当前位置:文档之家› 自然界中产淀粉酶菌株分离纯化及酶活测定.

自然界中产淀粉酶菌株分离纯化及酶活测定.

自然界中产淀粉酶菌株分离纯化及酶活测定.
自然界中产淀粉酶菌株分离纯化及酶活测定.

自然界中产淀粉酶菌株分离

纯化及酶活测定

淀粉酶(Amylase )又称糖化酶,是指能使淀粉和糖原水解成糊精、麦芽糖和

葡萄糖的酶的总称。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖元等a-1,4-葡聚糖,水解a l, 4-糖苷键的酶。根据作用的方式可分为a淀粉酶(EC 3. 2. 1. 1.)与禺淀粉酶(EC 3. 2. 1.2.)。a-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物;3■淀粉酶与a-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断a1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘署、大豆等),但也有报告在细菌、牛乳、霉菌中存在。

淀粉酶是一种用途极广的生物催化剂,广泛应用于造纸、食品、医药工业。如饴糖、啤酒、黄酒、葡萄糖、味精、抗生素等行业;用于高质量的丝绸、人造棉、化学纤维退浆;制成不同品种的工业酶、医用酶、诊断酶等;在洗涤剂工业中,作为洗涤剂酶与碱性蛋白酶、脂肪酶一起添加于洗衣粉中制成多酶洗衣粉等具有极广泛的用途。随着社会需求的增大,工业生产对淀粉酶的需求量越来越大,其在各领域应用广泛,急需寻找更高酶活的产酶菌株满足生产需要。

生淀粉酶是指对不经过蒸煮糊化的生淀粉颗粒能够表现出强水解活性的酶类。

70年代由于两次石油危机,引起各国学者从节能和有效利用天然资源出发,重视对生淀粉酶的研究。研究大致分两个方面:一是探讨对生淀粉不经蒸煮,直接用于酒精发酵的可能性;另一则是从自然界中分离筛选能产生生淀粉酶的微生物,并进而研究生淀粉酶的酶学特性及其产生菌的徽生物学特性[1,2]。除动物自身的消化

道可分泌一些淀粉酶外,淀粉酶的另外两大来源是植物和微生物能产生生淀粉酶的微生物较多。Ueda [3, 4],Mizokami [5],Tamiguchi [6],Kainuma [7]先后报道了Aspergillus awaraori,Rbizopus . sp.,Strepiococcus boris Bacillus circulans,Chalara paradoxa 等菌种均有产淀粉酶能力。

本实验拟从种植谷物的贫瘠土壤和平地肥沃土壤的5cm~25cm 土层取土壤样品

中分离土壤微生物,筛选能产生淀粉酶的菌种,并进行初步鉴定[8]。同时,拟进

行发酵条件的优化以提高菌株的酶产量,分离提纯产生的淀粉酶并进行酶活力测定,为利用该菌株进行工业化生产淀粉酶提供初步的理论依据。 1.材料和方法1.1

实验材料1.1.1分离材料

种植谷物的贫瘠土壤和平地肥沃土壤的5cm~25cm 土层取土壤样品。1.1.2培

养基

(1 PDA固体培养基[9]:马铃薯200 g,葡萄糖20 g,琼脂20 g,蒸馏水1000 mL。pH

5.5~

6.5 之间,121 T 灭菌20 min。

(2平板筛选培养基:牛肉膏5g,蛋白胨10g , NaCI 5g,可溶性淀粉20g,琼脂

15~20g, pH 自然,121 C灭菌20 min。

(3发酵培养基[10]:蛋白胨10g,牛肉膏5g , NaCl 10g, pH 7.0, 121 C灭菌20 mi n。

(4 LB培养基: 蛋白胨10g,酵母膏5g , NaCl 10g,琼脂20g , pH自然,121 C 灭菌20 mi n。

1.1.3主要试剂配制

DNS试剂[11]:酒石酸钾钠18.2g ,溶于50mL蒸馏水中,加热,于热溶液中依次加入3, 5-二硝基水杨酸0.03g , NaOH 2.1g,苯酚0.5g,搅拌至溶,冷却后用蒸馏水定容至100mL,贮于棕色瓶中,室温保存。

CTAB法所用主要试剂:提取缓冲液:2 CTAB提取液(2%CTAB , 200 mmol/L Tris-HCI (pH8.0, 50 mmol/L EDTA(pH8. 0, 1.4 mol/L NaCl ); 10 >CTAB 提取液(10%CTAB, 0.7 mol/L N aCl ; TE 缓冲液:100 mmol/L T ris-HCl (pH8.0 , 10 mmol/L EDTA (pH8.0。

电泳缓冲液:取50X TAE (242 g Tris碱和57.1 mL冰乙酸溶于100 mL 0.5 mol/L的EDTA(pH8.0溶液中,加去离子水至1000 mL) 20 mL加蒸馏水至1000 mL;溴化乙锭(EB :称取5 g溴化乙锭(Ethidium Bromide , EB,溶于蒸馏水中并定容到10 mL ,避光保存。临用前,用电泳缓冲液稀释1000倍,使其最终浓度达到0.5卩g/n;1.0%的凝胶:称取琼脂

粉1.0 g,加热使之溶于100 mL的电泳缓冲液,加入5卩L EB混匀。

氨苄青霉素(Ampicillin )(100 mg/mL):溶解1 g氨苄青霉素钠盐于足量的水中,最后定容至10 mL。分装成小份于-20°C贮存。以50卩g/ml的浓度添加于

生长培口养基。

大肠杆菌质粒提取相关试剂:溶液I: 50mmol/L葡萄糖,25mmol/L

Tris.HCI(pH8.0 , 10mmol/L EDTA ;溶液II : 0.2 mol/L NaOH,1%SDS混合液(使用前新配制;溶液III : 5 mmol/L KAc溶液pH 4.8;去离子水:双蒸水灭菌得到;酚:氯仿:异戊醇(25:24:1);无水乙醇;75%的乙醇。

克隆相关试剂0.05 mol/L CaCl2溶液;含15%甘油的0.05 mol/L CaCl2溶液;克隆克隆试剂盒(宝生物工程有限公司:pMD19-T Vector*1(50 ng/ ? Lcontor insert

(50 ng/ LSolution I、X-Gal、IPTG、Amp。1.1.4 主要化学药品和试剂

本实验中用到的主要化学药品和试剂如表1-1所列。

表1-1主要化学药品和试剂

名称纯度来源

蛋白胨分析纯杭州微生物试剂有限公司牛肉膏分析纯杭州微生物试剂厂硫酸铵分析纯上海化学试剂有限公司氯化钠分析纯杭州高晶精细化工有限公司葡萄糖分析纯国药集团化学试剂有限公司酒石酸钾钠分析纯金山区兴塔美兴化工厂3,5-二硝基水杨酸

分析纯上海晶天生物科技有限公司苯酚分析纯杭州双林化工试剂厂氢氧化钠分析纯上海虹光化工厂

盐酸分析纯杭州高晶精细化工有限公司PEG 1000分析纯杭州高晶精细化工有限公司PEG 6000分析纯杭州高晶精细化工有限公司可溶性淀粉分析纯广东. 汕头市西陇化工厂

无水乙醇分析纯杭州长征化工厂氯化钙分析纯上海化学试剂有限公司Tris 碱分析纯杭州南天生化试剂经营部冰乙酸分析纯杭州高晶精细化工有限公司异戊醇分析纯杭州高晶精细化工有限公司溴化乙锭分析纯杭州高晶精细化工有限公司醋酸钠分析纯杭州高晶精细化工有限公司EDTA分析纯广东山头市西陇化工厂SDS分析纯广东山头市西陇化工厂

结晶紫实验室自配碘液实验室自配番红实验室自配

琼脂粉

细菌级

杭州微生物试剂有限公司

1.1.5主要仪器设备

本实验中用到的主要仪器和设备如表1-2所列。

表1-2主要仪器和设备

名称型号

制造商或产地

电子天平(BS323S)北京赛多利斯仪器系统有限公司酸度计(DeLta320)

瑞士梅特勒-托利多

加热恒温鼓风干燥箱(DGG-9070B型)上海嘉信实验仪器有限公司超净工作台(SW-CJ-2G)苏州净化设备厂

电子显微镜(Nikon YS100)尼康映像仪器销售(中国有限公司高压灭菌锅

(YXQ-280 SD型)嘉兴市中新医疗仪器有限公司生化培养箱(SPX-250B-Z型)上海博逊实业有限公司医疗设备厂台式冷冻恒温振荡器(THZ-C-1)太仓市实验设备厂PCR自动系列化分析仪(Biometra德国Biometra

海尔冷藏柜(SC-209

青岛海尔电器集团公司

1.2实验方法

1.2.1淀粉酶产生菌分离方法:涂布接种法[12]。 1.2.2淀粉酶产生菌纯化方

法:平板划线法。1.2.3淀粉酶产生菌初步鉴定方法:革兰氏染色。 1.2.4淀粉酶产生菌产酶条件优化:单因素法[11,13-14]。

根据几种变量来优化产酶条件:改变基础发酵培养基中氮源,碳源或是NaCI 等的浓度。

1、不同碳源对酶活的影响

以蛋白胨为氮源,改变基础发酵培养基中碳源的种类,配制液体发酵培养基。

121 T灭菌20 min?以250 mL三角瓶装液50 mL发酵培养基,按0.5%的接种量接种12 h种子,37C, 160 r/min摇床培养36 h后测定粗酶液酶活。

2、不同氮源对酶活的影响

以麸皮作为碳源,改变基础发酵培养基中氮源的种类,配制液体发酵培养基。

3、不同NaCI含量对酶活的影响

改变基础发酵培养基中NaCI的浓度,配制液体发酵培养基。4、初始发酵温

度对酶活的影响

基础发酵培养基,121C灭菌10 min。考虑到菌株的生长温度范围是28C?50T,故以28C, 37C, 45C,作为培养温度,以250 mL三角瓶装液50 mL发酵培养基, 按0.5%的接种量接种12 h种子,37C, 160 r/min摇床培养36 h后测定粗酶液酶活。

5、培养基初始pH对最终酶活的影响

基础发酵培养基,121C灭菌10 min。考虑到菌株的生长pH范围是4.7?9,故

在pH 4?10范围内测定酶活。

&碳氮比对产酶的影响

以麸皮作为碳源,黄豆粉作为氮源配制液体发酵培养基。 1.2.5粗酶提取物的

制备:双水相萃取法[15]。

双水相萃取系统系在室温(22 ± C下按重量配制。在50 mL烧杯中加入所需重量的硫酸铵和氯化钠,PEG 1000和PEG 6000以50%浓溶液形式加入,预处理发酵液均按系统总重量的50%加入。用1 mol/L HCI和1 mol/L NaOH调节pH,体系总重量为10g,不足部分以自来水朴充。各组分的浓度均用重量百分含量表示。用玻璃棒搅匀烧杯中混合物,定量转至

10 mL刻度离心管中,然后于2000 r/mi n

离心2 min分层。此时a-淀粉酶和蛋白酶分配到上、下两相,发酵液中不溶物和菌体以固体物形式集中在两相之间。读出上、下两相体积,用注射器分别吸出一定量的上、下两相溶液,测定酶活和总蛋白含量。

1.2.6酶活力测定:等量对照法[16-17]。

酶活性的测定取洁净的试管若干,作好标记,每一种提取物设1个对照。总反

应体积为0.5mL ,测定管含0.2 mL的酶提取液和0.3 mL的1%淀粉溶液;对照管含0.2 mL的酶提取液和0.3 mL的0.1 mol/L-1柠檬酸溶液(pH 5.6,不含底物淀粉。将试管放入恒温40C 的水浴锅中,保温30 min后取出,立即加入1.5 mL的DNS 试剂终止反应。再将试管置于沸水浴中10 min,取出后冰浴冷却。取反应液稀释10倍,测定波长520 nm处的吸光值,同上做麦芽糖标准曲线,从标准曲线上查出麦芽糖的含量,计算淀粉酶的总活性。2.主要技术

路线

主要技术路线如图2-1所示:

分离土壤菌种纯化土壤菌种筛选淀粉酶产生菌菌种保藏革兰氏染色菌种复活不同条件下菌种发酵DNA提取制备淀粉酶提取物16S rRNA PCR扩增测定酶活力PCR产物回收克隆(目的基因导入受体细胞)筛选,检测目的基因测序记录、分析讨论实验结果图2-1主要技术路线3.预期结果本实验首先通过涂布接种、平板划线等方法从土壤样品中分离得到土壤微生物,然后经过筛选培养基上

培养筛选出淀粉酶产生菌。选取产酶能力强的菌株,采用单因素法对筛选的淀粉

酶产生菌进行发酵工艺优化,通过酶活力测定确定该淀粉酶产生菌生产的淀粉酶的活性,分析所得淀粉酶粗提物的质和量确定该菌株产淀粉酶的最优条件。通过对16S rRNA序列分析确定该菌的种属。-6-

4.参考文献[1] Sasaki H et al. Taxomyces an drea nae a proposed new tax on for a bulbilliferous hyphomycete associated with pacific yew (Taxus brevifolia [J], 1996, 50: 1661-1664. [2] Hayashida S et al. Acremo nium sp. a leuc in ostatin A produci ng en dophyte of European yew (Texus baccata [J], 1999, 53: 143-149. [3] Ueda S. In vitro studies of endophytic fungi from Tripterygium wilfordii with antiproliferative activity on human peripheral blood mo non uclear cells [J], 1997, 21-284. [4] Saha B C and S Ueda. Taxomyces an drea nae a proposed new tax on for a bulbilliferous hyphomycete associated with pacific yew (Taxus brevifolia [J], 1993, 61: 67.⑸ Mizokaml K. New bioactive metabolites produced by Colletotrichttm sp. an endophytic fungus in Artanisia annua [J], 1999, 51: 299.⑹ Tamiguchi H et a1. Three new cytochalas ins produced by an en dopbytic fun gus in the genus Rhi no cladiella [J]. 1992, 48: 210. [7] Kai numa K et a1. new an tibiotic and cytotoxic dimmers produced by the fun gus homopsis Ion gicolla isolated from an endangered min [J], 1985, 32: 136. [8万海同,余勤,赵伟春.生物与工程制药实验[M].浙江大学出版社,2008, 1: 7-11. [9]申屠旭萍,陈宵峰,俞晓平等.雷

公藤内生真菌的分离及活性菌株的筛选[J].浙江农业学报,2006, 18(5: 308-312. [10] 徐颖,

碱性蛋白酶的分离纯化与性质初探

碱性蛋白酶的分离纯化与性质初探 一、综述本课题国内外研究动态,说明选题的依据和意义: 1.国内外研究现状 碱性蛋白酶(Alkaline protease)广泛存在于微生物中,最早发现在猪的胰脏中,1913年Rhom首先将胰蛋白酶作为洗涤浸泡剂使用。1945年瑞士的Dr.Jagg 等发现了微生物碱性蛋白酶,使其成为洗涤剂的主要添加剂之一。碱性蛋白酶在丝绸、制革工业、饲料工业、动物食品加工中也有广泛用途。由于市场的需求,高产、高效、耐高温、耐高碱的四高型碱性蛋白酶成为国内外当前研究的热点之一[1]。 研究结果发现,海洋酶具有作用pH 范围宽,最适pH 和反应温度适中,随反应温度的降低酶活性下降缓慢等特点。海洋酶所具有的独特性质,引起学术界高度重视,日、美等国就此展开了深入的研究。迄今为止,由海洋微生物生产海洋酶的专利已达20 余项。海洋微生物酶的研究正逐渐成为发达国家开发新型酶制剂的重要途径[2,3]。 相比之下,国内在海洋碱性蛋白酶研究方面差距较大。综合多篇文献分析,目前针对海洋细菌产生的碱性蛋白酶,分离提纯的方法大致多采用饱和硫酸铵分级盐析和层级技术。首先是从发酵液取上清制备粗酶液(此酶为一种外分泌蛋白,无需通过溶菌酶溶解或超声波破碎细胞来制备粗酶液),通过超速离心沉淀,饱和硫酸铵分级盐析,透析,凝胶层析或离子交换层析来分离提纯该菌所产生的碱性蛋白酶。其中一些已经对酶的性质、序列等进行了研究[4-7]。 2.选题依据及意义 此毕业设计的课题为《碱性蛋白酶的分离纯化及性质初探》,主要是对海洋细菌进行培养及分离提纯方案的改进,并对其性质进行初步探究。大致是将各种相关参数和实验数据建立正交关系得到最佳培养条件,并对其产生的碱性蛋白酶进行分离提纯,同时得出最佳分离提纯方案。最后对碱性蛋白酶的性质进行初步研究。本设计针对目前研究较少的产碱性蛋白酶的海洋微生物新菌株,研发新型高效的碱性蛋白酶,这对满足人类生活、生产与技术开发的需求至关重要。这种积极采用微生物代替化学法的探究,有利于开发现代生物新产品的工业化生产技术研究,有利于加快现代生物领域产业的发展。 二、研究的基本内容,拟解决的主要问题 1.海水中碱性蛋白酶高产菌株的筛选;

第四章 酶的提取与分离纯化

第四章酶的提取与分离纯化 1、细胞破碎的目的、方法。 ?大多数酶都存在于细胞内部,为了获得细胞内的酶,首先要收集细胞并进行细胞破碎,使细胞的外层结构破坏,然后进行酶的提取与分离纯化。 ?机械法 ?物理法 ?化学法 ?酶促破碎法(酶解) 2 选择细胞破碎方法的依据。 ?(1)细胞的处理量:大规模用机械法,小规模用非机械法。 ?(2)细胞壁的强度与结构 ?(3)目标产物对破碎条件的影响。机械法考虑剪切力,酶法考虑对目标产物是否具有降解作用。 ?(4)破碎程度:高压匀浆法,细胞碎片细小,固液分离困难。 ?(5)提取分离的难易 3. 酶抽提的目标及方法。 提取目标: ? a. 将目的酶最大限度地溶解出来。 ? b. 保持生物活性。 提取原则 ? a. 相似相溶。 ? b. 远离等电点的pH值,溶解度增加。 4.三种离心方法(差速离心、密度梯度离心和等密度梯度离心)的特点。 (1)差速离心特点:用于分离大小和密度差异较大的颗粒。 (2)密度梯度离心特点:: ?区带内的液相介质密度小于样品物质 ?颗粒的密度。 ?适宜分离密度相近而大小不同的固相 ?物质。 (3)等密度梯度离心特点: ?介质的密度梯度范围包括所有待分离物质的密度。 ?适于分离沉降系数相近,但密度不同的物质。 5. 酶的分离纯化过程中常用沉淀法的种类及原理。 种类: ⑴中性盐沉淀(盐析法) 基本原理(盐溶和盐析) 向蛋白质或酶的水溶液中加入中性盐,可产生两种现象: 1) 盐溶(salting in): 低浓度的中性盐增加蛋白质的溶解度。 2) 盐析(salting out): 高浓度的中性盐降低蛋白质的溶解度。 ⑵有机溶剂沉淀 利用酶等蛋白质在有机溶剂中的溶解度不同而使之分离的方法。

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选 实验项目性质:设计性 所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定 计划学时:8学时 一、实验目的 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.掌握产酶微生物筛选的方法。 二、实验原理 α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。 1、采样:即采集含菌的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。除土壤以外,其他各类物体上都有相应的占优势生长的微生物。例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。 2、增殖培养(又称丰富培养) 增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。因此,增殖培养事实上是选择性培养基的一种实际应用。 3、纯种分离 在生产实践中,一般都应用纯种微生物进行生产。通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 4、性能测定 分离得到纯种这只是选种工作的第一步。所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。性能测定的方法分初筛和复筛两种。 初筛一般在培养皿上根据选择性培养基的原理进行。例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。 复筛是在初筛的基础上做比较精细的测定。一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。 三、实验用品 1.器材 (1)小铁铲和无菌纸或袋。

蛋白质和酶的分离与纯化培训讲学

蛋白质和酶的分离与 纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术

实验名称-碱性磷酸酶的分离纯化实验报告

实验名称碱性磷酸酶的分离纯化、比活性测定与动力学分析 实验日期2011年10月25号实验地点生化实验室 合作者指导老师 总分教师签名批改日期 碱性磷酸酶(AKP或ALP)是一种底物特异性较低,在碱性条件下能水解多重磷酸单脂化合物的酶,需要镁和锰离子为激活剂。AKP具有磷酸基团转移活性,能将底物中的磷酸基团转移到另一个含有羟基的接受体上,如磷酸基团的接受体是水,则其作用就是水解。AKP最适PH范围为8.6-10,动物中AKP主要存在于小肠粘膜、肾、骨骼、肝脏和胎盘等组织的细胞膜上。血清AKP主要来自肝,小部分来自骨骼。 AKP可从组织中分离纯化,也可以采用基因工程表达的方式获得:将碱性磷酸酶基因克隆到重组载体,转入宿主菌中进行重组表达,并从表达菌提取,并进行酶动力学分析。 一实验原理 1、碱性磷酸酶的分离纯化 AKP分离纯化的方法与一般蛋白质的分离纯化方法相似,常用中性盐盐析法、电泳法、色谱法、有机溶剂沉淀法等方法分离纯化。有时需要多种方法配合使用,才能得到高纯度的酶蛋白。本实验采用有机溶剂沉淀法从兔肝匀浆液中提取分离AKP。正丁醇能使部分杂蛋白变性,过滤除去杂蛋白即为含有AKP的滤液,AKP能溶于终浓度为33%的丙酮或30%的乙醇中,而不溶于终浓度为50%的丙酮或60%的乙醇中,通过离心即可得到初步纯化的AKP。 2、碱性磷酸酶的比活性测定 根据国际酶学委员会规定,酶的比活性用每毫克蛋白质具有的酶活性来表示,单位(U/mg?pr)来表示。因此,测定样品的比活性必须测定:a每毫升样品中的蛋白质毫克数;b每毫升样品中的酶活性单位数。酶的纯浓度越高酶的比活性也就越高。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。于510nm 处比色,即可求出反应过程中产生的酚含量,而碱性磷酸酶的活性单位可定义为:在37摄氏度保温15min每产生1mg的酚为一个酶活性单位。样品蛋白质含量测定用Folin-酚法测定。 3、底物浓度对碱性磷酸酶活性的影响 在环境的温度、PH和酶的浓度一定时,酶促反应速度与底物浓度之间的关系表现为反应开始时。酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度就会达到一个极限值,即最大反引发速度(Vmax)。底物浓度与酶促反应速度的这种关系可用米氏方程式表 示: 式中:Vmax为最大反应速度;[S]为底物浓度;Km为米氏常数;V代表反应的起始速度。 ①当ν=Vmax/2时,Km=[S]。因此,Km等于酶促反应速度达最大值一半时的底物

木瓜蛋白酶的提取

木瓜蛋白酶的提取、分离纯化及其生物学研究综述及实验方法 13生物技术第二大组第二小组 组员:王玓玥(组长)、王子贺、王思瑶、王宇涛、王守鑫、谭国栋一、研究背景: 在经济飞速发展的今天,人们的生活水平已远远不只在于吃饱穿暖,食品的安全和营养问题受到人们越来越多的关注,绿色健康的生活也成为大家共同的追求,木瓜蛋白酶以它自身耐热及特殊结构等特点被广泛的用于食品行业,如何分离纯化得到高纯度低成本的木瓜蛋白酶则是人们现在研究的重点,本小组便也以此为研究主题展开实验。 二、木瓜蛋白酶基本介绍:木瓜蛋白酶,又称木瓜酶,是一 种蛋白水解酶。木瓜蛋白酶是番木瓜中含有的一种低特异性蛋白水解酶,广泛地存在于番木瓜的根、茎、叶和果实内,其中在未成熟的乳汁中含量最丰富。木瓜蛋白酶的活性中心含半胱氨酸,属于巯基蛋白酶,它具有酶活高、热稳定性好、天然卫生安全等特点,这种蛋白水解酶,分子量为23406,由一种单肽链组成,含有212个氨基酸残基。至少有三个氨基酸残基存在于酶的活性中心部位,他们分别是Cys25、His159和Asp158,当Cys25被氧化剂氧化或与金属离子结合时,酶的活力被抑制,而还原剂半胱氨酸(或亚硫酸盐)或EDTA能恢复酶的活力木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观

为白色至浅黄色的粉末,微有吸湿性;木瓜蛋白酶溶于水和甘油,水溶液为无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。木瓜蛋白酶是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶 的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,但几乎不能分解蛋白胨。木瓜蛋白酶的最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;木瓜蛋白酶的最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。。另外六个半胱氨酸残基形成了三对二硫键,且都不在活性部位。纯木瓜蛋白酶制品可含有:(1)木瓜蛋白酶,分子量21000,约占可溶性蛋白质的10%;(2)木瓜凝乳蛋白酶,分子量26000,约占可溶性蛋白质的45%;(3)

分离产淀粉酶的芽孢杆菌要点

微生物学设计性实验报告 项目组长_学号__成员专业_生物科学班级__实验项目名称_土壤中微生物的分离及分类_指导教师及职称___开课学期至学年__学期上课时间 从环境中分离产淀粉酶的芽孢杆菌 一、摘要 本文通过对土壤中细菌杀灭营养体芽孢萌发,并用由淀粉充当碳源的选择培养基培养分离,纯培养后通过镜检最后得到能产胞外淀粉酶的芽孢杆菌。 二、实验目的及要求 1、通过本实验的学习,使学生学习掌握从环境中分离产淀粉酶菌株以及菌株初步鉴定的方法; 2、巩固微生物分离纯化、细菌生理生化鉴定、染色观察等实验技能,对所学习过的微生物学实验方法进行综合技能训练; 3、培养学生综合利用微生物学、生物化学等相关知识,自行设计、实施并判断实验结果的能力。 4、要求学生根据所学知识自主设计实验方案,在实验方案通过审核后组织实施,最终要求获得产淀粉酶的菌株并对其进行初步的鉴定。 三、实验仪器设备 主要仪器:超净工作台、生化培养箱、电热干燥箱、高压蒸汽灭菌锅、水浴锅、显微镜、培养接种器具等 主要制剂:富集培养基、选择性培养基、5%的番红水溶液、卢戈氏碘液 四、实验方案设计 (一)实验原理 1、土壤中含有各种微生物,其中产胞外淀粉酶的芽孢杆菌含量在不同土壤中含量也不同,生物在适宜的的环境下生存得好,所以在淀粉厂附近的土壤中,能利用淀粉的微生物含量较高。 2、芽孢是菌体生长到一定阶段形成的一种抗逆性很强的休眠体结构,芽孢最主要的特点就是抗性强,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抗性。它帮助菌体度过不良环境,在适宜的条件下可以重新转变成为营养态细胞。 3、在只用淀粉充当碳源的选择培养基中,只有能产保外淀粉酶利用淀粉的的菌体能成为优势菌种。在淀粉选择培养基中,产胞外淀粉酶的菌种可以得到富集及分离。 4、菌体可经简单染色后在显微镜下被判断出是否为杆菌

溶菌酶的提取分离和纯化实验报告

生物工程综合实验溶菌酶的提取、分离纯化及其活性测定 实验报告集 班级生工1411 学号 组别7 姓名

实验室学生守则 一、严格遵守实验室各项规章制度和管理措施,服从教师及实验技术人员 的指导。 二、严格按照实验要求,做好实验预习,实验之前5分钟进入实验室,及时、 准确地完成实验任务,实事求是地完成实验报告,杜绝弄虚作假。 三、严格执行操作规定,爱护仪器设备及工具。凡不按教师的指导擅自操 作引起仪器、设备损坏者,应予赔偿。 四、爱护实验室公共财物,节约水电、材料和试剂。未经允许不得随便挪 动非实验需用的其他仪器,不得随便拆装仪器或将仪器、工具带至室 外。 五、持实验室的严肃安静,不得大声喧哗、嘻闹,严禁在实验室内抽烟和 吃东西。 六、严防事故,确保实验室安全,发现异常情况,应及时向有关教师和管 理人员报告。 七、每次实验结束后,主动整理好仪器设备,归还所借器材,关闭电源、 水源,按指导老师的要求做好实验结束工作及室内外的清洁卫生工作,经指导老师许可后,方可离开。

预习报告(手写,可自行续页)

实验报告 溶菌酶的提取、分离纯化及其活性测定 一、目的 对从鸡蛋清中提取并分离纯化出溶菌酶进行活性测定 二、原理 鸡蛋是溶菌酶的主要来源,等电点约为10.5~11,最适温度50℃,最适pH为6~7左右。 1、溶菌酶分离纯化原理: (1)等电点法利用溶菌酶等电点较高,在酸性条件下除去一些杂蛋白 (2)阳离子树脂柱层析法进一步除去杂蛋白 2、溶菌酶鉴定分析 (1)考马斯亮蓝法测蛋白含量 (2)分光光度法测定酶活性 (3)使用SDS-PAGE 鉴定溶菌酶纯度 三、实验材料与方法 1、实验材料与试剂 鸡蛋清,PBS缓冲液,40%甘油、冰醋酸、氢氧化钠,D152大孔弱酸性阳离子交换树脂、透析袋,考马斯亮蓝G250、牛血清蛋白、乙醇、磷酸,溶菌酶标准品、底物微球菌粉,蛋白质分子量Marker 、SDS、聚乙二醇-20000等 2、实验仪器 低速离心机、高速冷冻离心机、离心管、分光光度计,玻璃层析柱,Bio-Rad垂直电泳系统,移液枪、移液管,培养皿、玻璃棒、普通漏斗、滤纸、量筒、刻度试管及试管架、冰箱、摇床、烧杯、止水夹等。 3、实验方法 1.新鲜鸡蛋清的制备与粗分离 2. 树脂柱层析分离纯化 (1)D152树脂处理(2)湿装法装柱(3) 上柱离子交换吸附(4) 冲平(5) 洗脱 3.透析与浓缩 (1) 透析除盐(2) 聚乙二醇浓缩 4.蛋白质含量的测定 5.溶菌酶纯度的测定(SDS凝胶电泳)

胃蛋白酶提取的分离纯化

胃蛋白酶提取法中分离纯化技术的研究进展 摘要:本文就胃蛋白酶的生物提取法,对其在生产过程中的分离、纯化技术展开综述。其中,分离技术主要介绍了:盐析法、有机溶剂沉淀法、底物亲和法、透析法。纯化技术主要介绍了:凝胶过滤法、透析离子交换法。综合比较各分离纯化方法的特点,得到最优的分离纯化方法有机溶剂与盐析共沉淀法、膜分离技术、等电点沉淀法与底物亲和法。 关键词:胃蛋白酶分离纯化应用 .生物提取法生产胃蛋白酶 1.1 工艺路线 (自溶、过滤)(脱脂、去杂质) 猪胃黏膜→自溶液→上清液 (浓缩、干燥) →胃蛋白酶成品 工艺过程 (1)原材料的选择和预处理:胃蛋白酶原主要存在于胃粘膜基底部,采集原料时剥取的粘膜直径大小与收率有关。一般取直径10cm、深2-3mm的胃基底部粘膜最适宜,每头猪胃平均剥取粘膜100g左右。(2)自溶、过滤:在夹套锅内预先加水100升及盐酸升,加热至50度时,在搅拌下加入200千克猪胃黏膜,快速搅拌使酸度均匀,保持45—48度,消化3-4小时,得自溶液。用纱布过滤除去未消化的组织尿蛋白,收集滤液。(3)脱脂、去杂质:将滤液降温至30℃以下,加入15-20%氯仿或乙醚,搅匀后转入沉淀脱脂器内,静置24-48小时,使杂质沉淀,分出弃去,得脱脂酶液。(4)浓缩、干燥:取清酶液,在40℃以下减压浓缩至原体积的1/4左右,再将浓缩液真空干燥。球磨过80-100目筛,即得胃蛋白酶粉。 2胃蛋白酶的分离技术 有机溶剂法

可用于胃蛋白酶的初步提取浓缩。通常使用的有机溶剂有甲醇、乙醇、丙酮、异丙酮,其沉淀蛋白质的能力为:丙酮>异丙酮>乙醇>甲醇。当然此顺序也不是一成不变的,因为还要受温度、pH、离子强度等因素的影响。丙酮沉淀能力最好,但挥发损失多,价格较昂贵,所以工业上常采用乙醇作为沉淀剂。 2.2盐析法 盐析法是酶制剂工业中常用方法之一,硫酸镁、硫酸铵、硫酸钠是常用的盐析剂,其中用的最多的是硫酸铵。美国专利(2,701,228)改进后,用锌盐沉淀胃酶。当母液含醇(或酮)在50%--55%、pH在—时几乎全部胃酶可以用醋酸锌沉淀,沉淀物为胃酶的锌盐,然后用金属螯合剂除去锌盐,得15000—16000倍活力的酶,收集率为%%。此法较上述有机溶剂沉淀所得的胃酶活力和得率都高。 底物亲和法 底物亲和法是利用酶(胃蛋白酶)与其底物(酪蛋白)的亲和性,从胃粘膜中提取得到胃蛋白酶。使底物和酶在的乳酸缓冲液中充分结合,然后调pH至4(底物的等电点)沉淀底物和酶的结合物,随后让沉淀物再溶解于乳酸缓冲液中,添加低浓度的SDS将底物和酶分离,得到酶—SDS复合物,再进一步分离纯化。陈躬瑞(2001)成功的应用此法对蛇胃蛋白酶进行了实验室分离,得率大约为30%。与传统的分离方法比较,此法具有简单高效的优点,为后续的纯化工艺避免了昂贵的活化试剂和配基的使用,同时具有较高的特异性。【2】 透析法 胃蛋白酶的分离过程中还经常用到透析法。该法是利用蛋白质大分子对半透膜的不可透过性而与小分子物质及盐分开的。由于透析主要是扩散过程,如果袋内外的盐浓度相等,扩散就会停止,因此要经常换溶剂,一般一天换2—3次。如在冷处透析,则溶剂也要预先冷却,避免样品变性。透析时的盐是否除净,可用化学试剂或电导仪来检测。【1】 3胃蛋白酶的纯化技术 凝胶过滤法

-淀粉酶的提取要点

α-淀粉酶的提取、分离及测定 (生化试验小组-2005.4) 试验全程安排: 试验一、色谱分离淀粉酶 1.1 试剂及设备 离子交换树脂 -20℃冰箱 样品管(5-10ml试管) 1.5ml离心管 紫外分光光度计 α-淀粉酶样品 秒表 胶头吸管(进样用) 平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液) 洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠) 试剂瓶 1.2 离子交换色谱原理与方法 色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromatography, 即中文的色谱,这就是现代色谱这一名词的来源。

但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。自20世纪40年代以来以Martin为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。同样,石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用。气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析必不可少的手段和工具。 20世纪80年代以后我国也大规模采用气相色谱和高效液相色谱。随着环境科学的发展,不仅需要对大量有机物质进行分离和检测,而且也要求对大量无机离子进行分离和分析。1975年美国Dow化学公司的H.Small等人首先提出了离子交换分离抑制电导检测分析思维 即提出了离子色谱这一概念离子。色谱概念一经提出便立即被商品化产业化由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。我国从20世纪80年代开始引进离子色谱仪器,在我国八五、九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关。 色谱的分类 色谱的分类有多种,主要按两相的状态及应用领域的不同可分为两大类 1. 按应用领域不同分类制备色谱半制备色谱 2. 以流动相和固定相的状态分类气相色谱、气固色谱、气液色谱、液相色谱、液固 色谱、液液色谱、超临界色谱、毛细管电泳 离子交换色谱 离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子。它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架在苯环上引入磺酸基形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构以便于快速达到交换平衡。离子交换树脂耐酸碱,可在任何pH范围内使用,易再生处理,使用寿命长。缺点是机械强度差,易溶胀,易受有机物污染。 离子色谱基本流程图如下图所示:

胃蛋白酶提取的分离纯化

胃蛋白酶提取的分离纯 化 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

胃蛋白酶提取法中分离纯化技术的研究进展 摘要:本文就胃蛋白酶的生物提取法,对其在生产过程中的分离、纯化技术展开综述。其中,分离技术主要介绍了:盐析法、有机溶剂沉淀法、底物亲和法、透析法。纯化技术主要介绍了:凝胶过滤法、透析离子交换法。综合比较各分离纯化方法的特点,得到最优的分离纯化方法有机溶剂与盐析共沉淀法、膜分离技术、等电点沉淀法与底物亲和法。 关键词:胃蛋白酶分离纯化应用 .生物提取法生产胃蛋白酶 1.1 工艺路线 (自溶、过滤)(脱脂、去杂质) 猪胃黏膜→自溶液→上清液 (浓缩、干燥) →胃蛋白酶成品 工艺过程 (1)原材料的选择和预处理:胃蛋白酶原主要存在于胃粘膜基底部,采集原料时剥取的粘膜直径大小与收率有关。一般取直径10cm、深2-3mm的胃基底部粘膜最适宜,每头猪胃平均剥取粘膜100g左右。(2)自溶、过滤:在夹套锅内预先加水100升及盐酸升,加热至50度时,在搅拌下加入200千克猪胃黏膜,快速搅拌使酸度均匀,保持45—48度,消化3-4小时,得自溶液。用纱布过滤除去未消化的组织尿蛋白,收集滤液。(3)脱脂、去杂质:将滤液降温至30℃以下,加入15-20%氯仿或乙醚,搅匀后转入沉淀脱脂器内,静置24-48小时,使杂质沉淀,分出弃去,得脱脂酶液。(4)浓缩、

干燥:取清酶液,在40℃以下减压浓缩至原体积的1/4左右,再将浓缩液真空干燥。球磨过80-100目筛,即得胃蛋白酶粉。 2胃蛋白酶的分离技术 有机溶剂法 可用于胃蛋白酶的初步提取浓缩。通常使用的有机溶剂有甲醇、乙醇、丙酮、异丙酮,其沉淀蛋白质的能力为:丙酮>异丙酮>乙醇>甲醇。当然此顺序也不是一成不变的,因为还要受温度、pH、离子强度等因素的影响。丙酮沉淀能力最好,但挥发损失多,价格较昂贵,所以工业上常采用乙醇作为沉淀剂。 2.2盐析法 盐析法是酶制剂工业中常用方法之一,硫酸镁、硫酸铵、硫酸钠是常用的盐析剂,其中用的最多的是硫酸铵。美国专利(2,701,228)改进后,用锌盐沉淀胃酶。当母液含醇(或酮)在50%--55%、pH在—时几乎全部胃酶可以用醋酸锌沉淀,沉淀物为胃酶的锌盐,然后用金属螯合剂除去锌盐,得15000—16000倍活力的酶,收集率为%%。此法较上述有机溶剂沉淀所得的胃酶活力和得率都高。 底物亲和法 底物亲和法是利用酶(胃蛋白酶)与其底物(酪蛋白)的亲和性,从胃粘膜中提取得到胃蛋白酶。使底物和酶在的乳酸缓冲液中充分结合,然后调pH至4(底物的等电点)沉淀底物和酶的结合物,随后让沉淀物再溶解于乳酸缓冲液中,添加低浓度的SDS将底物和酶分离,得到酶—SDS复合物,再进一步分离纯化。陈躬瑞(2001)成功的应用此法对蛇胃蛋白酶进行了实验室分离,得率大约为30%。与传统的分离方法比较,此法具有简单高效的优点,为后续的纯化工艺避免了昂贵的活化试剂和配基的使用,同时具有较高的特异性。【2】

α-淀粉酶分离提纯技术研究进展

α-淀粉酶分离提纯技术研究进展 摘要:为了更好地研究α-淀粉酶的性质与应用α-淀粉酶,我们需要不断地从不同的生物体内提取α-淀粉酶并将其高纯化。随着生物技术的不断发展,分离提纯的方法也越来越复杂越精确,然而它却为生物学的发展奠定了一定的基础,此篇综述简要地说明近年来国内外在α-淀粉酶的分离纯化等方面成就,也部分介绍了α-淀粉酶的研究现状和工业应用以及发展前景。 关键字:α-淀粉酶分离提纯现状应用前景 α-淀粉酶(α-Amylase)是一种内切葡萄糖苷酶,属于淀粉酶。米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键,在催化水解α-1,4-糖苷键只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60-90℃,最适宜作用温度为60-70℃,作用pH值范围5.5-7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。主要存在于人的唾液和胰脏中也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。 一、α-淀粉酶分离提纯的研究历史与现状 1991年中科院北京微生物研究所孔显良等将米曲霉(Aspergillur oryzae)突变株6-193的麦麸固体培养物,经水浸泡其中α-淀粉酶活力为每克于曲 600单位。用硫酸铵分段沉淀,Sephadex G一75凝胶过滤和制备垂直平板电泳纯化,经PAGE 鉴定为一条带。以此来研究其性质,对其与可溶性淀粉溶液作用后的产物经薄层色谱分析,根据扫描结果,葡萄糖、麦芽糖、麦芽三糖、麦芽四糖分别占6.4%、32.3%、37.1%、10.9%。麦芽糖和麦芽三糖二者之和占69.4%,与Novo公司Norman报道的相似,属糖化型α-淀粉酶,可用于制糖、啤酒和面包食品工业,并可以替代一淀粉酶生产麦芽糖浆。米曲霉α-淀粉酶作为面包添加剂比细菌α-淀粉酶耐热性低,避免面包在制造过程中造成过度液化现象,而使生产的面包发粘,在当时此酶是目前较理想的面包食品类的添加剂。 1992年姜涌明等采用壳聚糖絮凝、淀粉吸附、乙醇沉淀等步骤,从枯草芽孢杆菌86315发酵液中提取了α-淀粉酶。然后用Sepbadex G一100凝胶过滤、DEAE—纤维素柱层析进一步提纯,得到DISC-电泳一条带的淀粉酶制剂,从而更好地研究其动力学问题。 1994年西北大学李汉、李华儒等率先开发了一个用强阴离子高效液相色谱分离纯化α-淀粉酶的新方法,在给定的条件下纯化工业α-淀粉酶,其活性回收率达96%,比活性为388u/mg蛋白质.纯化倍数提高30倍,经SDS-PAGE分析,得到分子量分别为58K和33K两条α-淀粉酶谱带。此法纯化α-淀粉酶简单、快速、救率高,不仅能纯化工业粗酶,也可纯化其它来源的α-淀粉酶。在当时,此法的研究成功为大规模制备高纯度α-淀粉酶提供了一个新工艺路线。 在1995年时,唐梓进、肖俊方等针对工业α-淀粉酶常混有其他酶类的问题,改良了淀粉微球亲和吸附纯化α-淀粉酶的方法,将淀粉做成网状结构微球,作为亲和吸附载体,装柱后用于吸附、纯化淀粉酶。此球机械强度大,对酶吸附量高达125mg/mL床体积。低温条件下(4℃)操作,球与酶很少反应,重复操作9次未见明显变化。工业生产较纯的酶经一次过柱后,酶比活仍提高2.3倍,每克干粉酶活提高16.5倍。整个操作过程简单、方便,酶失活很少,过柱后回收率高达91.6%。此球既适用于工业生产中纯化淀粉酶,也适用于实验室中淀粉酶的

蛋白质和酶的分离与纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术 可以根据各种蛋白质的结构、理化性质不同设计分离方法。 (一)根据蛋白质的溶解度不同进行分离

酶的分离纯化.

酶的分离纯化 提取原则 a. 相似相溶。 酶提取时首先应根据酶的结构和溶解性质,选择适当的溶剂。一般说来,极性物质易溶于极性溶剂中,非极性物质易溶于非极性的有机溶剂中,酸性物质易溶于碱性溶剂中,碱性物质易溶于酸性溶剂中。 酶都能溶解于水,通常可用水或稀酸、稀碱、稀盐溶液等进行提取,有些酶与脂质结合或含有较多的非极性基团,则可用有机溶剂提取。 b. 远离等电点的pH值,溶解度增加。 酶的提取方法 酶的分离方法 1沉淀分离沉淀分离是通过改变某些条件或添加某种物质,使酶的溶解度降低,而从溶液中沉淀析出,与其它溶质分离的技术过程。 在蛋白质的盐析中,通常采用的中性盐有硫酸铵、硫酸钠、硫酸钾、硫酸镁、氯化钠和磷酸钠等。其中以硫酸铵最为常用。在盐浓度达到某一界限后,酶的溶解度随盐浓度升高而降低,这称为盐析现象。 有机溶剂之所以能使酶沉淀析出。主要是由于有机溶剂的存在会使溶液的介电常数降低。溶液的介电常数降低,就使溶质分子间的静电引力增大,互相吸引而易于凝集,同时,对于具有水膜的分子来说,有机溶剂与水互相作用,使溶质分子表面的水膜破坏,也使其溶解度降低而沉淀析出。常用于酶的沉淀分离的有机溶剂有乙醇、丙酮、异丙醇、甲醇等 2离心分离离心分离是借助于离心机旋转所产生的离心力,使不同大小、不同密度的物质分离的技术过程。在离心分离时,要根据欲分离物质以及杂质的颗粒大小、密度和特性的不同,选择适当的离心机、离心方法和离心条件。 蛋白质分子在离心時,其分子量、分子密度、组成、形状等,均会影响其沉降速率,沉降係系数即用來描述此沉降性质;其单位为S (Svedberg unit)。 每一种的沉降系数与其分子密度或分子量成正比。不同沉降系数的蛋白质,可利用超高速离心法,在密度梯度中作分離。 3、过滤与膜分离 过滤是借助于过滤介质将不同大小、不同形状的物质分离的技术过程。

菠萝蛋白酶的提取、分离纯化及活性测定

菠萝蛋白酶的提取、初步分离纯化及活性测定 15食安(1)班张凯 摘要:本研究运用硫酸铵沉淀法和透析法并结合考马斯亮蓝G520染色法测定菠萝皮中蛋白酶活性及蛋白质含量,得到同一品种及成熟度的菠萝皮经两种不同的纯化方法处理,菠萝皮中的蛋白酶都能被有效纯化,但是蛋白酶活性会损失一部分。 关键词:菠萝蛋白酶;透析法;分离纯化;酶活性; 前言 菠萝蛋白酶(bromelain)是从菠萝植株中提取的一类蛋白水解酶的总称,主要存在于菠萝茎和果实中,根据提取部位的不同,分为茎菠萝蛋白酶和果菠萝蛋白酶。Marcano于1891年研究发现菠萝汁中含有蛋白酶。随后,人们对菠萝蛋白酶展开了一系列研究,发现其在医药和化工领域有很好的利用价值。1957年,Heineche等从菠萝茎中提取得到蛋白质水解酶,从而使菠萝蛋白酶实现商品化生产。目前,菠萝蛋白酶的一些功能成分已得到成功分离,并应用于医药领域。随着提取纯化技术的不断进步,高活性的菠萝蛋白酶将广泛应用于医药、化工和食品领域。[1]利用菠萝皮分离纯化菠萝蛋白酶,不仅可充分利用资源,拓展菠萝蛋白酶的获取途径和应用空间,还可降低菠萝加工废料对环境的污染;随着市场对菠萝加工产品需求量的增大,对于菠萝皮的研究与利用就显得尤为重要,尤其对最主要的功能成分蛋白酶的分离、纯化与性质的研究更有意义。[2] 本文通过对菠萝皮蛋白酶的提取,初步分离纯化及活性测定进行了初步研究,探讨影响菠萝蛋白酶活性的影响因素,并解决实验存在的一些问题。 1实验材料与仪器 1.1实验材料与试剂 新鲜菠萝,透析袋(截留相对分子质量8 000~14 000),0.1mo1/L pH 7.8磷酸缓冲液配制(PBS),0.01mo1/L pH 7.8磷酸缓冲液配制(PBS),1%酪蛋白,激活剂[含20mmo1/L半胱氨酸-盐酸盐、1mmo1/L EDTA-Na2 (乙二胺四乙酸二

自然界中产淀粉酶菌株分离纯化及酶活测定.

自然界中产淀粉酶菌株分离 纯化及酶活测定 淀粉酶(Amylase )又称糖化酶,是指能使淀粉和糖原水解成糊精、麦芽糖和 葡萄糖的酶的总称。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖元等a-1,4-葡聚糖,水解a l, 4-糖苷键的酶。根据作用的方式可分为a淀粉酶(EC 3. 2. 1. 1.)与禺淀粉酶(EC 3. 2. 1.2.)。a-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物;3■淀粉酶与a-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断a1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘署、大豆等),但也有报告在细菌、牛乳、霉菌中存在。 淀粉酶是一种用途极广的生物催化剂,广泛应用于造纸、食品、医药工业。如饴糖、啤酒、黄酒、葡萄糖、味精、抗生素等行业;用于高质量的丝绸、人造棉、化学纤维退浆;制成不同品种的工业酶、医用酶、诊断酶等;在洗涤剂工业中,作为洗涤剂酶与碱性蛋白酶、脂肪酶一起添加于洗衣粉中制成多酶洗衣粉等具有极广泛的用途。随着社会需求的增大,工业生产对淀粉酶的需求量越来越大,其在各领域应用广泛,急需寻找更高酶活的产酶菌株满足生产需要。 生淀粉酶是指对不经过蒸煮糊化的生淀粉颗粒能够表现出强水解活性的酶类。 70年代由于两次石油危机,引起各国学者从节能和有效利用天然资源出发,重视对生淀粉酶的研究。研究大致分两个方面:一是探讨对生淀粉不经蒸煮,直接用于酒精发酵的可能性;另一则是从自然界中分离筛选能产生生淀粉酶的微生物,并进而研究生淀粉酶的酶学特性及其产生菌的徽生物学特性[1,2]。除动物自身的消化 道可分泌一些淀粉酶外,淀粉酶的另外两大来源是植物和微生物能产生生淀粉酶的微生物较多。Ueda [3, 4],Mizokami [5],Tamiguchi [6],Kainuma [7]先后报道了Aspergillus awaraori,Rbizopus . sp.,Strepiococcus boris Bacillus circulans,Chalara paradoxa 等菌种均有产淀粉酶能力。 本实验拟从种植谷物的贫瘠土壤和平地肥沃土壤的5cm~25cm 土层取土壤样品 中分离土壤微生物,筛选能产生淀粉酶的菌种,并进行初步鉴定[8]。同时,拟进

相关主题
文本预览
相关文档 最新文档