当前位置:文档之家› 视频线传输标准

视频线传输标准

视频线传输标准
视频线传输标准

视频线传输标准

发布时间:2010-4-8

同轴电缆类型及性能:

1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”;

2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”;

3)基本性能:

l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆;

l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点;

l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些;

l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。

二、了解同轴电缆的视频传输特性——“衰减频率特性”

同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一:

监控同轴传输特性基本特点:

1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当;

2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了;

3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题;

三、监控工程应用设计要点

网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。

1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M 不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能是100%,而是允许有一个“失真度”范围要求的标准。这个“标准”的“失真度范围”,在图像上用肉眼应该是分辨不出来的。反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。这一点,从网站技术论坛讨论的情况看,还远没引起足够认识。宏观来看,我国监控行业发展了20多年,工程图像质量不仅没有提高反而有些下降,这不能不引起我们的关注和思考。

2. “视频传输”标准:

由图二可见,对于视频传输,我国广播级视频失真度标准要求如图a):5M以下幅频特性误差范围为

±0.75db, 即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,如图b),0—6M全范围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:要保证图像质量,视频传输系统(产品)的频率失真范围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。但还有一个误区:在工程中还是有不少人用主观评价“工程图像质量好坏”,甚至于用双方是否认可验收来说明“传输系统(设备)”是否合格,这就有些本末倒置了。工程商这么做可能是“糊涂”;传输设备厂家如果这么做,那可就是“蒙人”了,如果再利用媒体这么宣传,那就是诚心“误导”了。

3..摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:1000米

20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减——原作注)

4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;

5.高编电缆:尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以3db带宽传输距离,反而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大;

6.同轴电缆加放大补偿的视频传输方式:这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的“增益频率特性”之和,放大补偿的“增益频率特性”,应该能有效补偿电缆的频率衰减特性,且二者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。目前这项同轴视频传输技术,产品已经达到的技术水平是:只用一级末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km范围以内的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控范围扩展到了2-3公里,且是我国自有知识产权技术。

7.工程中确有不少工程是按照“只要图像质量双方认可验收”就是“硬道理”的做法,这实际是无标准可言,不属本文讨论范围。不过这里可以进一言:还是多做些有影响的样板工程才是长远之计;

四、监控同轴电缆的抗干扰性能

[工程经验]:一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。重新焊好后,干扰消失了,图像恢复正常。

这说明什么问题呢?一是说明周围环境确有外界电磁干扰存在,二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉,三是说明BNC电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。这就是我们探讨干扰产生原理的启发点。对于干扰的探讨,eie实验室的研究成果表明:

1. 同轴干扰形成原理:就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。这就是同轴干扰形成原理,见图三。

2. 显然:当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。这就是同轴电缆屏蔽干扰的作用;

3. 在上面工程经验中,当Q9头没有焊接好、接触不良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;

4. 工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除;

5. 四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大;需要明确的是:与低编电缆比较,四屏蔽高编(128)电缆这种能够“适当减弱”低频干扰的效果,其减弱程度是与两种电缆外导体电阻成反比关系;工程上值得认真考虑的是这点减弱干扰的效果,与高编电缆的高投入成本是否值得?

五、视频传输中的抗干扰措施

工程中产生干扰的情况很多很复杂,但可以大致分为两大类:一类是电缆传输线路“外部电磁干扰”的入侵,如地电位干扰、电台干扰、电火花干扰、并行电缆耦合干扰等。这是影响最大、设计和施工中又很难预测的干扰。第二类是两端设备问题和故障引入的干扰,如设备电源故障引来的50/100周电源干扰,或开关电源的高频电源干扰等,不妨把这一类叫着“内部干扰”,这部分比较好解决。我们主要谈第一类的外部干扰。工程中比较成熟的经验有:

1. 防止“地电位”的单端接地或不接大地;

2. 电缆穿金属管,或走金属线槽;此法十分有效,但成本较高,施工有一定复杂度;

3. 埋地;

4. “远离”其他动力电缆或信号控制电缆,并尽量避免或减少并行;

5. 集中供电和控制信号传输采用屏蔽电缆,但屏蔽层不能两端都接视频地;

6. 施工穿管时,把“布线这种粗活”在当地雇临时工来做,结果多处拉断同轴电缆编织网,使外导体电阻增大,产生干扰,这种情况十分多。但这属于可以避免,发生概率又最高的“人为因素”。

7. 电缆中间接头连接方法,不是采用F型接头和双通连接,而是采用“焊接”或“扭接”的方法,这就破坏了

电缆的同轴性和特性阻抗的连续性,容易引起反射和干扰。这属于经验不足的人为因素;

8. 采用抗干扰器,用平衡抵销原理抗干扰。但局限性较大,现场调试交麻烦;

六、同轴抗干扰技术新进展——抗干扰同轴电缆

在外部强干扰源仍然存在的情况下,为什么电缆穿金属管,或走金属线槽后,就可以有效抗干扰呢?正确的回答也应该是“屏蔽的效果”。那么这种屏蔽和四屏蔽电缆的屏蔽又有什么不同呢?

eie实验室研究结果表明,两种屏蔽情况的根本区别在于“感应电动势是否串联在视频信号的传输回路中”?从上面“同轴电缆的抗干扰性能”一节分析已经知道,干扰在四屏蔽(铝箔+64编网+铝箔+64编网)电缆上形成的干扰感应电动势,仍然是串联在视频信号的传输回路中,所以它的效果只能是“减弱”干扰,而不是真正意义上的抗干扰;“穿管”的情况就不同了,尽管:外界电磁干扰也会在“金属管”上产生感应电动势,但这个感应电动势与视频信号的传输回路是绝缘隔离的,所以才不会对视频信号形成干扰。这也是彻底解决同轴电缆抗干扰性能的出路所在。

实际是一种“双绝缘双屏蔽同轴电缆”(详见https://www.doczj.com/doc/892774475.html,网站的技术交流,挑战同轴视频干扰一文),其“芯线——第一绝缘层——第一屏蔽层”仍然组成标准的SYWV75-5电缆,视频信号传输回路的“地”,仍然是第一屏蔽层;外面的第二屏蔽层才是真正的干扰屏蔽层,由于在一、二屏蔽层之间有一个第二绝缘层,这就把第二屏蔽层上的干扰感应电动势,有效排除在视频信号的传输回路之外了。这就是“e电缆”的结构特点和抗干扰原理。

工程应用和实验测试表明,在视频波段,“e电缆”抗交流电源、交流电机、变频电机和电火花等低频强电磁干扰能力,十分强大,是高编电缆无法比拟的。“e电缆”实际是给同轴电缆设计了一个“随行柔性的屏蔽室”。因此,工程中大都可以免去穿金属管、走金属线槽的麻烦。在普通监控工程中,也可以放宽动力电缆、控制电缆与视频电缆不能近距离并行的要求;对建筑物中超强动力电缆,适当拉开一定距离也可以达到抗干扰目的。

“e电缆”的开发和成功应用,是同轴抗干扰技术发展的一次技术进步和技术升级,其应用前景是:

1. 有效提高了同轴电缆的视频传输质量,实现远距离、无干扰视频传输;

2. 有效扩大了同轴电缆的视频传输范围,配合加权视频放大,传输距离2、3km以上,恢复原图像;

3. 化简了监控工程的设计和施工难度,降低了抗干扰工程成本。也给无法采用金属管或金属线槽抗干扰措施的电梯监控工程提供了有效的抗干扰技术保障——电梯专用抗干扰同轴电缆。

目前无线视频监控的四大主流传输方式

目前无线视频监控的四大主流传输方式 如何选择适合自己的无线监控系统,关键是实际的应用需求和选择何种传输方式。目前主流的无线视频监控有WLAN(无线局域网)无线监控、微波(模拟微波)无线监控、COFDM无线监控、3G移动监控、卫星无线监控。 1、无线局域网传输系统 WLAN(无线局域网)与一般传统的以太网(Ethernet)的概念并没有多大的差异,只是将以太网的线路传输部分(普通网卡--五类线--普通HUB)转变成无线传输形式(无线网卡--微波—AP,AP可理解为无线HUB)。也可以说是双向通讯的数字微波。 视距无线网桥 是为使用无线局域网进行远距离点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达20km)、高带宽(可达11/54/108/150/300Mbps)无线组网。特别适用于城市中的远距离高速组网和野外作业的临时组

网。 优点:工作在免费频点(2.4G/5.8G)、带宽高 (11/54/108/150/300Mbps)、距离远(30-50km)、组网方式灵活(支持点对点、点对多点、中继、MESH)、价格便宜 缺点:固定无线传输 适合行业:最有效、最节省的网络视频监控系统。 REDWAVE提供全系列的视距 11/54/108/150/300Mbps、非视距54Mbps无线网桥 2、模拟微波 模拟微波就是将视频信号直接调制在微波的通道上,通过天线发射出去,监控中心通过天线接收微波信号,再通过微波接收机解调出原来的视频信号。也可以说是单向通讯的模拟微波。

此种监控方式没有压缩损耗,几乎不会产生延时,因此可以保证视频质量,但其只适合点对点单路传输,不适合规模部署,此外因没有调制校准过程,抗干扰性差,在无线信号环境复杂的情况下几乎不可以使用。而模拟微波的频率越低,波长越长,绕射能力强,但极易干扰其它通信,因此在上世纪90年代此种方式较多使用,现在使用较少,但价格也有优势。 优点:组网简单、价格便宜 缺点:频点使用需申请、不适合规模部署、抗干扰性差 适合行业:不合适布线,考虑成本投入 3、COFDM传输 COFDM即编码正交频分复用的简称,是目前世界最先进和最具发展潜力的调制技术。它的实用价值就在于支持突破视距限制的应用,是一种在无线电频谱资源方面充分利用的技术,可以对噪声和干扰有着很好的免疫力,绕射和穿透

传输线原理

? 为什么要测量功率? ? 好的传感器有哪些特点? ? 有办法测量峰值功率吗 ? ? 什么是调制信号? ? 我能在多大程度上影响不确定度? 在这一自学模块中,我们将说明为什么要用测量功率代替电压和电流测量。然后将详细介绍功率测量和功率测量仪器。 正确信号电平的重要性 过低:信号埋入在噪声中 过高:产生非线性失真 我们为什么要测量信号电平?系统的输出信号电平往往是射频和微波设备设计和性能的关键要素。 信号电平的测量对每一个系统,从系统总体性能到功能器件都至关重要。对系统性能的大量重要测量要求测量仪器和技术是精确的、可重复的、可溯源的和方 便的。 系统信号链中的每一个元件都必须接收到前面元件的正确信号,并在后面的元件上施加适宜的信号电平。如果输出信号电平太低,信号就会埋没在噪声中。如 果信号电平过高,性能就会出现非线性和失真,甚至更坏的结果! RFMW 101: 传输线原理和 低频时很容易测量电压(或电流) 为什么要测量功率?

在直流和低频时,电压测量是简单和直接的。如果需要功率,也很容易通过计算获得。 我们从欧姆定律知道V=IR ,我们也知道P = VI 。通过代换V 或I ,就有两种可能得到功率的方法,P=I 2 R 或P=V 2 /R ,取决于知道哪一个变量。但当频率接近1 GHz 时,大多数应用都采用直接功率测量,因为电压和电流测量已变得不现实。 高频路径被称为传输线。我们如何定义传输线?广义来说是传输路径的长度变得可与传输信号的波长相比。这些导线就开始展现行波现象。 我们测量功率的一个理由是电压和电流可能随无损传输线的位置改变,但功率仍保持常数值。另一个降低可用性的例子是在波导传输配置中很难确定电压和电流。由于这些理由,在射频和微波频率,作为基本量的功率更容易测量,更容易了解,也更有用。 P=V*I

无线传输视频监控解决方案

大连海创 大连海创高科信息技术有限公司 Dalian Hitro Hi-tech Information Technology Co.,LTD 无线传输视频监控系 统解决方案 二〇一一年六月二十一日 地址:大连市高新园区七贤岭爱贤街10号大连设计城6层 电话:7 传真:0411– 网址:https://www.doczj.com/doc/892774475.html,

大连海创高科信息技术有限公司成立于2006年,是一家高科技民营企业,主要从事无线通信技术与产品的研究、开发、生产与销售,为客户提供基于无线宽带接入技术、无线自动控制技术、无线采集技术的一体化解决方案和产品。在立足自主创新、自主开发的基础上与国外知名无线通信企业进行强强合作,并将公司开发设计中心直接设立在美国硅谷,以保证公司的技术和产品更好的与国际接轨。公司相继推出拥有完全自主知识产权和技术特点的无线宽带网桥、无线AP、无线MESH、无线集中管理系统、无线智能接入终端、WIAC、WSN、Wi-FiCamera以及软交换平台等相关产品,成为国内无线通信领域的重要生产企业之一

1. AP2108 AP 2108M 企业级室内无线MESH 概述 HITRO公司的AP 2108M是一款高性能的室内型无线Mesh设备,它支持一片独立的802.11a/b/g卡,不仅可以作为Mesh设备,还可以单独作为一台AP或Bridge设备使用。作为HITRO公司系列无线产品之一,它可以与HITRO公司其他的产品(如HITRO WBA系列产品,POLAR,SOLAR系列产品等)紧密配合,为用户提供完整的优化的有线无线混合解决方案。 ●智能组网和恢复功能。AP 2108M设备在完成出厂设置后,在安装时设备可以根据现场情况自动完成组网,设备运行过程中如果出现单个Meshap发生故障,其他的设备可以自动调整网络,不影响系统运行。 ●自动路由功能。在无线Mesh AP网络中,每个设备都有多个传输路径可用,网络可以根据每个节点的通信负载情况动态地分配通信路由,从而有效地避免了节点的通信拥塞。 ●宽带传输功能。无线通信的物理特性决定了通信传输的距离越短就越容易获得高带宽,AP 2108M设备由于选择低功率多个短跳来传输数据,节点之间的无线信号干扰也较小,因此获得了更高的网络带宽。

PCB中的传输线理论

PCB中的传输线理论 PCB板上的信号传输速率越来越高,PCB走线已经表现出传输线的性质.在集总电路中视为短路线的连线上,在同一时刻的不同位置的电流电压已经不同,所以集总参数在这时已经不起作用了,必须采用分布参数传输线理论来处理(注:如果线长度大于信号传输有效长度的1/6(1/4),那么我们就看做是一个分布式系统)。传输线的模型可以用图1表示: 单根传输线模型 如果是理想的无损传输线,这没有G 和 R。当然这也在现实中不存在的理想状况。所以,我们以下的考虑都是有损传输线。 对于图传输线的性质可以用电报方程来表达,电报方程如下: dU/dz = ( R + jwL) I dI/dz = ( G +jwC) U 电报方程的解为: 通解中的 由于R, G 远小于 jwL、jwC,所以通常所说的阻抗是指: 从通解中可以看到传输线上的任意一点的电压和电流都是入射波和反射波的叠加,传输因此传输线上任意一点的输入阻抗值都是时间、位置、终端匹配的函数,再使用输入阻抗来研究传输线已经失去意义了,所以引入了特征阻抗、行波系数、反射系数的概念描述传输线。 特征阻抗的物理意义就是:入射波的电压和入射波的电流的比值,或反射波的电压和反射波电流的比值。 电磁波在介质的中的传输速度只与介质的介电常数或等效介电常数有关。 根据经验:FR4内层带状线的传输速度为180ps/inch,表层微带线的传输速度为 140~180ps/inch。 PCB常见的传输线主要有以下几种: 1.1.1 微带线(Microstrip)

式中: w--导线宽度 t --导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.2 嵌入式微带线(Embedded Microstrip) 式中: w--导线宽度 t--导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.3 差分线(Differential Pair)

无线视频监控的三种常见传输方式

如何选择适合自己使用的无线监控系统,主要根据实际的需求和选择何种传输方式。目前主流的无线视频监控有3G/4G移动视频监控、WLAN(无线局域网)无线视频监控、微波(模拟微波)无线视频监控、COFDM无线视频监控、卫星无线监控。 1、3G传输2G的传输方式主要包括CDMA、GSM两种模式。此两种模式成本较低,具备较大的覆盖面,且传输速度较快,其中CDMA理论值传输速率为153.6Kbps,在实际使用中基本可达到60~80Kbps,因此在无线监控使用中,得到不少厂商的青睐。而基于GSM方式的GPRS,虽覆盖率则高于CDMA,但传输速率却略慢,因此在使用上仍处于下风。3G的传输方式主要包括移动(TD-SCDMA)、电信(CDMA2000EVDO)、联通(WCDMA)运营商的3G技术接入方式,自09年起,经各运营商大力推广,已有不少监控厂家针对此方面研发相关的产品。而3G突出的优点即高速的下载能力,理想值可达到3Kbps~1G的传输速率,目前4G设备在市场上也得到了广泛的应用,在3G的基础上更胜一筹。 优点:大范围移动监控缺点:带宽低、月租费适合行业:适用于公交视频监控、长途客车实时监控、押钞车管理和视频监控、船舶视频监控、军事训练移动指挥、记者跟踪采访、越野赛事监控、盛会安全管理、交通抓拍等场景的视频监控系统。 2、COFDM传输COFDM即编码正交频分复用的简称,是目前世界最先进和最具发展潜力的调制技术。它的实用价值就在于支持突破视距限制的应用,是一种在无线电频谱资源方面充分利用的技术,可以对噪声和干扰有着很好的免疫力,绕射和穿透遮挡物是COFDM的技术核心。其基本原理就是将高速数据流通过串并转换,分配到传输速率较低的若干子信道中进行传输。 优点:小范围移动监控、非视距、绕射缺点:频点使用需申请,带宽低,价格高适合行业:移动应急传输应用。应用于公安、消防、交警、人防应急、城管

(完整版)4G无线监控方案

太阳能无线视频监控系统 设 计 方 案 江西省深港科技有限公司 2019.3.22

目录 1. 系统简介 (3) 2. 系统原理和架构 (5) 3. 系统配置单 (10) 4. 售后服务及技术支持 (11) 5. 部分工程应用场景 (12)

一、系统简介 太阳能无线监控系统利用取之不尽、用之不竭的清洁环保能源太阳能和风能供电,同时系统采用了先进的音视频远距离无线组网技术,使无法或者不方便得到电力供应的地区实现远程不间断监控成为可能。随着太阳能无线监控系统集成技术的成熟,该系统已在全球得到越来越普遍的应用显示出广阔的应用前景。本系统具有:环保节能、无需挖沟或架设电力架、不需要大量线材管材、不需要输变电设备、施工周期短、不消耗市电不产生电费、不受地理位置限制、维护费用低、低压无触电危险及移动灵活等诸多优点。

郊外地域广阔没有电力供应又难以布线,本系统可以解决郊外没有市电的问题,同时也解决了图像传输不好布线的问题;应用方案的摄像机系统可以对监控点附近地区进行全方位监控,监控范围广、图像清晰度高,而且传输采用4G模式SD卡现场录像模式,管理人员可在机房集中管理所有监控点,前端监控点完全自动运行无需人员值守操作。

二、系统原理和架构 太阳能无线监控系统主要由太阳能供电系统、4G无线视频传输系统、视频监控系统三个子系统组成。 太阳能供电子系统是由太阳能组件、风力发电机、胶体蓄电池、智能充放电控制器等组成,无线视频传输子系统是由数字4G无线组成传输链路,视频监控子系统是由摄像机、终端视频管理设备(如数字硬盘录像机)等组成。根据需要可增加其它辅助功能如:太阳能市电自动互补、锂电储存、前端拾音、前端喇叭、前端录像、前端传感、目标跟踪、视频分析、图像抓拍、远距离摄像机、热感摄像机、无线广播、无线信号中继、无线信号覆盖等。

移动无线高清晰度视频实时传输系统解决方案

LB2000?移动无线高清晰度视频实时传输系统解决方案 中国船舶重工集团公司第七二四研究所 2005.04 Copyrights ?

LB2000无线高清晰度视频实时传输系统解决方案 无线图像传输即视频实时传输主要有两个概念,一是移动中传输,即移动通信,二是宽带传输,即宽带通信,因此,研制能够在高速移动过程中将频带很宽的高清晰度视频进行稳定传输的无线图像传输系统,就要解决二个主要问题:一是由多径传播引起的回波干扰;二是频率资源的使用率和渐趋饱和的问题。在过去的无线图像传输,主要是以单向的模拟电视广播业务为主,一套电视节目采用一个单独的频点,单频网可以提高频率资源的利用率,但是在不同地点用相同频率同频发射播出电视节目时,它们之间会有相互干扰,另外,由于接收或发射的一方处于移动状态,无论是发射或接收都会遇到强烈的多径干扰即回波干扰,因此,对回波干扰的处理方式可能从根本上影响一个无线高清晰度视频实时传输系统的性能,而LB2000无线数字高清晰度视频实时传输系统中的COFDM传输技术正是可以有效地利用回波而不是消极地排除回波引起的问题。因此,在城市环境里,LB2000特别适合解决当今摩天大厦林立的现代都市环境。 LB2000无线高清晰度视频实时传输系统利用未来3G移动通信的成熟技术,利用多载波调制技术和高清晰度视频编解码技术,开创性的解决了在非视距环境下传输“实时视频”的问题,下面我们重点探讨的是,LB2000在不同使用环境的各种应用的解决方案。 无论是那个部门,那个行业,使用无线高清晰度视频实时传输设备,我们可以按不同的功能分为以下几项: 一,系统从传输功能上分为: 1.发射前端; 2.接收端; 3.中继; 二,系统传输结构分为: 1.点对点应用; 2.点对多点应用; 3.多点对多点应用; 三,而从传输工作方式上则可以分为下列四种方式应用:

河道无线视频监控方案

1.系统概述 水资源短缺已经成为全球性的问题,随着经济的发展,日益增长的用水需求与水资源短缺之间 的矛盾迫使世界各国都在寻求解决的有效办法。因此,采用现代化手段,建设水资源实时监控 系统,动态掌握区域水资源变化及利用情况,最大限度的调控使用效率,对区域内的雨情水情进行自动监测,实现雨情水情监测数据的及时采集和准确传输;对各类水资源信息和防汛抗旱信息进行快速、准确的查询、分析和处理,是促进经济社会可持续发展的迫切需要。为此成都远控科技有限公司研制开发了水资源远程监控系统,是一种软件与硬件结合的自动化网络式管理系统。对区域内的水资源实时评价、实时预测、实时管理;实现了重点工程图像实时监控、政务公开,进行水资源相关业务的网上审批及水利局日常管理办公自动化,将水政水资源业务工作和办公 自动化结合在一起。 本系统采用先进的无线视频传输技术,同时支持C/S结构的客户端监控和B/S结构的IE浏览器监控,还支持手机随时随地移动监控。 2.需求分析 计划在各流域安装无线视频监控系统和水流、水位无线遥测系统,在监控中心安装远程监控系统,因为监控点都在较偏远的山区、野外,没有宽带传输条件,如果租用光纤则费用太高,所以,选用CDMA无线监控系统,完全可以满足常规的视频监控需求。 纵观目前无线传输技术,利用CDMA 1X传输方案是最为经济实用运行稳定的,此系统利用目前最有优势的CDMA(2.75 G)无线数据传输技术。该系统以高效率图像的压缩算法为手段,以CDMA 作为数据传输方式,通过现场终端和监控中心的信息交互,实现对远程作业现场的有效实时图像监控。 3.应用领域 远控科技CDMA无线网络视频监控系统是一套完善的、高效率的、性价比极高的网络多媒体视频监控系统。整合了CDMA数据通讯功能和数字视频编码功能为一体化的便捷式的产品。它把摄像机图像经过视频压缩编码模块压缩,通过智能无线通讯终端发射到CDMA网络,实现视频数据的交互、发送/接收、加解密、加解码,链路的控制维护等功能。根据应用,把实时动态图像传到距离用户最近的联通通信网络。可以通过Internet从系统总控中心得到实时图像信息。该系统整合

无线视频监控解决方案

无线视频监控解决方案 视频监控系统是无线网络技术应用最多的领域之一。 监控系统主要用于对重要区域或远 程地点的监视和控制,视频监控技术在电力系统、电信机房、工厂、城市交通、水利系统、 小区治安等领域正得到越来越广泛的应用。 视频监控系统将被监控点实时采集的视频文件及 时地传输给监控中心,实时动态地报告被监测点的情况,及时发现问题并进行处理。 例如,电力系统的变电站和电信行业的无人值守机房等设施都需要安装视频监控系统。 在通常情况下,由于监控点分布在较广阔的范围内, 并且与监控中心的距离较远, 利用传统 的有线连接方式,线路铺设成本高昂,而且施工周期长,或者因为物理因素难以架设线缆, 如遇到河流山脉等障碍时。 无线视频监控系统很好地解决上述问题。 用户采用无线视频监系统,无需铺设网络电缆, 可迅速方便地在各种需要的地方布署数字摄像设备, 建立新的视频监控系统或对现有的视频 监控系统进行扩展,具有很强的灵活性和可扩充性。 采用专业无线厂商宽带无线接入设备,可以将多个被监测点与中央控制中心连接起来, 且搭建迅速,可以在最短的时间内迅速建立起无线链路。 实时和高分辨率的视频图像通过宽带无线接入设备进行传输 心,并可以完成对远程监控点的控制。 目前,随着数字视频编码技术以及网络技术的发展, 安装监控系统正迅速从传统的基于 有线电视技术的模拟视频监控系统向基于 IP 技术的数字视频监控系统方向发展, 数字监控 系统已经在某些领域取代了原有的模拟监控系统。 基于IP 技术的数字视频监控系统采用数 字编码压缩技术( MPEG4、 MPEG2或MJPEG ),并且视频数据通过 IP 网络进行传 输,可以提供高质量视频监控,并且监控范围更加广泛。 无线视频监控系统 无线视频监控系统具有传输距离远、 低时延(对视频应用非常关键)和设备成本低的特 点,可以提供高效和经济的视频传输解决方案。 无线接入设备提供 11Mbps/54Mbps 的高网 络带宽,可以将不同地点的现场视频信息通过无线通讯手段实时传送到监控中心, 支持采用 H.263/ MPEG-1/2/4等格式的数字视频流稳定可靠地进行传输, 能够保证视频流的稳定持续 传输,最远传输距离可以达到 30公里以上,并且不受山川、河流、桥梁道路等复杂地形限 制。 现场监控点安装的摄像机所摄录的 ,传送到用户的安全监控中

无损耗传输线

§14.5 无损耗传输线 14.5.1 无损耗传输线的特点 如果传输线的电阻0R 和导线间的漏电导0G 等于零,这时信号在传输线上传播时,其能量不会消耗在传输线上,这种传输线就称为无损耗传输线,简称无损耗线。当传输线中的信号的ω很高时,由于00R L >>ω、00G C >>ω,所以略去0R 和0G 后不会引起较大的误差,此时传输线也可以被看成是无损耗线。 因为00=R ,00=G ,所以无损耗传输线的传播常数γ 000000))((C L j C j L j Y Z ωωωγ=== 即0=α,00C L ωβ=,可见无损耗线也是无畸变线。 无损耗传输线的特性阻抗c Z 为 00C L Y Z Z c = = 为纯电阻性质的。 因为0=α,所以依式(14-8)可知无损耗线上的电压和电流相量为 ) sin()cos() sin()cos(2222x Z U j x I I x I jZ x U U c c '+'='+'=ββββ (14-10) 其中x '为传输线上一点到终端的距离。 从距终端x '处向终端看进去的输入阻抗为 c c c in Z x jZ x Z x jZ x Z I U Z ) sin()cos()sin()cos(22'+''+'==ββββ (14-11) 其中,2 22I U Z =为终端负载的阻抗。 14.5.2 终端接特性阻抗的无损耗线 当传输线的终端阻抗与传输线相匹配,即c Z Z =2时,由式(14-10)可求得无损耗线上的电压和电流相量为 x I x j x I x Z U j x I I x U x j x U U x I jZ x U U c c '∠='+'='+'='∠='+'='+'=ββββββββββ2 2222222)]sin()[cos()sin()cos()]sin()[cos()sin()cos( 其电压、电流的时域表达式为

无线视频传输技术的发展

无线视频传输技术的发展 随着移动通信业务的增加,无线通信已获得非常广泛的应用。无线网络除了提供语音服务之外,还提供多媒体、高速数据和视频图像业务。无线通信环境(无线信道、移动终端等)以及移动多媒体应用业务的特点对视频图像的视频图像编码与传输技术已成为当今信息科学与技术的前沿课题。 1 无线视频传输技术面临的挑战 数字视频信号具有如下特点: ·数据量大 例如,移动可视电话一般采用QCIF分辨率的图像,它有176X144=25344像开绿灯。如果每个像素由24位来表示,一帧图像的数据量依达 594kbit。考虑到实时视频图像传输要求的帧频(电视信号每秒25帧),数据传输速率将达到14.5Mbps! ·实时性要求高 人眼对视频信号的基本要求是,延迟小,实时性好。而普通的数据通信对实时性的要求依比较低,因此相对普通数据通信而言,视频通信要求更好的实时性。 无线环境则具有如下特点: ·无线信道资源有限 由于无线信道环境恶劣,有效的带宽资源十分有限。实现大数据量的视频信号的传输,尤其在面向大众的无线可视应用中,无线信道的资源尤其紧张。 ·无线网络是一个时变的网络 无线信道的物理特点决定了无线网络是一个时变的网络。 ·无线视频的Qos保障 在移动通信中,用户的移动造成无线视频的Qos保障十分复杂。 由此可以看出,视频信号对传输的需要和无线环境的特点存在尖锐的矛盾,因此无线视频传输面临着巨大的挑战。一般来说,无线视频传输系统的研究设计目标如表1所示。 表1 无线视频传输系统的主要性能指标和设计目标

事实上,表1中许多性能指标是相互制约的。例如,视频图像压缩比的提高会增加编码算法的复杂度,因此会影响算法的实时实现,并且可能降低视频的恢复质量。 2 视频压缩编码技术 视频信息的数据量十分惊人,要在带宽有限的无线网络上传送,必须经过压缩编码。目前国际上存在两大标准化组织——ITU-T和MPEG——专门研究视频编码方法,负责制公平统一的标准,方便各种视频产品间的互通性。这些协议集中了学术界最优秀的成果。 除各种基于国际标准的编码技术外,还有许多新技术的发展十分引人注目。 2.1 基于协议的视频压缩编码技术 国际电信联盟(ITU-T)已经制定的视频编码标准包括H.261(1990年)、H.263(199 5年)、H.263+(1998年),2000年 11月份将通过H.263++的最终文本。H.26X系列标准是专门用于低比特率视频通信的视频编码标准,具有较高的压缩比,因此特别适合于无线视频传输的需要。它们采用的基本技术包括:DCT变换、运动补偿、量化、熵编码等。H.263+和H.263++中更增加考虑了较为恶劣的无线环境,设计了多种增强码流鲁棒性的方法,定义了分线编码的语法规则。 MPEG制定的视频编码标准有MPEG-1(1990年)、MPEG-2(1994年)、MPEG-4(完善中)。其中MPEG-1、MPEG-2基本已经定稿,使用的基本技术和H.26X相同。MPEG-1、MPEG-2的特点在于针对的应用主要是数字存储媒体,码率高,它们并不适于无线视频传输。人们熟知的VCD、DVD是MPEG-1、MPEG-2的典型应用。随后,MPEG组织注意到了低比特率应用潜在的巨大市场,开始和ITU-T进行竞争。在 MPEG-4的制定中,不仅考虑了高比特率应用,还特别包含了适于无线传输的低比特率应用。MPEG-4标准的最大特点是基于视频对象的编码方法。 无线通信终端是多种多样的,其所处的网络结构、规模也是互异的。视频码流的精细可分级性(Fine Granularity Scalability)适应了传输环境的多样性。 编码协议并不提供完全齐备的解决方案。一般来说,协议内容主要包括码流的语法结构、技术路线、解码方法等,而并未严格规定其中一些关键算法,如运动估计算法、码率控制算法等。运动估计算法在第3部分有较为详细的介绍。码率控制方案在第4部分有较为详细的介绍。 2.2 其他视频压缩编码技术

无线摄像头监控方案

无线摄像头监控方案(一) 现在资源的重要性越来越得到赞许,油气能源更是被称为现代社会的血液,在国内目前的现实情况中,在油田开采、运输、管理的过程中,偷盗原油、破坏开采、传输设施等种种不法行为在各油田多有发生,已经给原油生产带来了极大的损害,相关部门也在积极采取应对措施,虽然管理部门在目前的油田系统防护手段上投入了大量的人力和物力,但只是依靠现有的设备和不法分子做疲劳强度极高的人防巡逻的手段,始终见效不大。油田生产如何做到技防、物防、人防三者有效结合,经过长时间的探索和验证,事实证明必须依靠先进的安防技术手段,才能做到高效率的抓捕、扼杀、震慑油田偷盗、破坏者,才能够真正保证石油物资安全,这也是油田建设“数字油田”的整体框架内容之一。为此,通过对各油田现场环境的仔细勘察,并分析各种违法破坏行为的特点,采用当前最成熟的微波通讯产品——无线桥,推出了领先的油田系统无线视频监控解决方案,以满足和解决油田系统对安全生产的监控管理,进而保护油气的资源。 方案介绍: 油田/油田天然气田大多位于沼泽、沙漠和盆地、浅海等区域,因远离城市地广人稀,在相对的管理起来要难度大一些,在这个地方交通通信等设施较为落后。基于WLAN技术建立无线局域络,实现无线数据通讯,具有安装开通快捷、维护迁移方便、造价低等诸多优点。 油井采集数据无线传输随着技术的不断进步,油田所使用的钻探设备越来越先进,能够实时采集并记录钻探时的各种数据,而这些数据信息需要即时传送到监控信息处理中心,让监控信息中心能够随时了解钻探中的各种情况,并做出及时处理。 通过这样一个远距离实时无线传输系统,可以实现各采油作业区的采油生产数据(如采油量、含水量、温度、气压、停机等)与油田监控信息中心的实时传输,从而可以及时的了解每口油井的生产状况,极大地提高了采油生产数据汇总的效率和实时性,为油田的科学管理和安全生产提供第一手的科学依据,提高了工作效率,改善了工作方式。高性能无线传输设备,还充分保障了数据传输的快速、稳定和安全。油井实时视频监控对于油田、天然气田而言,安全生产显得极为重要。但由于油田、天然气田所处环境和生产作业地点的特殊性和复杂性,要运用传统的铺放线缆来对生产作业现场进行实时的视频监控,不但成本高、而且施工难度大、并且容易遭到不法分子对线缆的破坏。采用无线监控的方式,不但可以达到与传统有线监控同样的效果,还大大加快了整个监控系统建设、安装的速度,极大地节约了监控系统建设的成本。 寰龙创新凭借自身在无线监控领域中多年的经验,针对石油行业的特点,设计了适合的无线监控方案,并且已经在国内多个油田成功应用。通过这样的无线视频监控系统,可以对油田具体作业区域以及其它重点区域进行实时的视频传输监控,随时掌握生产现场的情况,保障了安全生产的正常进行。 寰龙创新的无线监控设备,最远可以将50公里外的视频图像信号稳定清晰地传送至监控信息中心。同时还拥有多种型号、规格的产品,能够适应复杂多变的环境,在恶劣的自然条件下也能够稳定工作,保证了整个监控系统高效、长期、安全地运行。 方案的优势及特色: 现实环境中,油田地理环境易受到客观条件的限制,因而实现油田内部的通信首要问题就是要克服地理环境所带来的制约,架设一个庞大的通信系统是一个费时耗资金的过程,地形的起伏不平导致铺设电缆后耗资过大,同时电缆穿过炼油厂可能是潜在的危险,寰龙创新的无线络技术方案可免除架设电缆光缆线的工程,不需要任何的线缆工程,即可构建一个完全无线化的、高带宽、高覆盖率的络系统,可以轻松实现远距离的视频传输,同时在无线络的覆盖区域内可以实现巡逻车在行驶过程中的不间断移动视频监控,也可以实现无线IP电话等多种先进功能。

2.4G无线视频传输方案

2.4G无线视频传输方案 一、方案概述 低分辨率视频传输应用,针对QVGA(320*240)分辨率以下的低速率无线视频传输。主要应用在可视门铃,婴儿室内监视以及小尺寸显示屏短距离无线视频传输。特点是射频部分开发简单,软件实现很快,而设计者可将精力放在上层应用的开发。 二、方案原理 1. 方案由视频采集发送端和视频接收端组成。 2. 视频发送端采用ARM7控制器,获取摄像头(320*240,QVGA)采集到的视频数据,进行视频压缩,然后控制UM2455收发芯片将数据发送出去。 3. 视频接收端采用ARM7控制器,将UM2455接收到的数据解压缩,视频解码,送到LCD 屏上。 4. 目前成功案例:可视门铃,婴儿室内监控。 三、方案图示 [attachment=321] 四,方案特点 1. 解决家庭烦恼,预防紧急事情,并对身体无辐射危害。 2. 性能:功耗小,最高速率达625Kbps,传输距离200-300米,2-3秒传送一幅图片。 3. 带天线射频模块,开发简单,体积小,产品外观可小巧精致,易受客户青睐 4. 接收端可做成USB端口连接电脑。方便携带,电池供电,无需数据线。 5. 可开发一对多产品,价格便宜,可双向通讯,方便增加产品附加功能,以及防丢器附加产品 五,方案设计 2.4G RF芯片UM2455 是UBEC推出的ZigBee芯片Cost down版本,UM2455采用直接序列展频技术(DSSS)来避免2.4GHz ISM频带上日益严重的电波与噪声干扰,更具有 CSMA/CA防碰撞机制进一步提高通讯稳定性。UM2455具有AES128加密功能。为客户提供一个稳定、高性能、简易设计、低价的RF解决方案。为避免客户RF开发能力不足的担忧,UBEC 推出UM2455相关RF模块,客户可专心处理协议,大量缩短开发时间。可提供UM2455相关产品如下: 1,UM2455 QFN封装芯片 2,100米距离QFN UM2455射频模块 3,100米距离COB UM2455射频模块 4,500米距离QFN UM2455射频模块 2.4G无线视频传输方案 2.4G无线视频传输方案 一、方案概述 低分辨率视频传输应用,针对QVGA(320*240)分辨率以下的低速率无线视频传输。主要应用在可视门铃,婴儿室内监视以及小尺寸显示屏短距离无线视频传输。特点是射频部分开发简单,软件实现很快,而设计者可将精力放在上层应用的开发。 二、方案原理 1. 方案由视频采集发送端和视频接收端组成。

无线音视频传输

数字无线音视频通信系统简介 北京菲斯罗克仪器科技有限公司

目次 目次......................................................................I 1概述 (1) 2系统组成 (1) 2.1机载设备 (1) 2.2车载设备 (2) 2.3单兵背负设备 (2) 2.4无线中继设备 (2) 2.5地面中心站设备 (2) 3系统功能 (3) 3.1主要功能 (3) 3.2主要战术技术指标 (3) 3.2.1技术参数 (3) 3.2.2性能指标 (4) 3.2.3环境指标 (4) 3.2.4接口指标 (4) 3.2.5物理指标 (4) 3.3技术特点 (4) 3.4使用特点: (5) 4系统配置 (5) 4.1标准配置 (5) 4.2用户选配 (5) 5无线通信工作原理 (6) 5.1无线局域网介绍 (6) 5.2无线局域网的标准 (6) 5.3无线扩频通信技术 (7) 5.4扩频通信的基本形式 (7)

5.5微波扩频无线网特点及运行环境 (7) 5.6链路计算 (7) 5.6.1由空间传输损耗定义 (7) 5.6.2系统参数 (8) 5.6.3自由空间传输损耗计算 (8) 5.6.4系统增益:Gs (9) 5.6.5衰落储备 (9) 6系统使用方案 (10) 6.1系统应用 (10) 6.1.1应用于政府突发公共事件的应急通信 (10) 6.1.2应用于侦防、公安、交警人员 (11) 6.1.3应用于军事领域-作战、训练和演习 (11) 6.1.4应用与军事领域-边海防巡逻 (11) 6.1.5应用于消防 (11) 6.1.6应用于深林防火 (11) 6.1.7新闻工作人员 (11) 6.1.8辑毒 (12) 6.1.9油管搜查人员 (12) 6.1.10部队侦察(尤其是单兵侦察) (12) 6.2系统典型布设方案 (12)

小区无线网络视频监控系统解决方案 无线网桥组网

智能小区无线网络视频监控系统解决方案(无线网桥组网) 本项目为一个小区的无线视频监控系统方案,由于是旧小区的视频监控系统改造,原有的监控系统使 用年限比较长,前端的摄像机也该淘汰更换新设备了,相当于从新安装一套视频监控系统,线路不容 易重新布线,所以考虑采用无线网桥,组成网络视频监控系统实现监控功能。 1、项目概述 随着网络技术的发展,人们的信息通讯的要求也越来越高。要求重新布设数据线缆,不仅增大施工难度,造成房屋及周边环境结构的破坏,而且也会浪费资金,特别是相对偏远的区域,如果布设数据线缆,将大大增加投入成本。为了解决了这一问题,无线视频传输技术得到了飞速的发展,尤其是基于微波技术的无线网桥传输网络开始广泛应用于各种场合,它提供了一种基于标准的、能满足未来发展需求的信息高速公路通道。其作为有线传输的补充及延伸,其优势特点逐渐显现出来。它既实现本地用户之间的数据交换和传输,也能使用户通过无线设备与外部数据网络相连接,实现远程视频监控。 本项目为一个小区的视频监控系统,由于是旧小区的视频监控系统改造,原有的监控系统使用年限比较长,线路老化,总出问题,前端的摄像机也该淘汰更换新设备了,相当于从新安装一套视频监控系统,监控室设置在物业办公楼一层,要求对小区的出入口、停车场、主要道路、周界及中心花园做到实时监控并存储,存储时间在一个月以上,以备日后查询资料。 2、设计思路 此项目为一小区的视频监控系统改造项目,楼层都不是很高。原有线路损坏不能使用,又没有预先设计地下弱电管道,从新架空施工难度比较多,并且影响小区的整体外观,因此选用无线视频传输为最佳方案。 前端的视频采集设备根据监控点位的具体情况,选择不同的摄像机,包括30米/50米、红外高速球、看车牌专用摄像机等设备,从而保证监控的角度、范围满足客户的时间需求。为方便施工,节约成本,采用就近取电。前端的视频信号通过视频编码器转换成网络信号后,通过无线网络将视频信号传回到监控室,接入监控室局域网,通过安装一定数量硬盘的网络磁盘阵列进行视频资料的实时存储,通过计算机和显示器输出显示前端的实时画面。 3、方案设计 根据小区的实际勘测报告,在满足用户要求的前提下,需要安装28个监控点,分布在小区的各个方向,由于监控室设置在小区的中央区域,根据现场情况来看,所有无线监控点需接入到监控中心,也就是将28路监控视频汇聚到监控中心。我们设计采用点对多点的无线网桥传输方式,即每个监控点位安装一套凯威系列的无线网桥的发射端,自带定向天线,所有都指向监控室上空方向;另外在监控室上方安装一组凯威

无线视频监控系统发展趋势

无线视频监控成为监控系统新的发展方向 随着无线通信技术的日益发展,传输带宽不断提高,通信终端的实时信息处理能力飞速增强,无线 多媒体应用日渐成为业内关注的焦点,也成为人们的必然需求。其主流应用之一是便利、灵活的无线实时视频监控系统,如无线家庭防盗、汽车监控等。基于多种无线传输手段的移动视频监控以其特有的灵活性已成为视频监控新的发展方向。 无线化视频监控包括两方面内容:一是监控中心的移动。通常情况下,被监控对象或是摄像机往往 是固定的,而作为监控系统的使用者(监控中心)则可以是动态的。二是视频监控网络的无线化。当监控点分散且与监控中心距离较远,或被监控对象不固定时,利用传统有线网络的视频监控技术,往往成本高且难以实现。 无线监控和传统的监控方案相比,能够避免大量的布线工作,节省施工费用,重定位能力强,灵活性高,具体地说有以下优点:(1)综合成本低,无须挖沟埋管,特别适合室外距离较远及已装修好的场合;采用无线监控可以摆脱线缆的束缚,有安装周期短、维护方便的优点。(2)组网灵活,可扩展性好,使用 时能灵活挪动终端设备。(3)改造方便,维护费用低。 二、无线视频监控系统涉及的关键技术 1?高效率、抗干扰的视频编解码机制 当今的视频压缩标准有MPE餉H.26X两大系列。MPEG-4目前已应用于Internet流媒体领域,为了尽量减轻MPEG-4视频流对误码的敏感性,以保证压缩视频解压后的恢复质量,MPEG-4提供了多种抗误 码工具,承载流媒体业务的实时网络传输层及底层移动通信系统也可以进一步改善流媒体传输的抗误码性能。MPEG-7是针对存储形式或流形式的应用而制定的,不仅仅用于多媒体信息的检索,更能广泛地用于其他与多媒体信息内容管理相关的领域,并且可以在实时和非实时环境中操作。 ITU-T颁布的H.261标准,用于可视电话和会议电视。H.263标准是ITU组织为了满足码率低于 64kb/s的应用而提岀的一个低码率视频压缩编码建议;它能够在较低码率的情况下达到较好的图像质量,因此广泛应用于远程监控、电视会议以及可视电话等领域,尤其在视频监控领域,它已经可以在嵌入式系 统中达到实时、稳定的压缩效果,是应用较多的视频压缩算法。目前大多数视频监控产品都支持MPEG-4和

无线网桥视频传输说明

无线传输视频监控产品说明 一、无线网桥设备 该款设备是高性能、高带宽、多功能、室外型电信级无 线设备,该设备有一路射频输出,发射功率最大350MW、千兆 网口,最高带宽300Mbps。 支持802.11a/ n标准,可提供业务领先的无线网络解决方 案,具有接入点(AP)、网桥点对点(PTP)、点对多点(PTMP)、 无线客户端(APclient)、无缝漫游(WDS)、多虚拟AP、VLAN划分,同时具有DHCP、用户认证管理、带宽管理,Qos等功能。 安全、可靠、方便的设计 ? WLT-5818系列无线网桥支持最新的无线网络安全标准,包括PPPOE、802.11i、40/104bit WEP WAPpre-shared key、AES数据加密支术,内置防火墙,加密隧道连接,以防范非法攻击。 ?设备铝合金和钢塑防撞击外壳,全天候防水防尘全封闭设计,安装快速方便,具有超强免维护能力。 ?设备内置看门狗,杜绝死机,超强稳定。 ?易于管理 ?专业的管理工具,通过MAC即可管理、修改数据后无线重启,立即生效。 ?专业的网络拓扑发现、生成软件,实时监控链路的稳定性。 ?支持Http/Https、Telnet远程和SNMP管理。 参数详细介绍

二、网络NVR设备 产品概述 支持1080P高清预览; 采用嵌入式硬件和嵌入式Linux系统;

可接驳第三方(SAMSUNG、Panasonic、SONY、Bosch、Arecont、AXIS、Honeywell、LG、Vivotek、SANYO、景阳)等50多个品牌IPC; 支持标准ONVIF、PSIA协议; 支持VGA、HDMI同步输出; 支持VGA、HDMI最大分辨率达1920×1080; 支持高清预览,所有通道解主码流; 支持智能行为分析扩展; 采用Dahua云台控制协议时,可以通过鼠标实现三维智能定位功能; 支持预览图像与回放图像的电子放大; 支持按事件查询、回放、备份录像文件,支持图片本地回放与查询; 支持录像回放时智能搜索功能; 支持数字水印; 支持一键开启录像功能; 支持即时回放,在预览画面下回放指定通道的录像; 支持重要录像文件锁定功能; 支持大华DDNS域名解析系统; 支持网络检测(网络流量监控、网络抓包、网络通畅)功能; 最大支持8路D1或4路720P同步回放; 支持盘组管理、录像定向存储; 支持1个SATA接口;

无线监控的几种无线视频传输方式

无线监控的几种无线视频传输方式 无线监控摄像机与有线监控,最主要的区别即是传输方式的不同,其无线传输部分主要是完成前端系统信号的转换、发送、中继、接收等,直至将信号接入监控中心系统。无线监控的传输部分与有线监控的光纤、同轴电缆一样,就是一个视频传输通道,这个通道能传输什么样的视频,其指标主要是传输通道的带宽和传输通道能传送的数据量有多大,其次是选择什么样的的调制方式。至于外围的摄像机和控制系统,与有线系统并无太大差别。 目前无线传输方式主要有卫星、微波、电信运行商网络系统等,其中卫星由于信号传输成本昂贵,在建筑较密集且有物体遮挡的情况下存在死角,因此在无线监控摄像机民用市场未形成主流。 而行业专用微波监控、小范围WiFi监控、运行商大范围无线监控则是目前较为常用的无线传输方式。 微波监控 其可分为模拟微波及数字微波两种方式。 1、模拟微波 此种方式传输就是将视频信号直接调制在微波的通道上,通过天线发射出去,监控中心通过天线接收微波信号,再通过微波接收机解调出原来的视频信号。据携远天成石朝兆介绍,此种监控方式没有压缩损耗,几乎不会产生延时,因此可以保证视频质量,但其只适合点对点单路传输,不适合规模部署,此外因没有调制校准过程,抗干扰

性差,在无线信号环境复杂的情况下几乎不可以使用。而模拟微波的频率越低,波长越长,绕射能力强,但极易干扰其它通信,因此在上世纪90年代此种方式较多使用,目前几乎很少使用。 2、数字微波 数字微波即是先将视频信号编码压缩,通过数字微波信道调制,再利用天线发射出去;接收端则相反,由天线接收信号,随后微波解扩及视频解压缩,最后还原为模拟的视频信号传输出去,此种方式也是目前国内市场较多使用的。数字微波的伸缩性大,通信容量最少可用十几个频道,且建构相对较易,通信效率较高,运用灵活。数字微波有模拟微波不可比的优点,如监控点比较多、需要加中继的情况多、情况复杂且干扰源多的场合。 归纳一下,数字微波容量大、抗干扰能力强、保密性好,同样的发射功率传输距离更远,受地形或障碍物影响较小,接口丰富,扩展能力强等等。反之,模拟微波就没有这些优点了,只是造价便宜一点。 WiFi监控 IEEE802.11标准定义物理层和媒体访问控制(MAC)规范,其物理层定义数据传输的信号特征和调制,工作在2.4000-2.4835GHz频段。IEEE 802.11是IEEE最初制定的一个无线局域网标准,主要用于难于布线的环境或移动环境中的计算机的无线接入,由于传输速率最高只能达到2Mbps,所以,业务主要被用于数据的存取。 此系列主要包括IEEE802.11a/b/g/n无线局域网标准,其中目前使用较多的是IEEE802.11b标准,即WiFi。此标准规定无线局域网

相关主题
文本预览
相关文档 最新文档