一个二阶系统,由给定的控制器的输入和输出变量,输入和输出变量的隶属函数,分析了输入和输出变量之间的关系,设计了模糊控制规则库,并通过 SIMULINK仿真将模糊控制方法与经典的PID控制方法进行对比,分析仿真结果,探讨模糊控制器的隶属函数,控制规则,以及量化因子和比例因子在模糊控制中所起到的作用。 关键字:模糊控制;MATLAB;SIMULINK;PID

Research of fuzzy control algorithm of second order systems Undergraduate: Supervisor: Abstract:Fuzzy control, which is based on the fuzzy mathematics, is a new way of nonlinearity control system in which the mathematical model is unable established or the mathematical model is very rough. For these systems, fuzzy control offers users a satisfied control result, and settles down some problems which cannot be solved by traditional methods. This paper aims to introduce how to use a fuzzy controller which is based on the MATLAB fuzzy control toolbox to control a second-order system. In order to fulfill this target, the author firstly defines the input variables, output variables and their membership functions. Then, the author analyzes the relationship between the input variables and output variables, and designs the fuzzy control rule bank. Finally, the author makes a difference between the methods of the classic PID control and the fuzzy control by SIMULINK. Membership function of fuzzy controller, control rules, and the function of quantizes and scale factor in the fuzzy control process are also discussed in this paper. Key words: MATLAB; Fuzzy control; PID;SIMULINK simulation

基于模糊控制算法的温度控制系统的设计(DOC)

本科生毕业论文(设计) 调研报告 题目:基于模糊控制算法的 温度控制系统的设计学生姓名: 学号: 专业班级: 指导教师: 完成时间:年月日

基于模糊控制算法的温度控制系统的设计 一、主要目标任务: 综合运用所学知识,如《模拟电子技术》、《数字电子技术》、《自动控制原理》、《微机原理》、《单片机原理与应用》,设计一个基于模糊控制算法的温度控制系统。 1)对以前所学知识进行系统的复习,全面的综合并将其联贯。 2)学会了独立的分析和解决问题和进行相关社会调查的能力 3)学会了查阅文献的方法和培养查阅文献的良好习惯。 4)提高专业相关外文的阅读、翻译能力。提高专业英语水平。 5)提高编写程序的水平,优化软件结构。提高电脑绘图水平。 二、技术性能指标: 1)温度控制在0~100度(水温),误差为±0.5。C。 2)恒温控制。 3)LED实时显示系统温度。并通过键盘输入给定温度 三、简要工作原理 以AT89C51单片机为模糊控制器,结合温度传感变送器,A/D转换器、LED显示器、静态电子开关等,设计出一个基于模糊控制算法的温度控制系统。 在系统中,温度传感变送器获得温度的感应电压,转变成1~5V的标准电压信号,再由A/D转换器转换成数字信号进入单片机内部。单片机将给定电压的A/D转换结果与测量电压的结果相比较,得出偏差量。然后跟据模糊控制算法得出控制量。在执行器中由开关频率较高的静态电子开关完成,采用模拟的PWM控制方法,改变同一个周期中电子开关的闭合时间。 从而调节加热开关的导通时间,以达到控制效果的目的。 四、课题文献综述 1、《动力锅炉燃烧系统的模糊控制策略》 1)作者:刘向杰、柴天佑、刘红波 2)摘要:基于模糊控制策略给出了锅炉系统新的控制方法。工业锅炉的主要动态包括非线性、非最小相位特征、不稳定性、时滞和负荷干扰,采 用传统控制方法难以实施有效的控制。运用GPE(Gausian partition with evenly spaced midpoints)模糊控制系统对锅炉对象的主汽压进行研究和 实时控制,模糊控制器能够克服许多干扰因素,产生良好的控制效果, 最后给出了模糊控制同传统方法的比较结果。 3)模糊控制器的应用 本文的线性推理规则表示:IF error is Ej and rate is Rj THEN output is U(i+j)。Ei代表着一个误差模糊,Rj代表一个误差变化率模糊集,U(i+j)代表着一个输出量模糊集。 4)实施结果 上述控制策略用于现场实际对象,尽管现场运行存在很大的干扰,主

模糊控制的应用实例与分析资料讲解

模糊控制的应用实例 与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是 现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制 对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

模糊控制算法在汽车中的应用综述

模糊控制算法在汽车中的应用综述 摘要:模糊控制应用于没有精确数学模型的对象,具有很大的优越性。随着模糊控制技术的不断发展,它 越来越广泛应用在汽车上,本文分别介绍模糊控制的原理及特点,在ABS系统、汽车巡航系统、汽车空调的使用情况,并介绍各个模糊控制系统的组成。 关键词:汽车;模糊控制;ABS系统;汽车巡航系统;汽车空调 Application of Fuzzy Control Algorithm in Motor Vehicl e ZHANG Zhen-hua (College of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063,China) Abstract:Fuzzy control is applied to the object without accurate mathematical model has great superiority. With the continuous development of fuzzy control technology, it is widely used in automobile. This paper introduces the principle and characteristics of fuzzy control in ABS system, automobile cruise control system, the use of automotive air conditioning, and introduces the various components of the fuzzy control system. Key words:The car;fuzzy control;anti-lock braking system;The car cruise system;automotive air conditioning 引言 传统的常规控制方法是基于被控对象的数学模型基础上的,然而某些情况下我们难以精确地建立起被控对象的数学模型,因而难以对被控对象进行精确地控制。为此可以采用一种基于语言规则与模糊推理的高级控制策略即模糊控制对多变量、非线性、不确定的复杂系统进行有效控制。此方法在汽车的系统控制中得到有效应用。 模糊控制理论发展初期在西方遇到了很大的阻力,西方学者认为模糊控制在应用研究中意义不大。然而,在东方尤其是日本,模糊控制却得到了迅速的发展,20世纪80年代,日本的工程师用模糊控制技术首先实现了对一家电子水净化工厂的控制,又开发了仙台地铁模糊控制系统,创造了当时世界上最先进的地铁系统,而这引起了模糊控制领域的一场巨变,使得西方又开始重视模糊控制理论[1]。 早在七十年代中期,我国就开始了智能控制的研究和应用,并且取得了许多应用成果,我国是最早把模糊理论引入气象预报、地震预测和高炉冶炼控制等方面应用的国家之一。例如,在地震发生趋势预测中对模糊信息的处理在工程设计方面发展了软件理论,并求得最佳设计方案研究出许多专家系统,特别是运用模糊数学方法描述中医经验在交通网、水管网、通信网、可靠性分析方面的实际功能运用等。 随着科学技术的不断发展和进步以及人们生活水平的提高,人们在日常的生活和劳动生产中对空气环境的要求也不断提高,特别是对空气的温度、湿度、以及洁净度的要求,使空调系统的应用越来越广泛。空调控制系统涉及面广,要实现的任务复杂,它通过空调系统为建筑物的不同区域提供满足不同使用要求的环境。 在满足用户对空气环境要求的前提下,采用先进的控制策略对空调系统进行控制,达到控制要求并且节约能源成为空调控制系统的最终目标。特别是近几年来,“绿色建筑”、“环保建筑”的提出,使得对空调控制系统的控制模式的研究显

模糊控制算法C程序

#include #include"math.h" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=0.3,a1=0.55,a2=0.74,a3=0.89 */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/ if(P>-PFF[3] && P

单片机模糊PID自整定控制算法的实现及仿真

单片机模糊PID自整定控制算法的实现及仿真 日期:2007-08-14 03:08 0 引言 由于液压伺服系统的固有特性(如死区、泄漏、阻尼系数的时变性以及负载干扰的存在),系统往往会呈现典型的不确定性和非线性特性。这类系统一般很难精确描述控制对象的传递函数或状态方程,而常规的PID 控制又难以取得良好的控制效果。另外,单一的模糊控制虽不需要精确的数学模型,但是却极易在平衡点附近产生小振幅振荡,从而使整个控制系统不能拥有良好的动态品质。 本文针对这两种控制的优缺点并结合模糊控制技术,探讨了液压伺服系统的模糊自整定PID控制方法,同时利用MATLAB软件提供的Simulink和Fuzzy工具箱对液压伺服调节系统的模糊自整定PID控制系统进行仿真,并与常规PID控制进行了比较。此外,本文还尝试将控制系统通过单片机的数字化处理,并在电液伺服实验台上进行了测试,测试证明:该方法能使系统的结构简单化,操作灵活化,并可增强可靠性和适应性,提高控制精度和鲁棒性,特别容易实现非线性化控制。 1 模糊PID自整定控制器的设计 本控制系统主要完成数据采集、速度显示和速度控制等功能。其中智能模糊控制由单片机完成,并采用规则自整定PID控制算法进行过程控制。整个系统的核心是模糊控制器,AT89C51单片机是控制器的主体模块。电液伺服系统输出的速度信号经传感器和A/D转换之后进入单片机,单片机则根据输入的各种命令,并通过模糊控制算法计算控制量,然后将输出信号通过D/A转换送给液压伺服系统,从而控制系统的速度。该模糊控制器的硬件框图如图1所示。 模糊控制器的主程序包括初始化、键盘管理及控制模块和显示模块的调用等。温度信号的采集、标度变换、控制算法以及速度显示等功能的实现可由各子程序完成。软件的主要流程是:利用AT89C51单片机调A /D转换、标度转换模块以得到速度的反馈信号,然后根据偏差和偏差的变化率计算输入量,再由模糊PID 自整定控制算法得出输出控制量。启动、停止可通过键盘并利用外部中断产生,有按键输入则调用中断服 务程序。该程序的流程图如图2所示。

模糊控制详细讲解实例

一、速度控制算法: 欧阳学文 首先定义速度偏差50 km/h≤e(k)≤50km/h,20≤ec(i)=e(k)e(k1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E、ec和u均取离散度n=3,离散化后得到三个量的语言值论域分别为: E=EC=U={3,2,1,0,1,2,3} 其对应语言值为{NB,NM,NS,ZO,PS,PM,PB} 2.确定隶属度函数 E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表

U E EC —NB NM NS ZO PS PM PB NB PB PB PM PM PS ZO ZO NM PB PM PM PS ZO ZO NS NS PM PM PS PS ZO NS NS ZO PM PS PS ZO ZO NS NM PS PS PS ZO ZO ZO NS NM PM PS ZO ZO ZO NS NM NB PB ZO ZO ZO NS* NM NM NB 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为: 其中,,即表1中NB对应行向量,同理可以得到, , if (E is NVB or NB) and (EC is NVB) then (U is PVB) 结果略 按此法可得到27个关系子矩阵,对所有子矩阵取并集得到模糊关系矩阵如下: 由R可以得到模拟量输出为: 4.去模糊化

相关主题
文本预览
相关文档 最新文档