当前位置:文档之家› 利用blade风力发电机组功率曲线计算方法

利用blade风力发电机组功率曲线计算方法

利用blade风力发电机组功率曲线计算方法
利用blade风力发电机组功率曲线计算方法

利用blade风力发电机组功率曲线计算方法以及流程

目录

1、概述 (1)

2. 特性取得定方法 (1)

2.1 空气动力参数确定 (1)

2.2 整机摩擦系数 (2)

2.3 齿轮箱效率曲线 (2)

2.4 发电机效率曲线 (3)

2.5 变流器效率曲线 (3)

3. 生成功率曲线 (3)

3.1 仿真计算风机功率曲线 (4)

3.1.1 风机叶片数据包 (4)

3.1.2 风机未并网用电量 (4)

3.1.3 风机工作点损耗 (4)

3.1.4 确定最佳控制系数Kopt (4)

3.2 计算功率曲线 (7)

3.3 现场测试 (9)

4. 功率曲线数据提供管理 (9)

空调制冷量和额定功率

轮回之殇耗电量因此1

器改变在不同使用状态下的输入功率,使它在一定的区间内波动,从而达到节能的目的。补充: 看错了。。。 空调的制冷量和功率的区别(空调小知识) 平常我们很容易将空调制冷量与耗电功率弄混,因为两者都是以千瓦为单位。 本文从原理入手,介绍两者区别。 当你问一个家庭用户,你所用空调的用电功率是多大时,他可能答比如“5千 瓦”,实际上家用哪有这么大功率呀?显然,他说的是制冷量,而耗电功率仅 约2千瓦,这是怎么回事呢? 空调的制冷量,实际上就是从使用的室内“搬出去”的热量,通过转移热量而达 到降温效果。 热量过去常用卡(cal)千卡(kcaI)表示,千卡也称大卡。现在热量统一用功 率表示,用“千瓦”(kw)。他们之间什么关系呢? 1千瓦=860千卡/小时(精确一点为859.85千卡/小时) 此外,我们还应把它与电功率建立起来联系,才能回答前面提出的问题。我们 知道: 电压的单位是:1伏(V)=1焦耳/库伦。 电流的单位是:1安(A)=1库伦/秒。 功率的单位是:单位功率=单位电压×单位电流=1伏×1安=(1焦耳/库伦) ×(1库伦/秒)=1焦耳/秒。表示每秒做功的速率。 而我们的功率一般是以小时为单位时间,并且功率单位为瓦(w)。那么我们 将1焦耳/秒的分子分母同乘以3600,得:

1瓦=(1焦耳×3600)/(1秒×3600)=3600焦耳/小时。 1千瓦=3600千焦/小时 现在要和热量建立联系。我们知道,热的功当量是: 1焦耳=0.24卡(精确一点是0.2389卡)。 1千焦=2.4×10-4千卡。 从而热量的功率为: 1千瓦=(3600千焦×2.389×10-4千卡)/小时=860千卡/小时。 或:1度电=1千瓦·小时=860千卡 那么本文开头用户所说的5千瓦相当于多少热功率呢?就是: 5千瓦=5×860千卡/小时=4300千卡/小时。 我们了解了电功率和热的关系,由铭牌或说明书上制冷量就可以计算出热大卡。如上面用户所说的机子,我们查一下空调的说明书或铭牌,他所说的应是制冷量5千瓦,查制冷量5千瓦的空调,其耗电量仅为2千瓦左右。 制冷量5千瓦的空调,其耗电量仅为2千瓦左右,这决定于“COP”也就是“能效比”或“性能系数” 。 能效比公式为: 能效比=制冷量/制冷运行所消耗的功率 注意,冬天空调制热时的公式与制冷同。

风力发电机组载荷计算

北京鉴衡认证中心 风力发电机组载荷计算 北京鉴衡认证中心 发言人:韩炜 2008-4-14 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 内容概要 1. 风力发电机组载荷计算目的 2. 风力发电机组载荷特点 3. 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷计算目的 ? 对于设计:提供强度分析载荷依据,确保各部 件承载在设计极限内;优化运行载荷,提高机 组可靠性。 ? 对于认证:确保载荷计算应用了适当的方法, 工况假定全面且符合标准要求,结果真实可靠。w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷特点 ? 风 ? 空气动力学 ? 叶片动力学 ? 控制 ? 传动系统动力学 ? 电力系统 ? 塔架动力学 ? 基础 w w w .s i m o s o l a r .c o m

风力发电机组载荷计算标准 ? 陆上风机:GB18451.1(2001);IEC61400-1(1999, 2005);GL Guideline2003;… ? 海上风机:IEC61400-3;GL Guideline (Offshore) 2005? DNV- OS-J101 … 风力发电机组载荷计算 w w w. s i m o s o l a r.c o m 北京鉴衡认证中心

北京鉴衡认证中心 风力发电机组设计等级 (IEC61400-1:1999) 级别 Ⅰ Ⅱ Ⅲ Ⅳ S V ref [m/s] 50 42.5 37.5 30 V ave [m/s] 10 8.5 7.5 6 A I 15 [-] 0.18 0.18 0.18 0.18 a [-] 2 2 2 2 B I 15 [-] 0.16 0.16 0.16 0.16 a [-] 3 3 3 3 由设计 者规定 各参数 注: V ref :轮毂处参考风速 V ave :轮毂处平均风速 I 15:风速15m/s时的湍流强度 a: 斜度参数 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

1KW风力发电机

报价单 日期:2015年01月06日 本数据表仅供参考,如有更改恕不通知。我司保留本参数单的权利,未经授权不得转载。 一、交货期:收到需方货款后3个工作日交货。 二、交货地点:需方物流公司。 三、运输及费用承担:汽运,运费由需方承担。 河北润联机械设备有限公司 400W 24V小/微型风力发电机 型号及参数表 MODEL EW-400 额定功率(W)400

额定电压(DCV)12/24 额定电流(DCA)33.3/16.7 风轮直径(m) 1.5 风叶材料玻璃增强聚丙烯材料旋转方向(顺风查看)顺时针 启动风速(m/s) 2.5 额定风速(m/s)9.6 安全风速(m/s)35 发电机重量(kg)16 发电机类型永磁同步发电机 风叶数量 3 迎风方式上风式

1KW风力发电机 产片特点: 1、起动风速低,风能利用率高;体积小,外型美观、运行振动低。 2、安装采用人性化设计,方便设备安装、维护和检修。 3、风轮叶片采用新工艺经精密注射成型,配以优化的气动外形设计和结构设计,风能利用系数高,增加了年发电量。 4、发电机采用专利技术的永磁转子交流发电机,配以特殊的定子设计,有效地降低发电机的阻转矩,同

时使风轮与发电机具有更为良好的匹配特性,机组运行的可靠性。 5、采用最大功率跟踪智能型微处理器控制,有效调节电流电压。技术参数: 功率1000W 风轮直径(blade diameter) 2.8m 叶片材质(material of the blades)增强玻璃钢Fiberglass-Reinforced Plastic 额定风速(rated speed) 9m/s 额定功率(rated Power) 1000W 最大功率(max Power) 1500w 最大启动扭力矩n/m(Max start torsional moment n/m) <1.5 输出电压220V 启动风速3(m/s) 额定转速(转/分)450 工作风速 3.0-20(m/s) 安全风速40(m/s) 控制器型号48V60A 发电机类型三相交流永磁 3-phase AC PM 主体重量75kg 建议配套蓄电池12v150AH四块风能发电机

空调功率计算方法

空调功率计算方法 我们现在讲空调的大小主要用匹来表示:1匹、1.5匹。匹是指空调的消耗功率,平时我们所说的空调 是多少匹,是根据空调消耗的功率算岀空调的制冷量,而市场上常用匹来描述空调器制冷量的大小。这二者之间的换算关系为:1匹的制冷量大约为2000大卡,换算成国际单位瓦应乘以 1.162,这样,1 匹制冷量应为2000大卡X1.162 = 2324W。这里的W (瓦)即表示制冷量,而1.5匹的制冷量应为2000 大卡X1.5 X1.162 = 3486W。 通常情况下,家庭普通房间每平方米所需的制冷量为115-145W ,客厅、饭厅每平方米所需的制冷量为 145-175W 。比如,某家庭客厅使用面积为15平方米,若按每平方米所需制冷量160W 考虑,则所 需空调制冷量为:160VX 15 = 2400W。这样,就可根据所需2400W 的制冷量对应选购具有2500W 制冷量的KF-25GW型分体壁挂式空调器。所谓能效比也称性能系数,就是一台空调器的制冷量与其 耗电功率的比值。通常,空调器的能效比接近3或大于3为佳,就属于节能型空调器。 空调器的制冷量/制热量: 1、空调器在进行制冷运转时,在单位时间内,从密闭房间内排岀的热量称为空调器的制冷量。 2、空调器在进行制热运转时,在单位时间内从密闭房间内释放岀的热量称为空调器的制热量。 3、每平方米空调需要150W 制冷量:从而推出房间面积使用空调的计算公式: 制冷量/150W= 房间的面积;房间的面积+2=适应最大面积;房间的面积-2=适应最小面积 例如:KFR-2601GW/BP 制冷量:2600W 2600/150=17 17+2=19 17-2=15 所以该空调适用面 积为:15-19就的房间,空调的匹数也由此而来。 根据制冷量给空调分类: 1P : 2300W-2500W 1.25P:2600W-2800W 1.5P : 3000W-3600W 2P:4000W-5200W 2.5P:5800W-6200W 3P:6500W-7200W

我国大型风电机组技术发展情况

截至2013年底,国内约30家大型风电机组整机制造企业已向国内外风电市场提供了合格的大型风电机组整机产品。2013年在我国风电场建设中,国产风电机组的市场占有率达到94%,大幅超过外资企业。其中,在国内新增总装机占比中,金风科技的份额最大,占23.31%;联合动力第二,占9.25%;广东明阳第三,占7.99%。通过对我国大型风电机组发展情况的分析,归纳出我国大型风电机组技术主要呈现如下特点。 1 水平轴风电机组是主流 水平轴风电机组的应用已近100年。由于水平轴风电机组的风轮具有风能转换效率高、传动轴较短、控制和制动技术成熟、制造成本较低、并网技术可靠等优点,近年来大型并网水平轴风电机组得到快速发展,使大型双馈式和直驱永磁式等水平轴风电机组成为国内大型风电场建设所需的主流机型,并在国内风电场建设中占到100%的市场份额。 2 垂直轴风电机组有所发展 大型垂直轴风电机组因具有全风向对风、变速装置及发电机可置于风轮下方或地面等优点。近年来相关研究和开发也在不断进行并取得一定进展,单机试验示范正在进行,在美国已有大型垂直轴风电机组在风电场运行,但在我国还无垂直轴风电机组产品在风电场成功应用的先例。 3 风电机组单机容量持续增大 近年来,国内风电市场中风电机组的单机容 我国大型风电机组技术发展情况 中国农业机械化科学研究院 ■ 沈德昌 量持续增大,2012年新安装机组的平均单机容量达1.65 MW , 2013年为1.73 MW 。2013年我国风电场安装的最大风电机组为6 MW 。 随着单机容量不断增大和利用效率的提高,国内主流机型已从2005年的750~850 kW 增加到2014年的1.5~2.5 MW 。 近年来,海上风电场的开发进一步加快了大容量风电机组的发展。我国华锐风电的3 MW 海上风电机组已在海上风电场批量应用。3.6、4、5、5.5、6和6.5 MW 的海上风电机组已陆续下线或投入试运行。目前,华锐、金风、联合动力、湖南湘电、重庆海装、东方汽轮机、广东明阳和太原重工等公司都已研制出5~6.5 MW 的大容量海上风电机组产品。 4 变桨变速功率调节技术得到全面应用 由于变桨距功率调节方式具有载荷控制平稳、安全高效等优点,近年在大型风电机组上得到广泛应用。结合变桨距技术的应用及电力电子技术的发展,大多数风电机组制造厂商采用了变速恒频技术,并开发出变桨变速风电机组,在风能转换效率上有了进一步完善和提高。从2012年起,国内定桨距并网风电机组已停止生产,在全国安装的风电机组全部采用了变桨变速恒频技术。2 MW 以上的风电机组大多采用3个独立的电控调桨机构,通过3组变速电机和减速箱对桨叶分别进行闭环控制。 5 双馈异步发电技术仍占主导地位 外资企业如丹麦V estas 公司、西班牙Gamesa 收稿日期:2014-11-27 通信作者:沈德昌 ,男,研究员,中国农业机械化科学研究院。shendc06@https://www.doczj.com/doc/894677008.html,

风力发电机介绍

风能发电机 一风力机的分类 风力机按照风轮轴所在的位置分为:水平轴风力机HAWT (Horizontal-axis wind turbines)和垂直轴风力机V AWT (V ertical-axis wind turbines),如图1所示。 图1 两种类型的风力机 这两种类型的风力机各有优缺点: 垂直轴风力机V AWT的优点有:(1) 无需偏航对风系统;(2) 设备在地面,安装维护方便;(3) 制造工艺简单,造价低。其缺点为:(1) 难以自启动;(2) 易失速;(3) 风能利用率低。 水平轴风力机HAWT的优点有:(1) 转轮相对较高;(2) 占地面积小;(3) 风能利用率高。其缺点为:(1) 叶片悬臂梁固定,受力大;(2) 设备安装在塔柱顶部,安装维护困难。 其中,水平轴风力机HAWT制作工艺成熟,风能利用率高而被广泛采用。 二风力机的构成 下面以水平轴风力机HAWT为例,介绍风力机的组成。 风力发电机主要由风轮(叶片和轮毂)、机舱、高速轴、低速轴、增速齿轮箱、发电机、调向装置、调速装置、刹车制动装置、塔架、避雷装置等组成,如图2所示。 风力机的组成分为三部分: 1. 旋转部件主要为风轮,将风能转化为低速旋转的机械能。 2. 发电部件风力机的核心部件,包括发电机、调向装置、调速装置、高速轴、低 速轴、增速齿轮箱。通过增速齿轮箱将低速旋转变成合适的高速旋转。 3. 支撑部件包括塔架和旋转关节。

图2风力机的组成 三风力机的工作原理 风力发电是将风能转换为机械能,再由机械能转换为电能,所以,风力资源的好坏将是影响风力发电成本的最重要的因素。风速会随着高度的增加而变大,如图3所示。 图3 风速与高度的关系 风力发电机出力受风速变化的影响,图4是风机的典型出力曲线图。 图4 风力机的典型出力曲线

空调设备负荷的电功率计算方法

空调设备负荷的电功率计算 2008-07-04 13:04:24| 分类:法规文件| 标签:|字号大中小订阅 住宅内空调设备负荷的电功率计算 从事电气设计的工程技术人员,需要对室内空调的用电负荷进行估算。这是一个有经验的电气工程师应该具有的能力。这需要了解一些相关的基础技术资料。 影响室内消耗冷负荷的因素很多,有人体散热、建筑物的吸收和向外传导、照明灯具的发热、新风 的吸收和排出室外的空气带走冷量等。 部分场所空调冷负荷的估算指标 房间类型室内人数建筑负荷人体负荷照明负荷新风量新风负荷总 负荷 人/m2 W/m2 W/m2 W/m2 m3/ 人.h W/m2 W/m2Kcal/m2 公寓住 宅0.10 70.00 14.00 20.00 50.00 54.00 158.00135.88 睡 房0.25 50.00 41.00 50.00 25.00 67.00 208.00178. 88 普通房 间0.10 50.00 14.00 20.00 25.00 36.00 145.00124. 70 客 房0.06 60.00 7.00 20.00 50.00 40.00 177.0015 2.22 饭厅客 厅0.50 35.00 70.00 20.00 25.00 40.00 190.00163. 40 6 酒 吧0.50 35.00 70.00 15.00 25.00 136.00 256.00 220.16 7 咖啡 厅0.50 35.00 70.00 15.00 25.00 136.00 256.002 20.16

8 小卖 部0.20 40.00 31.00 40.00 20.00 50.00 181.0015 6.66 9 商 店0.20 40.00 31.00 40.00 20.00 50.00 181.001 56.66 小型个人办公室 0.10 40.00 14.00 50.00 25.00 40.00 145.00124.70 11 一般办公室 0.20 40.00 28.00 40.00 25.00 45.00 178.00148.78 12 图书阅 览0.20 50.00 28.00 30.00 25.00 60.00 193.00166.00 13 会议 室0.64 60.00 89.00 40.00 25.00 136.00 350.00301 .00 14 商 场 1.00 35.00 140.00 40.00 12.00 136.00 347.002 98.00 二当量计算 1.冷量的单位:冷量(即热量)的单位有焦耳(J)、千焦耳(KJ)、瓦(W)、千瓦(KW);卡 (cal)、千卡(kcal)(大卡) 在标准大气压的状况下,将一千克的水从19.56℃加热到20.5℃所需要的热量定义为一千卡(kcal) 的热量。即1kcal/kg℃或近似等于1kcal/m3℃ 2. 冷量(即热量)的单位的换算: 1W=1J/s=0.238844cal/s 1Wh(电热)=0.86cal 3.电热当量 1KWh=860cal 三制冷机的效能比 制冷效能比η=制冷机的制冷量/制冷机的输入电功率 制热效能比η=制热装置的制热量/制热装置的输入电功率 1.别墅中央空调FWR-20B1,名义制冷量为20.10KW,输入功率为7.0KW;名义制热量为21.80KW,输入功率为6.40KW。压缩机输入功率2x 2.80KW;风侧换热器2x0.19KW;水侧换热器1x0.90KW。求空 调的制冷制热效能比。 已知:名义制冷量20.10KW,输入总功率7.00KW;名义制热量为21.80KW,输入总电功率为6.40KW。

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

空调制冷功率与电功率的关系(详解)

空调制冷量与功率的关系 1、以35的为例与能效比的高低有直接关系 如用一级能效比、以制冷量是3500W的空调的、它的制冷功率只是要输入1020w[瓦],制冷量是3500W除制冷功率1020w=3.43对应是一级能效比数值。 如用五级能效比、以制冷量是3500W的空调的、它的制冷功率只是要输入1340w[瓦]],制冷量是3500W。 冷功率1340w=2.61对应是五级能效比数值。 2、现在能效比分五级:1级=3.4以上2级=3.2 3级=3.0 4=2.8 5级=2.6。 也可以理解为以1级能效比=1度电能生产3400w的制冷量以5级能效比=1度电能生产2600w的制冷量。 空调的制冷量,制冷功率与电功率 空调的“匹”数,是指空调的制冷功率,或者叫制冷量(W),也就是空调的输出功率的能量。制冷功率是制冷量的1.162W,制冷量的单位是大卡。 1匹空调的制冷量大约为2000大卡,换算成制冷功率,乘以1.162W,即2000大卡×1.162=2324(W)(瓦)制冷功率,则1.5匹的应为2000大卡×1.5×1.162=3486(W),根据计算值,大致能判定空调的匹数和制冷功率, 2200W—2300W称为小一匹机,2500W称正一匹机,2600W称大一匹机。2800W的称1.25匹,3200W称小一匹半,3500W称正一匹半, 3600W称大一匹半。4500(W)—5100(W)可称为2匹,或者称小二匹机,或者正二匹机,或者大二匹机。以此类推,各种叫法,均可以。 知道了空调的制冷功率,就是空调的输出功率,我们还需要知道空调的输入功率,就是电功率,知道了电功率才可以选择电线的截面积和保护用的空气断路器,或者叫空开。 电功率是制冷功率除于能效比。能效比是输出功率与输入功率之比的值,称能效比;欧洲的能效标准,空调能效水平分为A、B、C、D、E、F、G共7个级别。其中A级最高,能效比为3.2以上;D级居中,介于2.8~2.6之间;E级以下属于低能效空调。目前我国绝大多数空调处于欧洲E级水平。而在日本国内的空调器的能效比现在一般都在4.0~5.0左右。原来制冷能效比(EER)最高的是一款东芝开利空调,其制冷能效比为6.3。目前,科龙第四代双高效空调以6.65的制冷能效比,刷新了世界最高的空调能效比纪录。据悉,其在科龙实验室测得的能效比最高值已超过7.0。这说明我国的空调行业发展还是颇具潜力的。我们国家的目前的标准是;一级能效比是空调的制冷量,制冷功率与电功率3.4以上,二级是3.2,三级3.0,四级是2.8,五级是2.6 。级别越大能耗越高。目前国家已经规定企业不再允许生产能效比在3.0以下级别的空调,该级别的空调属于淘汰产品。比如;原来的高能耗机,能效比是五级,那么,1匹空调的电功率就是 = 2000×1.162≈2324(W)/2.6≈894(W),如果是现在的一级低能耗机,那么,就是= 2000×1.162≈2324(W)/3.4≈684(W),一级比五级节省电能;894-684=211(W),如果一天制冷工作5小时计算,一个月150h×211W = 31.65度/月。因此,空调选择时,除了选择需要的制冷量,还要根据价格比和能效比选择合理的能效比档次。 电线的截面积选择,建议按照低能耗值选择,根据单相功率计算空调的额定电流,因为,空调有压缩机,风扇等电器均属于电感性电器,因此,按照感性负载计算电流,I=P/U/Cos¢,功率因数Cos¢考虑0.80,那么,I=1000/220/0.80 ≈ 5.68(A),知道了一千瓦电功率的空调机的电流是约5.7安,我们可以通过该数值,求出多少匹空调的电流了,比如,1.5匹空调的电流 I ≈ (1.5×2000×1.162/2.6)×5.7 ≈7.6(A),根据导线截面的安全载流量,1㎜2的铜芯线即可,但是,考虑到线路的机械强度及损耗和穿管敷设的散热效应等情况,建议选择1.5㎜2的铜芯线为最佳选择。

风电场风电机组优化有功功率控制的研究

2017年度申报专业技术职务任职资格 评审答辩论文 题目:风电场风电机组优化有功功率控制的研究 作者姓名:李亮 单位:中核汇能有限公司 申报职称:高级工程师 专业:电气 二Ο一七年六月十二日

摘要 随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下: (1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。 (2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。 (3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。 关键词:风电机组、风电场、有功功率控制、AGC

Abstract With increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows: (1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms. (2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit. (3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified. Keywords:wind turbine, wind farm, active power control

空调的制冷量,制冷功率与电功率

空调的制冷量,制冷功率与电功率 空调的“匹”数,是指空调的制冷功率,或者叫制冷量(W),也就是空调的输出功率的能量。制冷功率是制冷量的1.162W,制冷量的单位是大卡。 1匹空调的制冷量大约为2000大卡,换算成制冷功率,乘以1.162W,即2000大卡×1.162=2324(W)(瓦)制冷功率,则1.5匹的应为2000大卡×1.5×1.162=3486(W),根据计算值,大致能判定空调的匹数和制冷功率, 2200W—2300W称为小一匹机,2500W称正一匹机,2600W称大一匹机。2800W的称1.25匹,3200W称小一匹半,3500W称正一匹半, 3600W称大一匹半。4500(W)—5100(W)可称为2匹,或者称小二匹机,或者正二匹机,或者大二匹机。以此类推,各种叫法,均可以。 知道了空调的制冷功率,就是空调的输出功率,我们还需要知道空调的输入功率,就是电功率,知道了电功率才可以选择电线的截面积和保护用的空气断路器,或者叫空开。 电功率是制冷功率除于能效比。能效比是输出功率与输入功率之比的值,称能效比;欧洲的能效标准,空调能效水平分为A、B、C、D、E、F、G共7个级别。其中A级最高,能效比为3.2以上;D级居中,介于2.8~2.6之间;E级以下属于低能效空调。目前我国绝大多数空调处于欧洲E级水平。而在日本国内的空调器的能效比现在一般都在4.0~5.0左右。原来制冷能效比(EER)最高的是一款东芝开利空调,其制冷能效比为6.3。目前,科龙第四代双高效空调以6.65的制冷能效比,刷新了世界最高的空调能效比纪录。据悉,其在科龙实验室测得的能效比最高值已超过7.0。这说明我国的空调行业发展还是颇具潜力的。我们国家的目前的标准是;一级能效比是

空调设备负荷的电功率计算

住宅内空调设备负荷的电功率计算 从事电气设计的工程技术人员,需要对室内空调的用电负荷进行估算。这是一个有经验的电气工程师应该具有的能力。这需要了解一些相关的基础技术资料。 影响室内消耗冷负荷的因素很多,有人体散热、建筑物的吸收和向外传导、照明灯具的发热、新风的吸收和排出室外的空气带走冷量等。 部分场所空调冷负荷的估算指标 房间类型室内人数建筑负荷人体负荷照明负荷新风量新风负荷总负荷 人/m2 W/m2 W/m2 W/m2 m3/人.h W/m2 W/m2Kcal/m2 公寓住宅0.10 70.00 14.00 20.00 50.00 54.00 158.00135.88 睡房0.25 50.00 41.00 50.00 25.00 67.00 208.00178.88 普通房间0.10 50.00 14.00 20.00 25.00 36.00 145.00124.70

客房0.06 60.00 7.00 20.00 50.00 40.00 177.00152.22 饭厅客厅0.50 35.00 70.00 20.00 25.00 40.00 190.00163.40 6 酒吧0.50 35.00 70.00 15.00 25.00 136.00 256.00220.16 7 咖啡厅0.50 35.00 70.00 15.00 25.00 136.00 256.00220.16 8 小卖部0.20 40.00 31.00 40.00 20.00 50.00 181.00156.66 9 商店0.20 40.00 31.00 40.00 20.00 50.00 181.00156.66 小型个人办公室0.10 40.00 14.00 50.00 25.00 40.00 145.00124.70 11 一般办公室0.20 40.00 28.00 40.00 25.00 45.00 178.00148.78 12 图书阅览0.20 50.00 28.00

风力发电机组气动特性分析与载荷计算

风力发电机组气动特性分析与载荷计算 目录 1前言 (2) 2风轮气动载荷 (2) 2.1 动量理论 (2) 2.1.1 不考虑风轮后尾流旋转 (2) 2.1.2 考虑风轮后尾流旋转 (3) 2.2 叶素理论 (4) 2.3 动量──叶素理论 (4) 2.4 叶片梢部损失和根部损失修正 (6) 2.5 塔影效果 (6) 2.6 偏斜气流修正 (6) 2.7 风剪切 (6) 3风轮气动载荷分析 (7) 3.1周期性气动负载................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3 (10) 4.2载荷情况DLC1.5 (10) 4.3载荷情况DLC1.6 (10) 4.4载荷情况DLC1.7 (11) 4.5载荷情况DLC1.8 (11) 4.6载荷情况DLC6.1 (11)

1 前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2 风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD 等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD 数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S 方程的CFD 方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD 求解N-S 方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1 不考虑风轮后尾流旋转 首先,假设一种简单的理想情况: (1)风轮没有偏航角、倾斜角和锥度角,可简化成一个平面桨盘; (2)风轮叶片旋转时不受到摩擦阻力; (3)风轮流动模型可简化成一个单元流管; (4)风轮前未受扰动的气流静压和风轮后的气流静压相等,即p 1 = p 2; (5)作用在风轮上的推力是均匀的; (6)不考虑风轮后的尾流旋转。 将一维动量方程用于风轮流管,可得到作用在风轮上的轴向力为 ()21V V m T -= (1) 式中 m 为流过风轮的空气流量 T AV m ρ= (2) 于是 ()21V V AV T T -=ρ (3) 而作用在风轮上的轴向力又可写成 () -+-=p p A T (4) 由伯努利方程可得 ++=+p V p V T 222121ρρ (5) -+=+p V p V T 22222ρρ (6) 根据假设,p 1 = p 2,(5)式和(6)式相减可得

风力发电机输出功率曲线图

1000w 1000w 风力发电机输出功率曲线图 风速 m/s3456789101112输出功率 P(w)2065130240390580825110013001380风速 m/s13141516171819202122输出功率 P(w)138013501310125511851095990875735570 1000w 技术参数 风轮直径 (m) 2.8工作电压 (V)DC48V/DC120V Rotor Diameter Working Voltage AC240V

叶片材料增强玻璃钢蓄电池组电压 (V)/容量 (Ah) 12×2=48/200 Materialand number Reinfotced fibber glass×3 Battery voltage/ of the blade capacity (Ah) 额定功率/最大功率 (w) 1000/1400调速方式偏航+电磁 Rated power /maximum power Speed regulation method Tail turning and electric magnet 额定风速 (m/s) 10停车方式手动 Rated rotate speed Step method Brake by hand drag 额定转速 (r/min) 450发电机型式三相交流永磁 Ratde rotate speed Generator style Three phase,permanent magnet 启动风速 (m/s) 3AA支架高度m/质 量 kg 6/85 Startup wind speed AA Tower height/weight (m/kg) 工作风速 (m/s) 2008-03-25质量(不含塔杆) (kg) 85 Working wind speed Sruvived wind speed 安全风速 (m/s) 40AAA支架高度 (m)/质量 (kg) 6/280 Sruvived wind speed AAA Tower eight/weight (m/kg) 1500w

空调的制冷功率与电功率换算

空调的“匹”数,是指空调的制冷功率,或者叫制冷量(W),也就是空调的输出功率的能量。 制冷功率是制冷量的1.162W,制冷量的单位是大卡。 1匹空调的制冷量大约为2000大卡,换算成制冷功率,乘以1.162W,即2000大卡×1.162=2324(W)(瓦)制冷功率,则1.5匹的应为2000大卡×1.5×1.162=3486(W),根据计算值,大致能判定空调的匹数和制冷功率,2200W—2300W称为小一匹机,2500W称正一匹机,2600W 称大一匹机。2800W的称1.25匹,3200W称小一匹半,3500W称正一匹半,3600W称大一匹半。4500(W)—5100(W)可称为2匹,或者称小二匹机,或者正二匹机,或者大二匹机。以此类推,各种叫法,均可以。 知道了空调的制冷功率,就是空调的输出功率,我们还需要知道空调的输入功率,就是电功率,知道了电功率才可以选择电线的截面积和保护用的空气断路器,或者叫空开。 电功率是制冷功率除于能效比。能效比是输出功率与输入功率之比的值,称能效比;欧洲的能效标准,空调能效水平分为A、B、C、D、E、F、G共7个级别。其中A级最高,能效比为3.2以上;D级居中,介于2.8~2.6之间;E级以下属于低能效空调。目前我国绝大多数空调处于欧洲E级水平。而在日本国内的空调器的能效比现在一般都在4.0~5.0左右。原来制冷能效比(EER)最高的是一款东芝开利空调,其制冷能效比为6.3。目前,科龙第四代双高效空调以6.65的制冷能效比,刷新了世界最高的空调能效比纪录。据悉,其在科龙实验室测得的能效比最高值已超过7.0。这说明我国的空调行业发展还是颇具潜力的。我们国家的目前的标准是;一级能效比是3.4以上,二级是3.2,三级3.0,四级是2.8,五级是2.6。级别越大能耗越高。目前国家已经规定企业不再允许生产能效比在3.0以下级别的空调,该级别的空调属于淘汰产品。比如;原来的高能耗机,能效比是五级,那么,1匹空调的电功率就是= 2000×1.162≈2324(W)/2.6≈894(W),如果是现在的一级低能耗机,那么,就是= 2000×1.162≈2324(W)/3.4≈684(W),一级比五级节省电能;894-684=211(W),如果一天制冷工作5小时计算,一个月150h×211W = 31.65度/月。因此,空调选择时,除了选择需要的制冷量,还要根据价格比和能效比选择合理的能效比档次。 电线的截面积选择,建议按照低能耗值选择,根据单相功率计算空调的额定电流,因为,空调有压缩机,风扇等电器均属于电感性电器,因此,按照感性负载计算电流,I=P/U/Cos¢,功率因数Cos¢考虑0.80,那么,I=1000/220/0.80≈5.68(A),知道了一千瓦电功率的空调机的电流是约5.7安,我们可以通过该数值,求出多少匹空调的电流了,比如,1.5匹空调的电流I≈(1.5×2000×1.162/2.6)×5.7≈7.6(A),根据导线截面的安全载流量,1㎜2的铜芯线即可,但是,考虑到线路的机械强度及损耗和穿管敷设的散热效应等情况,建议选择1.5㎜2的铜芯线为最佳选择。 空气断路器的额定容量,是按照空调的额定电流的1.3-1.5倍选择。 通常情况下,家庭普通房间每平方米所需的制冷量为110-150W,客厅、饭厅每平方米所需的制冷量为145-175W。因为,家用电器在工作时也要产生一些热量,这就要消耗部分的制冷量,比如像;电视、电灯、冰箱等每W(瓦)功率要消耗制冷量1(W),门窗的方向也要消耗一定的制冷量,东面窗150W/M2,西面窗280W/ M2,南面窗180W/ M2,北面窗100W/ M2,如果是楼顶及西晒可考虑适当增加制冷量。可根据实际情况估算需要制冷量,还要根据个人对环境温度的感受程度,选择合适的空调机。

风力发电机组标准

风力发电机组标准(外部条件) 作者:中国船级…内容来源:中国船级社点击数:167 更新时 间:2009/4/16 风力发电机组标准(外部条件) 、 中国船级社 一般要求 在风力发电机组的设计中,至少应考虑本节所述的外部条件。 风力发电机组承受环境和电网的影响,其主要体现在载荷、使用寿命和正常运行等方面。为保证安全和可靠性,在设计中应考虑到环境、电网和土壤参数,并在设计文件中明确规定。环境条件可划分为风况和其它外部条件。土壤特性关系到风力发电机组的基础设计。 各类外部条件可分为正常外部条件和极端外部条件。正常外部条件通常涉及结构长期承载和运行状态。极端外部条件是潜在的临界外部设计条件。设计载荷系由这些外部条件和风力发电机组的运行状态组合而成。 对结构整体而言,风况是最基本的外部条件。其它环境条件对设计特性,诸如控制系统功能、耐久性、锈蚀等均有影响。 根据风力发电机组安全等级的要求,设计中要考虑本节所述的正常外部条件和极端外部条件。

风力发电机组分级 风力发电机组的设计中,外部条件应由其安装场地和场地类型决定。风力发电机组的安全等级及相应的风速和风湍流参数应符合表2.2.2.1 的规定。 对需要特殊设计(如特殊风况或其它特殊外部条件)的风力发电机组,规定了特殊安全等级——S 级。S 级风力发电机组的设计值由设计者确定,并应在设计文件中详细说明。对这样的特殊设计,选取的设计值所反映的外部条件比预期使用的外部条件更为恶劣。近海安装为特殊外部条件,要求风力发电机组按S 级设计。 各等级风力发电机组的基本参数①表2.2.2.1 注:表中数据为轮毂高度处值,其中: A 表示较高湍流特性级;参考风速Vref 为10min 平均风速; B 表示中等湍流特性级;I 15 风速为15m/s 时的湍流强度

风力发电机组载荷计算

风力发电机组载荷计算 北京鉴衡认证中心 发言人:韩炜 2008-4-14 北京鉴衡认证中心

内容概要 1. 风力发电机组载荷计算目的 2. 风力发电机组载荷特点 3. 风力发电机组载荷计算 北京鉴衡认证中心

风力发电机组载荷计算目的 ? 对于设计:提供强度分析载荷依据,确保各部 件承载在设计极限内;优化运行载荷,提高机 组可靠性。 ? 对于认证:确保载荷计算应用了适当的方法, 工况假定全面且符合标准要求,结果真实可靠。北京鉴衡认证中心

风力发电机组载荷特点 ? 风 ? 空气动力学 ? 叶片动力学 ? 控制 ? 传动系统动力学 ? 电力系统 ? 塔架动力学 ? 基础 北京鉴衡认证中心

风力发电机组载荷计算 风力发电机组载荷计算标准 ? 陆上风机:GB18451.1(2001);IEC61400-1(1999, 2005);GL Guideline2003;… ? 海上风机:IEC61400-3;GL Guideline (Offshore) 2005? DNV- OS-J101 … 北京鉴衡认证中心

北京鉴衡认证中心 风力发电机组设计等级 (IEC61400-1:1999) 级别 Ⅰ Ⅱ Ⅲ Ⅳ S V ref [m/s] 50 42.5 37.5 30 V ave [m/s] 10 8.5 7.5 6 A I 15 [-] 0.18 0.18 0.18 0.18 a [-] 2 2 2 2 B I 15 [-] 0.16 0.16 0.16 0.16 a [-] 3 3 3 3 由设计 者规定 各参数 注: V ref :轮毂处参考风速 V ave :轮毂处平均风速 I 15:风速15m/s时的湍流强度 a: 斜度参数 风力发电机组载荷计算

相关主题
文本预览
相关文档 最新文档