当前位置:文档之家› 雷迪供水管网分区计量水力模型建立及漏损控制方案

雷迪供水管网分区计量水力模型建立及漏损控制方案

雷迪供水管网分区计量水力模型建立及漏损控制方案
雷迪供水管网分区计量水力模型建立及漏损控制方案

i

d

i

e

L

i

d

i

e

L

管网漏损率指标与控制对策简析

管网漏损率指标与控制对策简析

管网漏损率指标与控制对策简析 一、管网漏损率的概述 管网漏损率问题是所有供水行业面临的棘手难题,一直困扰着供水行业的发展,在很多地区和城市,由于管网老化漏损的严重,供水企业甚至于出现亏损局面。作为东风公司下属的自来水公司,为实现更高的利润指标,控制管网漏损率上升的要求显得更为迫切。管网漏损是一个牵涉到多本,受众多客观、主观因素所影响,产生的原因来自于管网设施现状、水量计量、自来水销售等多方面。目前,国内各大中小城市的管网漏损都处于一个较高的层面上。从建设部获悉,根据对408个城市的统计,我国城市公共供水系统(自来水)的管网漏损率平均达21.5%-30%,离我们最近的十堰市水厂漏损率也达到30%以上。因此,各水司都非常重视自来水漏失的控制工作,将管网漏损率的高低作为衡量自来水管网技术和运行状况好坏的一个重要指标。今年我厂为深入落实“节能减排”及“成本管控年”活动的精神,降低我厂运营成本,实现我厂“高质量服务,低成本运作”,如何控制管网漏损的上升就显得更为重要。 管网漏损率作为一个系统指标,国家制定了专门的管网漏损控制及评定标准:《城市供水管网漏损控制及评定标准(CJJ92-2002)》。其中,标准对管网漏损率的进行了明确的定义:管网漏损率数值上等于管网漏水量与供水总量之比。计算公式如下: Ra =(Qa - Qae)/Qa×100%

式中Ra ———管网年漏损率(%); Qa ———年供水量(km3) Qae ———年有效供水量(km3) 其中管网漏水量等于供水总量与有效供水量之差; 供水总量(Qa):水厂供出的经计量确定的全部水量; 有效供水量(Qae):水厂将水供出厂外后,各类用户实际使用到的水量,包括收费的(即售水量)和不收费的(即免费供水量)。 城市供水企业管网基本漏损率不应大于12%。另根据标准规定:管网漏损率在其基准12%基础上,还应根据抄表用户水量、单位供水量管长(km/km3/d)、平均出厂压力值进行修正。 根据《城市供水管网漏损控制及评定标准(CJJ92-2002)》的修正标准,应在12%的基准值上增加相应修正值,作为管网漏损率的一个衡定标准。由于十堰市地处山区,地势狭长,东西高差大,我厂各车间供水使用加压泵站,其中个别车间(如头堰、吴家沟)出厂水要翻越山头才能到达加压泵站,出厂水平均压力一般大于0.75Mpa;管网支干线众多,走向复杂,造成单位供水量管长较高。 1、评定标准应按单位供水量管长进行修正,修正值应符合表6.2.2的规定。 表6.2.2 单位供水量管长的修正值 供水管径DN 单位供水量管长修正值 ≥75 <1.40km/km3/d 减2%

供水管网漏损率分析

供水管网漏损率分析 与降耗措施初探 王庆生曾庆红赵晓刚 (河南省南阳市自来水公司技术科473001) 水是生命之源,一个城市、一个家庭乃至人们的生活时时刻刻都离不开水。供水管网是城市供水的“动脉”,是实现供水产销的必经之路。由于城市供水的发展是随着城市的发展而同步进行的,城市供水管道敷设的时间、质量等参差不齐,管网管理的方式、手段不尽相同,从而使产、销之间往往差异较大。按照国家有关规定,供水行业漏损率不应超过12%,而多数城市供水均超过这一标准,究其原因,主要与供水管网的漏损率有关。因此,杜绝“跑、冒、滴、漏”已成为供水行业重点关注的问题。本文根据我公司的漏损情况,在调查分析的基础上,提出几点设想和建议,仅供参考。 一、管网漏损技术分析 (一)制水计量的管理 水厂每天输送多少成品水,是以出厂水流量计计量为依据的,出厂水计量则通常采用超声波流量计进行计量。在我公司,在流量计的精度上,一直存在争议。它的校验是以每年在国家质量监督检验检疫总局授权的开封市国家水大流量计站检定便携式超声流量计为准,只检定DN800口径及误差系数,以此再校核各水厂安装的固定式超声波流量计。由此可见,制水计量的误差存在于: 1、由于超声波流量计安装管道口径不一和反复误差的重复性可能造成流量计计量的不准确。 2、超声波流量计测量精度优于1.0%,它是利用超声波传播时差原理,需输入管道外径与管壁厚、材质等主要数据,但是,由于各水厂出厂水管管材使用的年限及质量不一,管外径及壁厚不同,不能准确输入基础参数,从而造成计量误差。 (二)销售水量管理 在供水量真实准确的前提下,售水量越大,则漏损率越小。因此,售水量的大小也是直接关系到漏损率高低的重要因素。影响我公司售水量的主要因素有: 1、用户水表(结算水表)不准确

城镇给水管网漏损控制及评定标准CJJ92-2016(2018年版修订条文)

《城镇供水管网漏损控制及评定标准》CJJ92-2016局 部修订条文 2 术语 2.0.18 综合漏损率 gross water loss rate 管网漏损水量与供水总量之比,通常用百分比表示。 2.0.19 漏损率 water loss rate 用于评定或考核供水单位或区域的漏损水平,由综合漏损率修正而得。 5 评定 5.1 评定指标与评定标准 5.1.1 漏损指标应包括综合漏损率和漏损率,其中评定指标为漏损率。 5.1.2 漏损率应按两级进行评定,一级为10%,二级为12%。 5.2 评定指标的计算 5.2.1 供水单位应根据本标准表4.2.1进行水量统计和水平衡分析,并应按年度确定供水总量和漏损水量。 5.2.2 供水单位的漏损率应按下列公式计算: L L - B W n R R R (5.2.2-1)

WL s a s (-)/100%=?R Q Q Q (5.2.2-2) 式中 R BL ——漏损率(%); R WL ——综合漏损率(%); R n ——总修正值(%); Q s ——供水总量(万m 3 ); Q a ——注册用户用水量(万m 3)。 5.2.3 修正值应符合下列规定: 1 修正值应包括居民抄表到户水量的修正值、单位供水量管长的修正值、年平均出厂压力的修正值和最大冻土深度的修正值。 2 总修正值应按下式计算: n 1234=+++R R R R R (5.2.3-1) 式中 R 1 ——居民抄表到户水量的修正值(%); R 2 ——单位供水量管长的修正值(%); R 3 ——年平均出厂压力的修正值(%); R 4 ——最大冻土深度的修正值(%)。 5.3.3 全国或区域的漏损率应按下式计算: BL BLi si si 11===?∑∑n n i i R R Q Q (5.2.3-4) 式中 BL R ——全国或区域的漏损率(%); BLi R ——全国或区域范围内第i 个供水单位的漏损率(%); si Q ——全国或区域范围内第i 个供水单位的供水总量(万m 3); n ——全国或区域范围内供水单位的数量(个)。

CJJ92-2002城市供水管网漏损控制及评定标准

现批准《城市供水管网漏损控制及评定标准》为行业标准,编号为cjj92-2002,自2002年11月1日起实施。其中,第3.1.2、3.1.6、3.1.7、3.2.1、6.1.1、6.1.2、6.2.1、6.2.2、6.2.3条为强制性条文,必须严格执行。 本标准由建设部标准定额研究所组织中国建筑工业出版社出版发行。 特此公告。 建设部 2002年9月16日 1总则 1.0.1为加强城市供水管网漏损控制,统一评定标准,合理利用水资源,提高企业管理水平,降低城市供水成本,保证城市供水压力,推动管网改造工作,制定本标准。 1.0.2本标准适用于城市供水管网的漏损控制及评定。 1.0.3在城市供水管网漏损控制、评定及管网改造工作中,除应符合本标准规定外,尚应符合国家现行有关强制性标准的规定。 2术语 2.0.1管网distributionsystem出水厂后的干管至用户水表之间的所有管道及其附属设备和用户水表的总称。 2.0.2生产运营用水consumptionforindustrialandcom鄄mercialuse在城市范围内生产、运营的农、林、牧、渔业、工业、建筑业、交通运输业等单位在生产、运营过程中的用水。 2.0.3公共服务用水consumptionforpublicuse为城市社会公共生活服务的用水。包括行政、事业单位、部队营区、商业和餐饮业以及其他社会服务业等行业的用水。 2.0.4居民家庭用水consumptioninhouseholds城市范围内所有居民家庭的日常生活用水。包括城市居民、公共供水站用水等。 2.0.5消防及其他特殊用水consumptionforfireandspe鄄cialuse城市消防以及除生产运营、公共服务、居民家庭用水范围以外的各种特殊用水。包括消防用水、深井回灌用水、管道冲洗用水等。 2.0.6售水量wateraccounedfor收费供应的水量。包括生产运营用水、公共服务用水、居民家庭用水以及其他计量用水。 2.0.7免费供水量consumptionforfree实际供应并服务于社会而又不收取水费的水量。如消防灭火等政府规定减免收费的水量及冲洗在役管道的自用水量。 2.0.8有效供水量effectivewatersupply水厂将水供出厂外后,各类用户实际使用到的水量,包括收费的(即售水量)和不收费的(即免费供水量)。 2.0.9供水总量totalwatersupply水厂供出的经计量确定的全部水量。 2.0.10管网漏水量waterlossofdistributionsystem供水总量与有效供水量之差。 2.0.11漏损率leakagepercentage管网漏水量与供水总量之比。 2.0.12单位管长漏水量waterlossperunitpipelength单位管道长度(dn≥75),每小时的平均漏水量。 2.0.13单位供水量管长pipelengthperunitwatersupply管网管道总长(dn≥75)与平均日供水量之比。 2.0.14主动检漏法activeleakagecontrol地下管道漏水冒出地面前,采用各种检漏方法及相应仪器,主动检查地下管道漏水的方法。 2.0.15被动检漏法passiveleakagecontrol地下管道漏水冒出地面后发现漏水的方法。 2.0.16音听法regularsounding采用音听仪器寻找漏水声,并确定漏水地点的方法。 2.0.17相关分析检漏法detectionbyleaknoisecorrelator在漏水管道两端放置传感器,利用漏水噪声传到两端传感器的时间差,推算漏水点位置的方法。 2.0.18区域检漏法wastemetering在一定条件下测定小区内最低流量,以判断小区管网漏水量,并

在GIS平台上建立供水管网水力模型的方法

科 技 前 沿科技创业家2012年10(下) TECHNOLOGICAL P IONEERS 6科技创业家 TECHNOLOGICAL PIONEERS 1 现行供水管网水力模型建模的方法和问题现在我国各地水司纷纷建立各自的GIS平台,但使用情况不是很理想。不是GIS技术不成熟,而是卡在建立供水管网水力模型这一问题上。现行的供水管网水力模型建模的方法主要分成以下三步:1.1相关管网信息数据提取和输出:根据需要将GIS平台中管网信息数据有选择的导出到一种外部数据库(DBASE、Access、SQL等等数据库模式)中,作为管网水力分析程序的输入数据,等待进行水力分析。1.2数据处理和计算:利用各种水力建模软件(如Epanet、Infoworks、同济宏扬等)设置必要的初始条件,进行延时水力模拟计算。计算前根据所使用的水力建模软件的需要,要对GIS平台输出的数据进行相应的处理,以转换成水力建模软件能识别的 数据格式。 1.3数据导入和表达:将计算结果导回 GIS平台,利用GIS平台显示模块进行表达。 现在最流行的几种GIS开发平台利用了 各种先进的技术手段想利用GIS直接建立 供水管网微观动态水力模型,但只要仔细 研究会发现它们还是使用着老模式:提取 输出所要分析的管网数据,数据处理和计 算,结果反馈和表达。这种模式的问题是: 1.4数据传输过程较多,容易产生数据 丢失,严重影响计算精度。要避免这个问题 只有在各个数据传输过程都加入数据自检 步骤,这又导致计算过程烦琐,严重影响计 算效率; 1.5其次由于数据无法自动同时更新, GIS平台中数据每发生一点变化都需要重 新进行管网建模。这意味着管网建模时间 要尽可能短!否则整个系统会因反映迟缓 而不具任何实际意义。 2 问题的解决方法和途径 通过对目前几种最流行的GIS开发平 台建立供水管网微观动态水力模型方法的 研究,我发现无论是直接建模,还是间接建 模,都忽略了一个关键性问题:如何选取你 所要的管网信息数据。通过对管网数据加 权可很好的解决这一问题。 我武水集团所使用的龙泉管网信息系 统是基于ORACLE关系数据库及西门子 SICAD/open平台的开放式管网GIS系统, 要想利用GIS平台直接建立供水管网微观 动态水力模型需要开发设计:数据管理、数 据选取,数据输入和检查、节点流量分配、水力计算、数据反馈和表达等六个新的功能模块,技术流程图如图1所示:2.1数据管理水力模型是建立在供水管网上的动态系统,随时间变化,需要分时段。它又是对GIS平台进行简化和抽象,以提高计算速度。因此建立水力模型首先要进行数据分析。我公司GIS平台采取的数据库是ORACLE关系数据库,可在高级C语言环境下开发ORACLE库接口,多采用SQL语句开发出满足各种需求的优化应用程序,但缺点是应用程序所使用的数据无法移植(数据共享功能比较单一)。为此我们需开发出一个数据管理模块,用来处理数据分析,建立水力模型相关数据库。下表是数据库结构设计表(如表1):2.2数据选取我们知道城市供水管网非常庞大,不可能每次建立水力模型都将所有数据全部代入水力模型,否则计算将变得非常困难。因此如何选取我们所需要的管网数据是建立水力模型的关键。对此需要开发专门的数据选取模块来满足需求。其工作原理是将GIS平台中每项数据填加一个标签项,参与水力建模的标签项设为“1”,不参与水力建模的标签项设为“0”。2.2.1节点的选择:一般进行拓扑分析,与被选择的管线连接的所有节点都进入水力模型。对节点的水力分析的关键是区分节点水流方向和节点流量。2.2.2管线的选择:一般水力建模前都要确定参与水力模型的最小管径,然后进行拓扑检查,防止出现错误。这种方法最大的问题是在局部管网建模时,如果不清楚来水管线和回水管线,所建立的水力模型往往与实际有很大的误差。所以我个人认为,在水力建模前要对管线加以标注,以区分来水、回水后再确定参与水力模型的最小管径以避免水力模型失真。2.2.3闸门的选择:传统水力建模方法认为闸门不进行操作,除水厂或加压泵站在GIS 平台上建立供水管网水力模型的方法探讨 胡炯 (武汉水务集团汉阳供水部管线所 湖北武汉 430050) 摘 要:在GIS 平台上建立供水管网水力模型是GIS 技术真正能运用起来的关键,建立供水管网水力模型的方法是首先将GIS 平台中的管网信息输出到外部数据库,再利用水力建模软件进行处理和计算,再将结果反馈回GIS 平台进行表达。本文通过对这种水力建模方法的探讨,对GIS 平台的运用提出新的看法,希望能对我公司水力建模有所帮助。 关键词:GIS 供水管网 水力模型 空间分析 图1 技术流程表1作者简介:胡炯;性别:男;学历:大学本科;职务:管线所技术员。 (下转8页)

供水管网漏损现状及控制措施

摘要:供水管网漏损是供水行业普遍存在的严重问题,漏损不仅浪费了宝贵的水资源,而且还使供水企业蒙受巨大的经济损失,甚至造成严重的社会问题。本文就供水管网漏损现状及控制措施进行了探讨,详细分析了我国城市供水管网的漏损现状,并借鉴了国外采取改进漏损的措施提出了几点建议,旨在为类似方面的控制提供参考经验。 关键词:供水管网;漏损现状;控制措施 随着我国经济的飞速发展和城市化进程的不断加快,城市供水系统成为了重要的市政基础设施之一,在保证城市经济的稳定发展、保障人民生活安定等方面不可或缺,供水管网的漏损也随着供水系统的建立成为供水企业普遍关注的重大问题。因此,为了控制供水管网的漏损问题,就要认真分析供水管网漏损的现状,采取相应的措施进行控制治理。 1 管网漏损率 管网漏损率是自来水业普遍存在的问题,同时也是政府对供水企业的一个重要考核指标。管网漏损主要是指因管网材质老化或破损等外部因素造成的实际供水量减少的现象。 1.1 管网漏损率的定义和漏损原因 城市供水管网漏损率是指城市管网漏水量与供水总量之比。有如下计算公式: 漏损率=(年供水量-年有效供水量)/年供水量×100% 城市供水总量是指各水厂供出的经计量确定的全部水量;有效供水量是指水厂将水供出厂外后,各类用户实际使用到的水量,包括收费的(即售水量)和不收费的(即免费供水量)。从计算公式来看,漏损率与产销差密切相关。产销差一方面是由于计量存在偏差,另一方面是部分水量因种种原因未能纳入计量体系。具体影响因素可总结如下: 1.1.1 计量偏差造成 主要分为系统误差和随机误差: (ⅰ)系统误差,包括:①水量统计相关仪器设备自身误差;②由于供水售水周期不匹配造成的水量统计上存有偏差;③水量统计过程中由于采用近似公式造成系统内部误差。 (ⅱ)随机误差。因操作人员在读、记水量过程中的失误引发的偏差。 1.1.2 未纳入计量体系 指当前存在的原本应予以统计但未统计的情况: (ⅰ)消防等城市公用事业领域的无偿用水行为;(ⅱ)私接管道等偷水行为;(ⅲ)公共用水设施水量未能合理分摊到户;(ⅳ)管网日常维护过程中产生的未统计用水量。 2 城市供水管网漏损现状 供水管网物理性的漏损,主要由规划设计、管道管理、管道材质和施工质量等方面的问题导致的。调查显示,我国于20世纪60~70年代建造的城市供水管网,水压偏低仅为0.2mpa,直至80年代之后,水压才逐步提高至0.4~0.6mpa,管道修建时间长,质量标准低,老化日益严重,很大程度上引发了漏水危机。伴随城市化建设脚步越来越快,房屋、道路及地铁的施工建设亦对管网形成潜在的威胁。其次,部分施工单位在施工作业过程中,未按照法定程序办理审批手续,误伤地下管网,造成管道破裂等事故。管网材质的选择也具有重大的意义,采用易腐蚀的材质容易引发后期漏损。铸铁管由于强度低,易腐蚀,加上接口易渗漏,最容易引发漏损现象;钢管韧性较好,但由于接口部分导电性好,容易造成电化学腐蚀。此外,因涂层问题引发的小孔腐蚀也是常见管道腐蚀之一。施工方面主要有两方面影响,一方面由于地基下沉等地质结构变化破坏管道结构,引发漏损,大口径管道容易在管道承口处发生豁裂,小口径管道发生横向断裂的可能性较大。另一方面,若覆土不按规定进行分层夯实(一般覆土后密实度应大于90%),将使管道受力明显增加,从而大大增加了管道破裂的可能性。 根据原建设部2002年发布的《城市供水管网漏损控制和评定标准》规定,我国自来水业的管网漏损率不能超过12%,并且强制性要求必须严格执行,但实际考察发现,大部分省市

城镇供水管网漏损检测控制与降损措施及管网改造新技术实用手册

城镇供水管网漏损检测控制与降损措施及管网改造新技术实用手册作者:编委会 出版社:中国知识出版社2005年6月出版 册数规格:全三卷+1CD16开精装 定价:¥880元优惠价:¥400元 详细目录 第一篇管网漏损控制的必要性和效益 第一章管网漏损控制的必要性 第二章管网漏损控制的效益 第二篇管网漏损的主要原因 第一章管材选用不符合要求 第二章管道安装质量差 第三章检漏技术手段落后 第四章管道老化严重 第五章水量计量误差 第六章企业经营管理 第三篇水量计量与漏水修复管理 第一章水量计量管理 第二章提高水表的精度 第三章漏水修复管理 第四章供水管网阀门管理 第四篇管网管理及改造 第一章管网技术档案管理 第二章管网信息系统的建立 第三章管网更新改造方法 第四章供水管网设计新技术 第五章供水管线探测与施工技术 第五篇管网漏损检测方法 第一章主动检漏法 第二章被动检漏法 第三章音听检漏法 第四章区域装表法

第五章区域测漏法 第六章区域装表和测漏复合法 第七章压力检漏法 第八章分析检漏法 第六篇降低管网漏损措施 第一章合理规划和科学管理 第二章管材的选用 第三章排气阀的设计和施工 第四章精确计量 第五章抓好管道工程施工安装 第六章加强维修管理 第七章开展管网漏损研究,提高暗漏检测的准确率第八章加强管网巡检维护工作 第九章成立专业的检漏公司 第十章加强供水监察和执法力度 第七篇管网漏损控制新技术的使用 第一章漏损控制技术 第二章漏点探测 第三章神经网络技术 第四章管线定位技术 第八篇供水行业漏损控制常用技术及标准汇编 第一章供水行业漏损控制常用技术 第二章供水行业漏损控制国家标准 第三章供水行业漏损控制行业标准 第九篇相关政策法规解析

浅谈城市供水管网漏损的有效控制

浅谈城市供水管网漏损的有效控制 发表时间:2017-10-18T09:49:20.947Z 来源:《基层建设》2017年第18期作者:王龙众[导读] 摘要:作为城市的基础设施,供水管理的质量影响人们日常生活水平的高低。随着我国城市居民的增多,供水压力随之提升,对供水管网的运行形成一定的威胁,增加漏损现象,如何进行有效地控制,下文做了探讨。 凤阳县供水公司安徽滁州 233100 摘要:作为城市的基础设施,供水管理的质量影响人们日常生活水平的高低。随着我国城市居民的增多,供水压力随之提升,对供水管网的运行形成一定的威胁,增加漏损现象,如何进行有效地控制,下文做了探讨。 关键词:城市;供水管网;漏损控制 1 城市供水管网存在的一些问题和管网漏损的主要形式 对于城市管道的设计需要考量多方面的因素,每个城市的地理结构不同,供水管道必须要顺着城市地理脉络进行铺设,如此能够节省不少的工程资金开支。鉴于供水管道是在地表以下进行施工,这给施工带来了不小的挑战,如对于管道的固定,各个调节阀门的安装等,都会遇到不小的技术挑战。这些技术难题借助现在的技术手段还是可以解决的,但是一些问题确是现有技术所不能解决的。如用于管道的材料,现在所使用的管道多为球墨铸铁管、PE管道、钢管、ABS管道、PPR管道等,这些材料性能优良,已经逐渐取代传统的灰口铸铁管道,但是在新老管道的对接上却问题重重,如有的老管道已经严重腐蚀,甚至部分区域的供水功能已经完全瘫痪,但是各管道的型号不对口给抢修工作带来了不少的麻烦。此外由于城市建设脚步的发展,在原有的管道上方有了新的建设规划,原有的管网系统不能满足建设需求,就需要拆除重建,这无疑是增加了财政投入,所以在设计时就必须将这些基本要求考虑在内。 2 影响供水管网漏损主要因素 2.1设计因素 2.1.1管网埋深 在城市供水管网埋设时,存在由于管网埋深把握不住而造成供水管网出现漏损的问题。一方面,管网埋深太浅很容易使接口发生松动跑水问题。如果管网埋得过深,经过一段时间就会发生爆管,增加了查找漏点的难度,另外还会致使由于挖掘过度的地方发生塌方事故。 2.1.2预留管 从多年实践来看,预留管方面存在的主要问题是在穿越市政道路(公路)路面或河道(沟渠)、铁道等障碍物前面是否有控制阀门,如果管道出现漏水,就应当关闭掉市政管道上的阀门,这就会出现大面积停水现象。另外由于维修比较困难,耗时偏长,致使漏损程度增加。政府对水管的铺设位置是有要求的,所以供水公司有时候不得不将水管铺设在排水沟里,不过水管通常都是铺设在排水沟的最顶部,防止排水沟里面的污水对水管质量造成影响,而且还能方便维修人员对水管的检修工作。否则,一旦漏水,将难以发现从而导致巨大漏损。 2.2施工因素 2.2.1地基与回填土的处理 在对城市供水管网漏损原因调查分析发现,导致供水管网漏损最主要的原因是地基下沉以及基础回填土达不到标准要求而导致的。简单的城市自来水供水施工建设当中,要把握好回填入坑的土质稀疏问题,尤其要控制好地基较软的土层施工,一不小心就会发生爆管与漏水的问题。一方面由于软土地质,导致了原有的地面标高较低,为了达到城市用地标高的标准要求,需要进行2-3m的回填土来进行填高。如此一来,回填土就成为大部分管道的敷设场地,甚至有很多将管道敷设在软土层内的,从管网受到软土地基的影响而导致漏损的出现。包括承插口的橡胶圈被挤出;打扣出现松脱;阀门的法兰出现被拉裂的现象。 2.2.2管道敷设过程中的原因 在铺设管道的时候,如果没有按照作业规范操作也很容易导致漏损,当接口质量不合格的时候,承插口会有一些很大的间隙,这也会出现渗漏现象。同时橡胶圈位置不正确,没有合理的填料配比,打口之后没有进行保湿养护以及钢管焊缝质量达不到标准要求等,都会导致供水管网的接口漏水问题。另一方面是在供水管网施工过程过于盲目,事先没有对供水管网的情况进行调查勘探,从而导致在施工过程中将供水管网挖爆以及钻爆等现象的出现。除此之外,没有做好管道的防腐处理,从而导致由于管道被腐蚀穿孔引起的漏损。 3 供水管网漏损控制措施 3.1优化管网设计 恰当的设计能保证各管段的水压、流速、流量等技术参数经常在一个安全的范围内,又能使输水能力为最佳状态。尽量避免它的持续高压及压力急剧变化造成的损害。同时,加强管网的巡检监测,主动做好养护工作。定期通过行之有效的方式对管网的水压、流速的监测是监视其运行情况的一个基本手段。利用这种监视手段能够全面了解管网系统状态是否正常和水流去向、水压高低等,对管网的设计、技改和事故防范等具有一定的参考价值,并确保系统的正常运行,。 3.2规范管道施工制度 要严格执行管道施工安装规范的有关规定,按设计图纸施工,防止出现交叉施工引起的管道及地基破坏,将管路基本治理任务做好,管路基础必须要平坦,其四周不允许出现硬块或是尖锐的物体,碰到软地基的时候应该回填沙石分层压实;礅座的背面一定要后紧邻原状土,如果出现缝隙应该使用同样的质料进行填实;回填土一定要压实,紧实度需达到95%之上,行车道路一定要回填砂石,在进行将土重新填入过程中不允许从一边侧边冲压管道。认真执行材料的验收、查验制度,管路在搬送、堆放过程中需依照标准实行,钢管还有钢制件依照规定严格做好防腐。将管路的试压工作做好,认真依照验收章程实行,严格做好管路施工竣工图的绘制,实时存档以备查验,利于管网维护、修复和管理。 3.3加强施工质量管理 加强供水管道的施工质量管理,一是需解决好管路基础。第一要确保管路基础的平坦,让管路附近的硬块展开治理,若处于地理位置属于软土地质,应该实行沙石层的分层回填压实。支墩必须和原状土紧密贴合,如果出现空隙的,需要利用相同的材料进行缝隙的填实。另一方面需要加强对原材料的检查以及验收。在运输管道的过程中,要严格遵守运输以及存放规范要求来进行。同时钢管以及钢制件必须要根据相关规定进行内外的防腐处理。除此之外,还要进行供水管道及其试水试压工作。在供水管道施工完毕之后,严格根据验收标准来实行验收,提高施工质量。

艾三维BIM分享:Bentley市政给排水管网水力模型解决方案

Bentley市政给排水基础设施BIM应用 前景 水是人类生活不可或缺的部分,给排水从始至终贯穿人们生活的每一个角落,从古时大禹治水到如今南水北调等等,无一不体现市政给排水基础设施的重要性,随着计算机软件技术的不断发展,传统的给排水解决方案已经无法满足现阶段以及未来工程技术的要求,随着国内外建筑行业对于BIM应用的全面协同发展,给排水即将迎来新的行业升级,全新的市政给排水基础设施的解决方案将更加智能化,更加精确的设计、模拟、分析市政给排水真实的情况,帮助用户管理给排水基础设施的生命周期。 给排水基础设施解决方案以建立和管理给排水基础设施生命周期为中心。构建、设计和运营用于提供饮用水的原水输送、处理和配送系统,或用于收集、输送污水和雨水径流进行处理的排水系统。集规划、设计、建模和分析网络为一体的解决方案将给用户建造更加出色的输配水系统;解决方案还将搭载运营建模、GIS、资产性能和资产生命周期管理等各种功

能,为用户提供漏损管理、能耗管理、资产维护、投资优先级等预测分析,帮助用户管理整个城市给排水生命周期做出更明智的决策! 新的市政给排水基础设施BIM解决方案解决了传统解决方案无法避免的缺漏,极大的扩展了其解决范围,让高新技术融入其中,使给排水生命周期更趋于智能化、系统化,同时顺应国家对建筑行业发展和改革的大趋势。 Bentley市政给排水基础设施产品整体解决方案 海思德(Haestad)是美国目前从事水资源与给排水工程专业软件开发研究最大的专业团队。海思德创立于 1979 年。其全球总部位于美国康涅狄克州的 Watertown 市。经过将近 30 年的努力,海思德已经拥有 130 000 多个用户,遍布 170 个国家,用户既有大型自来水公司和政府机构,也有小型的市政咨询公司。它专注于提供市政给排水及水利、水文专业模型软件、服务、教育、培训及专业图书等服务。 2004年8月,Haestad并入世界领先的建筑、工程和运营(AEC)软件开发商Bentley 系统公司,为水资源领域提供了全新的给排水BIM解决方案。 给水系统解决方案 WaterCAD/WaterGEMS是一款综合性强和功能性齐全的给水系统设计建模分析软件,为用户充分分析了解给水系统状况、发现潜在问题并提供最佳解决方案,从给水管网压力和需求的基础分析,到水资源流失和消防研究,从了解和预防瞬态问题到确保水质,从能源管理到应急响应,涵盖给水基础设施管理生命周期各个方面。 在功能的应用上,有以下特点:

水力模型在海宁供水管网运行管理中的应用

水力模型在海宁供水管网运行管理中的应用 摘要:供水管网水力模型在供水企业中日益得到重视和应用。海宁自来水有限公司建立供水管网水力模型,利用水力模型实现区块化管理,降低漏失率、降低产销差、改善水质、节能降耗、提高供水安全可靠性;在线实时监控供水管网水量、压力和水质情况;发生事故时,能够及时制定应急方案;提出规划改造和优化调度方案等,可有效的提高管网管理的科学性、安全性和经济性,避免了盲目性。从而,实现“数字化”供水和“智能化”水务。 关键词:供水管网水力模型区块化管理模型应用在线实时监控 1前言 随着海宁市供水规模的扩大和供水安全要求的提高,供水企业需要全面掌握和分析供水管网的运行状态,这样对供水系统的管理工作提出了新的要求。近年来,供水企业管理水平日益提高、科技投入的力度日益增强、企业信息化的建设日益成熟。海宁自来水有限公司提出“数字供水”概念,建成了数字化供水系统,全面应用于生产、经营、服务工作。“数字化”供水搭建信息技术平台,打造“智能水务”,实现科技全方位支撑运营服务。水务建立营业一体化平台、供水管网地理信息系统、供水设施综合监测系统和供水管网水力模型系统。“十二五”计划提出:降低漏损率,降低产销差,节能降耗,提高供水管网安全可靠性。建立供水管网水力模型是管网优化设计和运行工况分析重要的手段之一,有效地提高供水系统的科学化管理水平,提高供水系统的运行稳定性、可靠性,为水务带来良好的经济效益和社会效益。 2海宁市供水现状 海宁市地处长江中下流域,四季分明,气候温和。全市共有两座水厂,现有供水计能力30万m3/d,供水面积668平方公里,服务人口约80万。全市DN75mm 以上的管道长度为1075km,管材以球墨铸铁、铸铁、钢、PE等为主。 3水力模型项目前期调研 上海、深圳、佛山、天津等城市已经建立供水管网水力模型,并将其成功的应用于供水系统生产管理中。如,管网运行管理、水厂优化调度、规划改扩建等,

供水管网漏损控制(城市供水管网漏损监测系统)

供水管网漏损控制、城市供水管网漏损监测系统 一、系统概述 供水管网漏损控制(城市供水管网漏损监测系统)是破解供水企业发展难题,降低管网漏损率和产销差率的有效手段。 供水管网漏损控制(城市供水管网漏损监测系统)通过对各DMA(独立计量区域)内的流量和压力节点实施远程实时监测,既可及时发现管网供水异常,又可测算出区域的漏损情况、并辅助查找漏点,有效降低管网漏损率和产销差率。 二、系统构成 供水管网漏损控制(城市供水管网漏损监测系统)示意图 区域流出节点 区域流入节点 关键节点M 关键节点N 监控中心 手机 APP 服务器

三、系统功能 在线监测重要节点的实时流量、压力,科学制订并执行调度方案,使管网流量、水压平稳运行。 及时发现DMA中的流量和压力变化,识别出发生爆管的可能性。根据预判信息第一时间发布管网水量、水压调度指令和阀门远程控制要求,并迅速采取排查和检漏措施。 应用夜间最小流量原理,自动判断、分析各DMA是否泄漏以及当前泄漏水平,为制定检漏方案提供依据。 通过对各区域内流入、流出和实际销售水量的定期分析,有效统计各分区内的供水量、需水量、漏失量等数据,核算产销差。 结合管网长期运行数据,在确保充分、有效满足用户需求的前提下,适当降低并逐步确立常设供水压力,既可降低当前的泄漏水平,又可减少老化管网的爆管几率。 对各监测点的水表口径和实际用水量进行智能分析,综合判断当前水表是否匹配,并给出配表的合理建议。 通过DATA86供水管网漏损控制(城市供水管网漏损监测系统)长期的监测、分析,可掌握各区域的用水规律,为水量分配、管网改造提供基础数据。

四、软件界面 供水管网漏损控制(城市供水管网漏损监测系统)软件界面

基于管网水力模型的独立计量分区优化

118  给水排水 Vol 134 No 13 2008 基于管网水力模型的独立计量分区优化 徐 强1,2 陈求稳1 刘锐平1 顾军农3 (1中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085; 2中国科学院研究生院,北京 100049;3北京市自来水集团有限公司第九水厂,北京 100031) 摘要 管网漏失和水质稳定性是影响供水安全的重要问题,科学合理的独立计量分区(Discrete Metering Area ,DMA )管理,可以辅助漏失点定位,控制二次污染。根据北京市某区实际监测数据,开发了供水管网水力水质模型,并应用建立的模型针对该区分析了不同DMA 方案的可行性,确定了优化的DMA 模式。 关键词 给水管网 DMA 管理 管网模型 方案优化 Optimization of discrete metering area scheme by pipeline net work model Xu Qiang 1,2,Chen Qiuwen 1,Liu Ruiping 1,Gu J unnong 3 (1.S t ate Key L aboratory of U rban and Regional Ecolog y ,Research Center f or Eco 2Envi ronment al S ciences ,Chi nese A cadem y of S ciences ,B ei j i n g 100085,Chi na;2.Gra d uate U ni versit y of Chi nese A cadem y of S ciences ,B ei j i ng 100049,Chi na; 3.N o.9W aterw orks ,B ei j i n g W ater S u p pl y Grou p Co.,L t d.,B ei j i n g 100031,Chi na ) Abstract :The leakage and water quality stability in pipeline are important issues to water supply.It is proved that discrete metering area (DMA )is a practical and effective method to detect leakage.Besides ,DMA is also useful to reduce recontamination of water in pipes.This study investigated the water pressure changes in a pipe network of an area in Beijing.Basing on the analyses of field monitoring data ,a numerical network hydraulics model was developed.The model was then applied to study t he possibilities of different DMA scenario s.According to t he simulation result s ,implementability and cost ,an optimized DMA scheme was finally suggested. K eyw ords :Water dist ribution system ;DMA planning ;Network model ;Scenario optimization 世界范围内管网平均漏失率约为17%,我国的 管网漏失率则高达25%[1]。管网漏失不仅浪费了宝贵的水资源,也带来重大的经济损失[2]。及时发现管网漏失,并采取有效的运行管理措施,能够提高供水可靠性并减少漏失。但是漏失检测和漏点定位一直以来是一项非常困难而繁琐的工作[3,4]。实践证明通过科学合理的独立计量分区(Discrete Metering Area ,DMA )管理,可以及时发现管网漏失和爆管等问题,辅助漏失点快速定位,还能有效控制二次污染,保障管网输配水水质。欧美国家已针对供水管网漏失控制出版了专业手册,其中就有很 大的篇幅涉及分区管理的原理、规划思想及实 例[5,6],近年来,国内也有一些研究[7,8]。但是DMA 模式意味着“环状管网—枝状管理”,实施后可能对用水区的供水稳定性和安全带来影响。1 管网水力模型本研究以EPAN ET 模型为参考,开发了基于节点法的管网恒定流模型,其基本方程包括连续性方程和能量方程[9],其中连续性方程是指从任一节点流出和流入的流量,其代数和等于零;能量方程指在管网的任一闭合环内,各管段的水头损失代数和等于零。此外, 进入管网的总流量等于所有节点流

城镇供水管网漏损控制及评定标准规定

中华人民共和国行业标准 城镇供水管网漏损控制及评定标准 Standard for water loss control and assessment of urban water distribution system CJJ 92-2016 批准部门:中华人民共和国住房和城乡建设部 施行日期:2017年3月1日 中华人民共和国住房和城乡建设部公告 第1303号 住房和城乡建设部关于发布行业标准《城镇供水管网漏损控制及评定标准》的公告现批准《城镇供水管网漏损控制及评定标准》为行业标准,编号为CJJ 92-2016,自2017年3月1日起实施。其中,第3.0.4、4.4.8、4.5.6条为强制性条文,必须严格执行。原《城市供水管网漏损控制及评定标准》CJJ 92-2002同时废止。 本标准由我部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国住房和城乡建设部 2016年9月5日

前言 根据住房和城乡建设部《关于印发(2014年工程建设标准规范制订、修订计划)的通知》(建标[2013]169号)的要求,标准编制组经广泛调查研究,认真总结实践经验,参考国际标准和国外先进标准,并在广泛征求意见的基础上,修订了本标准。 本标准的主要技术内容是:1.总则;2.术语;3.基本规定;4.漏损控制;5.评定。 本标准修订的主要技术内容是:1.名称改为《城镇供水管网漏损控制及评定标准》;2.章节设置作了调整,修订了管网漏损的基本概念、评定指标、水量统计、指标计算和评定标准;3.增加了漏损水量分析、漏水管理、分区管理、压力调控、计量损失和其他损失控制等方面内容;4.删除了“漏水检测方法”的内容。 本标准中以黑体字标志的条文为强制性条文,必须严格执行。 本标准由住房和城乡建设部负责管理和对强制性条文的解释,由中国城镇供水排水协会负责具体技术内容的解释。在执行过程中如有意见或建议,请寄送中国城镇供水排水协会(地址:北京市海淀区三里河路9号;邮编:100835)。 本标准主编单位:中国城镇供水排水协会 北京市自来水集团有限责任公司 本标准参编单位:北京工业大学建筑工程学院 中国科学院生态环境研究中心 中国城市建设研究院有限公司 同济大学环境科学与工程学院 上海城投水务(集团)有限公司 天津市自来水集团有限公司

城市供水管网漏损控制及评定标准CJJ92

城市供水管网漏损控制及评定 标准 CJJ92–2002 Standard for leakage control and assessment of urban water supply distribution system 中华人民共和国建设部公告第59号(2002年9月16日)总则 1.为加强城市供水管网漏损控制,统一评定标准,合理利用水资源,提高企业管理水平,降低城市供水成本,保证城市供水压力,推动管网改造工作,制定本标准。 2.本标准适用于城市供水管网的漏损控制及评定。 3.在城市供水管网漏损控制、评定及管网改造工作中,除应符合本标准规定外,尚应符合国家现行有关强制性标准的规定。 术语 1.管网distribution system 出厂水后的干管至用户水表之间的所有管道及其附属设备和用户水表的总称。 2.生产运营用水consumption for industrial and commercial use 在城市范围内生产、运营的农、林、牧、渔业、工业、建筑业、交通运输业等单位在生产、运营过程中的用水。 3.公共服务用水consumption for public use 为城市社会公共生活服务的用水。包括行政、事业单位、部队营区、商业和餐饮业以及其他社会服务业等行业的用水。 4.居民家庭用水consumption in households 城市范围内所有居民家庭的日常生活用水。包括城市居民、公共供水站用水等。 5.消防及其他特殊用水consumption for fire and special use 城市消防以及除生产运营、公共服务、居民家庭用水范围以外的各种特殊用水。包括消防用水、深井回灌用水、管道冲洗用水等。 6.售水量water accounted for 收费供应的水量。包括生产运营用水、公共服务用水、居民家庭用水以及其他计量用水。 7.免费供水量consumption for free

城市供水调度工作中供水管网水力模型系统的应用

城市供水调度工作中供水管网水力模型系统的应用 发表时间:2018-05-17T15:04:41.630Z 来源:《基层建设》2018年第3期作者:张远军 [导读] 摘要:伴随着城市水利项目的发展,供水管网水力模型系统的监督管理成为了城市建设中的重点,只有建构良好且完整的水力模型系统应用机制,才能更好地优化供水调度工作质量。 珠海水务环境控股集团有限公司广东珠海 519000 摘要:伴随着城市水利项目的发展,供水管网水力模型系统的监督管理成为了城市建设中的重点,只有建构良好且完整的水力模型系统应用机制,才能更好地优化供水调度工作质量。本文结合案例,对城市供水调度工作中供水管网水力模型系统发展现状进行了简要分析,并集中阐释了系统应用和后续管理的建议,以供参考。 关键词:城市;供水调度;供水管网;水力模型系统;应用 行过程中的供水水压、水量以及水质不受到外界影响,在实际操作工作开始前,要对边界阀门进行操作处理,利用模型模拟完全关闭以及打开的工况参数,以保证供水调度工作运行效率。 (一)模型录入 在供水管网水力模型系统应用体系中,数据录入是最基本的要求,要对模型中的相关数据进行定位处理,整合其实际运行效率,结合阀门的阀门卡位置对GIS系统中的坐标予以判定,建立基础性定位模型,见图三。相关部门结合工况运行数据和相关信息,维护数据更新和数据处理效果,尤其是对水泵开关以及水池水位等基础信息进行整合以及处理,从而完善数据管理结构[4]。 图三:模型中阀门位置示意图 (二)调度工况 要对模型进行处理,结合不同阀门开关的实际状态进行24小时模拟,结合实际情况和信息的动态收集,确保阀门打开以及阀门关闭的早晚时间都能被有效模拟出来,从而对阀门两侧压力差予以测定和分析,整合后将平均过流量数据汇总成表,表格中涉及的参数包括口径(mm)、开启过流量(m3/h)、关闭时压力差(m)、流向以及有无流量正负现象。在对24小时模拟压力分布图以及模拟数据表进行全面分析后,就能得出相应的模拟结果,该地区阀门在开启后,部分地区边界压力会下降2m到2.5m,压力影响范围也有所扩大,流量相较于阀门状态时的变化并不是十分明显,尤其是对边界区域的影响较小。综上所述,只有有效控制阀门开启状态和速度,才能从根本上保证水质的平稳性。 (三)后续评估 在工程体系建立后,要对实时记录进行分析,尤其要建立模型运算数据和实测数据之间的对比分析,从而保证评估效果符合预期。对其模型模拟曲线进行处理,能推测出相应压力和流量的变化率,在工程项目运行后,现场的压力流测量数据和模拟数据较为一致,无论是压力参数、流量数据还是流向都大致能满足模型模拟数据,具有一定的研究价值[5]。 四、城市供水调度工作中供水管网水力模型系统反思 在对相关情况进行系统化分析后,要整合有效的监督管理工作,充分发挥供水管网水力模型系统的价值和优势[6]。建立相关系统就是为了有效整合供水调度和生产资源,提高工程操作管理水平,避免系统运行过程中调度操作和决策的盲目性,借助水力模型的应用和管

相关主题
文本预览
相关文档 最新文档