2015高考试题——数学文(新课标1卷)word版含答案
- 格式:doc
- 大小:1.54 MB
- 文档页数:11
2015年普通高等学校招生全国统一考试(新课标1卷)文 一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ , 且()3f a =-,则(6)f a -=(A )74- (B )54-(C )34-(D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N 求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.一、D A C C B B B (8)D (9)C (10)A (11)B (12)C 二、填空题(13)6 (14)1 (15)4 (16) 三、 17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分 (II )由(I )知2b =2ac. 因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的. 所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得. 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x = 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为. ……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑),56368 6.8100.6c y d w =-=-⨯=)), 所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y的预报值y 100.6=+), 年利润z 的预报值 z=576.60.24966.32⨯-=) ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x ++).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k+=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x e x x '+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分 (II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时, ()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a na ≥+. ……12分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=,即MN = 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。
2015年普通高等学校招生全国统一考试数学试卷(文科)(新课标I 卷) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}|32,A x x n n N ==+∈,{}6,8,10,12,14B =,则集合A B 中元素的个数为( )A. 5B. 4C. 3D. 22. 已知点A (0,1),B (3,2),向量(4,3)AC =-- ,则向量BC = ( )A. (-7,-4)B. (7,4)C. (-1,4)D. (1,4)3. 已知复数z 满足(1)1z i i -=+,则z=( )A. 2i --B. 2i -+C. 2i -D. 2i +4. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A. 310 B. 15 C. 110 D. 1205. 已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB =( )A. 3B. 6C. 9D. 126. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛7. 已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A. 172 B. 192 C. 10 D. 128. 函数()cos()f x x ωϕ=+的部分图象如图所示,则f (x )的单调递减区间为( )A. 13,),44k k k Z ππ-+∈( B. 13,2),44k k k Z ππ-+∈(2 C. 13,),44k k k Z -+∈( D. 13,2),44k k k Z -+∈(29. 执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A. 5B. 6C. 7D. 810. 已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩且()3f a =-,则(6)f a -=()A. 74-B. 54-C. 34-D. 14- 11. 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则r=( ) A. 1 B. 2 C. 4D. 812. 设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)f f -+-=,则a=( )A. -1B. 1C. 2D. 4第II 卷注意事项:本卷包括必考题和选考题两部分。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为 (A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D)13 (2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t=,则输出的n=()(A)5(B)6(C)7 (D)810、已知函数1222,1()log(1),1x xf xx x-⎧-≤=⎨-+>⎩,且()3f a=-,则(6)f a-=(A)74-(B)54-(C)34-(D)14-11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4 二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =o ,且2,a =求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()0,1A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲 如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线; (II )若3OA CE =,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、 选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、 填空题(13)6 (14)1 (15)4 (16)126三、 解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的c=a=2.所以△ABC 的面积为1. ……12分 18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD. 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得 AG=GC=32x ,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的EG=32x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=366243x =. 故x =2 ……9分 从而可得AE=EC=ED=6.所以△EAC 的面积为3,△EAD 的面积与 △ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25. ……12分 19、解:(I )由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程式类型. (II )令w x =,先建立y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i ii w w y y w w ==--==-∑∑), 56368 6.8100.6c y d w =-=-⨯=)),所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为 y 100.668x =+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.66849=576.6=+),年利润z 的预报值z=576.60.24966.32⨯-=)……9分 (ii )根据(II )的结果知,年利润z 的预报值z=0.2(100.6+68)-=-13.620.12x x x x ++). 所以当13.6=6.82x =,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分 20、解:(I )由题设,可知直线l 的方程为1y kx =+. 因为l 与C 交于两点,所以223111k k-+〈+.解得474733k -+〈〈. 所以k 的取值范围为4747(,)33-+. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k ++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l上,所以2MN =. ……12分 21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点; 当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点. ……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0; 当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x .由于02020x a ex -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a n a≥+. ……12分 22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB. 在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是e O 的切线.……5分(II )设CE=1,AE=x ,由已知得AB=23,BE=212x -.由射影定理可得,2AE CE BE =⋅, 所以2212x x =-,即42120x x +-=.可得3x =,所以∠ACB=60o .……10分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1222,2ρρ==.故122ρρ-=,即2MN =由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223xx ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A )5(B )4(C )3(D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =()(A )2i--(B )2i-+(C )2i-(D )2i+4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A )310(B )15(C )110(D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A )3(B )6(C )9(D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A )14斛(B )22斛(C )36斛(D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为()(A )13(,),44k k k Z ππ-+∈(B )13(2,244k k k Zππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =()(A )5(B )6(C )7(D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=(A )74-(B )54-(C )34-(D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =()(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =()(A )1-(B )1(C )2(D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.15.若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为.16.已知F 是双曲线22:18y C x -=的右焦点,P 是C左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为.三、解答题17.(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =,且a =求ABC ∆的面积.18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥三棱锥E ACD -的体积为3,求该三棱锥的侧面积.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN .21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E .(I )若D 为AC 中点,证明:DE 是 O 切线;(II )若OA =,求ACB ∠的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+-->.(I )当1a =时求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.欢迎光临:蒙清牛肉干店(按ctrl 键点击即可进入淘宝店铺)牛肉干无脂肪.减肥必备超级抗饿.熬夜必备美食(3斤牛肉才做1斤牛肉干)2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、填空题(13)6(14)1(15)4(16)三、解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac+-=14……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的.所以△ABC 的面积为1.……12分18、解:(I)因为四边形ABCD 为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.……5分(II )设AB=x ,在菱形ABCD 中,又∠ABC=o120,可得AG=GC=32x ,GB=GD=2x .因为AE ⊥EC,所以在Rt△AEC 中,可的EG=32x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x .由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=366243x =.故x =2……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与△ECD.故三棱锥E-ACD 的侧面积为……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =,先建立y 关于w 的线性回归方程式.由于28181()()108.8d=681.6(i i i i i w w y y w w ==--==-∑∑ ,56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x的回归方程为y 100.6=+(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+,年利润z 的预报值z=576.60.24966.32⨯-=……9分(ii )根据(II )的结果知,年利润z的预报值=-20.12x x ++.13.6=6.82=,即x =46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C1.解得474733k +〈〈.所以k 的取值范围为4747()33+.……5分(II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++.1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1.故圆心C 在l上,所以2MN =.……12分21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉.当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉,当b 满足0<b <4a且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x .由于02020x aex -=,所以()0002221212a f x ax a n a a n x a a =++≥+.故当0a 〉时,()221f x a a n a≥+.……12分22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是 O 的切线. (5)分(II )设CE=1,AE=x ,由已知得AB=由射影定理可得,2AE CE BE =⋅,所以2x =,即42120x x +-=.可得x =ACB=60o .……10分23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12.……10分24、解:(I )当1a =时,()1f x >化为12110x x +--->.当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<.……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2.所以a 的取值范围为()2+∞,.……10分。
2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015新课标I文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A. 5 B. 4 C. 4 D. 2解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.2.(2015新课标I文)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4) D. (1,4)解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.3.(2015新课标I文)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C. 2﹣i D. 2+i解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.4.(2015新课标I文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C5.(2015新课标I文)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A. 3 B. 6 C. 9 D. 12解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.6.(2015新课标I文)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1。
绝密★启用前试题类型:A2015年普通高等学校招生全国统一考试文科数学适用地区:河南河北山西江西注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A∩B中元素的个数为(A)5(B)4(C)3(D)2(2)已知点A(0, 1), B(3, 2), 向量AC=(−4,−3), 则向量BC=(A)(−7,−4)(B)(7,4)(C)(−1,4)(D)(1,4)(3)已知复数z满足(z−1)i = i + 1,则z =(A)−2 − i (B)−2 + i (C)2 − i (D)2 +i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1, 2, 3, 4, 5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12, E的右焦点与抛物线C:y² = 8x的焦点重合,A,B是C的准线与E的两个焦点,则| AB |=(A)3 (B)6 (C)9 (D)12(6) 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周 八尺,高五尺。
问:积及为米几何?”其意思为:“在 屋内墙角处堆放米(如图,米堆为一个圆锥的四分 之一),米堆底部的弧度为8尺,米堆的高为5尺, 问米堆的体积和堆放的米各为多少?”已知1斛米 的体积约为1.62立方尺,圆周率约为3,估算出堆 放斛的米约有 (A )14斛(B )22斛 (C )36斛(D )66斛(7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和. 则S 8 = 4S 4,a 10 =(A )172(B )192(C )10(D )12(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,),44k k k Z ππ-+∈(B ) 13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t = 0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)已知函数f (x)={2x−1−2, x≤1−log2(x+1), x>1,且f (a)= −3,则f (6−a) =(A)−74(B)−54(C)−34(D)−14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5 (B )4 (C )3 (D )2解析:{|32,}{6,8,12,14}{8,14}A B x x n n N ==+∈= ,答案选D.(2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4)解析:由(4,3)AC =-- 及点A (0,1)可得点C (-4,-2),则(43,22)(7,4)BC =----=-- ,答案选A.(3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-i (B )-2+i (C )2-i (D )2+i解析:由(z-1)i=i+1可得112i z i i+=+=-,答案选C (4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120解析:由题意可知1,2,3,4,5中只有3,4,5这一组勾股数,3335110C P C ==,答案选C.(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=(A )3 (B )6 (C )9 (D )12解析:抛物线C :y²=8x 的焦点为(2,0),则椭圆E 22221(0)x y a b a b+=>>中的22122,,4,12,||62c b c e a b AB a a ========,答案故选B.(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年高考文科数学试题与答案(全国卷Ⅰ)2015年高考文科数学试题与答案(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答。
若在试卷上作答,答题无效。
3.考试结束后,监考员将试题卷、答题卡一并收回。
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=3n-2,n∈N},集合B={6,8,10,12,14},则集合A∩B中元素的个数为A) 5.(B)。
4.(C)。
3.(D) 22.已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=A) (-7,-4)。
(B) (7,4)。
(C) (-1,4)。
(D) (1,4)3.已知复数z满足(z-1)i=1+i,则z=A) -2-i (B) -2+i (C) 2-i (D) 2+i4.如果三个正整数可作为一个直角三角形三条边的边长,则称这三个数为一组勾股数。
从1,2,3,4,5中任取3个不同的数,则这三个数构成勾股数的概率为A) 3/11 (B) 1/5 (C) 1/2 (D) 2/55.已知椭圆E的中心在坐标原点,离心率为1/2,E的右焦点与抛物线C:y=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=A) 3.(B) 6.(C) 9.(D) 126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有______。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( ) (A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54-(C )34-(D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4 二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = . 14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a = .15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 . 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a =求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为积.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); (II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN . 21. (本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲 如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,证明:DE 是O 切线;(II )若OA = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、 选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、 填空题(13)6 (14)1 (15)4 (16) 三、解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分(II )由(I )知2b =2ac.因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的.所以△ABC 的面积为1. ……12分 18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD. 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得x ,GB=GD=2x.因为AE ⊥EC,所以在Rt △AEC 中,可的x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得x .由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x =. 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为 ……12分 19、解:(I )由散点图可以判断,y 关于年宣传费x 的回归方程式类型. (II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()iii i i w w y y w w ==--==-∑∑, 56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x 的回归方程为y 100.6=+(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+,年利润z 的预报值z=576.60.24966.32⨯-= ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x +. 13.6=6.82=,即x =46.24时,z 取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分 20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C.解得k所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l上,所以2MN =. ……12分 21、解:(I )()f x 的定义域为()()20,,2(0)x af x e x x'+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点; 当0a 〉时,因为2x e 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点. ……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x . 由于02020x a ex -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a n a≥+. ……12分 22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB. 在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o 90,所以∠DEC+∠OEB=o 90,故∠OED=o 90,DE 是O 的切线.……5分(II )设CE=1,AE=x ,由已知得AB=,BE=.由射影定理可得,2AE CE BE =⋅,所以2x =,即42120x x +-=.可得x =ACB=60o .……10分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2.所以a 的取值范围为()2+∞,. ……10分。