当前位置:文档之家› 压差法水分测定原理

压差法水分测定原理

压差法水分测定原理
压差法水分测定原理

压差法水分测定原理

主讲人:姚汉梁

教育培训部整理

上海思尔达科学仪器有限公司

前言

常用塑料粒子微量水分的测定方法,有压差法、电解法、卡尔费休法等等。其中压差法水分测定,以其快速、准确、操作方便、使用成本低(接近于零,而像卡尔费休等方法,试剂耗费庞大)等优点已被广泛应用在化纤、塑料工业的中间工艺过程中。压差法水分测定装置适用于测定极微量的水分。

水在低压状态下的沸点很低,因此,在接近真空的压力状态下,水总会以气态的形式存在,而随着压力的增加,又会重新凝结成水。

本讲座主要讲的是压差法水分测定的原理,这是一种比较法。先用不同质量的具有已知含水率的标准试样做试验,得出不同的水分所对应的不同的压力的标示,然后用待测样品去做试验,试验结果同样用压力标示,那么,在所对应的压力处,根据原先用标准试样做得的结果,就可知道该待测样品的含水量。

压差法水分测定原理

一.引言

1.一个有关水分的实验

一块木块,我们想知道它的含水量,最简单的方法是什么呢?

首先称重,这时的重量包括木块的重量和里面所包含的水分的重量;

然后烘干;

再称重,这时的重量就只剩下木块的重量了。

这块木块的含水量(即水分含量),即原先这块木块所含有的水分,就是二次称重之差。

那末,我们平时所言的含水率是什么呢?注意这里的“率”,其意为“比率”,也可简单理解为“百分比”,这里的含义是,占有百分之几。比如,上面的例子中

水分含量/原木块重量=原木块的含水率

这是个相对值的概念,如原木块重200g,烘干后为190g,那么,其中的水分含量就是10g,其含水率为5%。要搞清这二个概念,10g水是个绝对值,而5%的含水率是相对值。

2.液位的平衡

图1

如图1所示,在U形管内加水,在管口都敞开的情况下,二侧的压力是相等的,液位也是相等的。如果使二端管口压力不等,U形管二侧的液位也不会相等。也就是:

(1)当U形管二端敞开(压力相等)二液位处于同一水平面。

(2)当U形管一端增加压力,二侧液位发生变化,增压端液位

下降,另一端液位上升。

液位的平衡与不平衡及其变化的程度,均与U形管二端的压力差有关。

二.压差法水分测定的原理

1.测定装置的结构

图 2

图3 试管

测定装置是由压差管(图2)、试管(图3)二套玻璃装置组合而成。在压差管中,包含了玻璃泡A、B,充注油的U形管,以及中阀和边阀,它们一起构成了一个气密系统(参见图4)。

2.工作原理

图4

请参阅图4

(1)当中阀开启时,U形管二侧液面处于同一水平面,二边压力差相等(见图4)。

(2)当中阀关闭时,U形管二侧液面的高低取决于中阀二侧的压力变化。

3.实验过程

(1)开启中阀,关闭边阀,在边阀左侧,用真空胶管接上真空规(它是能够指示真空程度的装置)(见图5a),同时通过缓冲瓶(其原理见后述)接上真空泵(图6),注意真空规此时应处于图5a的位置。

系统接好后,如图7所示。

(2)启动真空泵,再缓缓开启边阀,系统抽真空。

U形管中加入硅油后第一次抽真空,可能费时需长达小时,因为硅油中混有空气,抽真空时,将首先把油中的空气抽出。可以明显地观察到油中气泡的形成。

(3)5分钟后,将真空规逆时针方向缓慢旋转90o,至图5b的位置,看真空规中水银在毛细管中的上

升位置,应<100Pa(公司内部标准≤20Pa)。如未达到要求,将真空规顺时针方向缓慢旋转90o,恢复到图5a的位置后,继续抽真空过几分钟再看。

图5a的位置,是真空规在被抽真空时的状态,图5b的位置是观察被抽真空所达到真空程度的状态。

(4)如10分钟后,还达不到预期的真空效果,应考虑到系统气密故障的可能性,如达到了预期真空效果,则抽真空过程结束。

除了在观察真空度的情况下,真空规都应恢复(保持)到图5a的状态。

(5)关闭边阀(此时也可以关闭真空泵了,但是必须先关闭边阀)。此时中阀仍然是开启的,管道内各处压力相等。

(6)关闭中阀。原来整个管道,通过中阀平衡连通各处压力,现在中阀关闭,只能靠U形管中的油,来传递左右二侧的压力了。如果左右二侧压力保持原态不变,油面也保持原态不变,在同一水平面上。如某处有泄漏、即使是轻微的泄漏,也将使二侧压力不平衡(泄漏侧压力增加),油位发生变化,泄漏侧油位下降。当然,如果二侧的泄漏量是一样的,液面也不会发生变化,不过,这种可能性几乎没有。

图5a

图5b

图6 真空泵

注:1.中阀──用于连通和关断U形管的左右侧;

2.边阀──用于连通和关断U形管装置与真空泵,以及大气

的连接状态;

3.空阀──当空阀开通时,可使真空泵、真空规与大气相

连,也可使测试装置与大气相连(此时边阀开启)。

图7

4.水分测定过程

上述是在试管内是空的情况,接下来叙述的,是在试管内加入含有水分的物质后的情况。

(1)在试管内加入待测样品,与压差管连接。

(2)关闭空阀、开启中阀、边阀,抽真空至<100Pa(公司内部

标准,≤20Pa),越小越好。

(3)关闭边阀(后,也可关闭真空泵)。

(4)关闭中阀。

次序千万不可搞错,否则,由于U形管二侧压力骤变,其中的油将冲向上边的水平管而难以清洗。(5)加热试管内的样品。加热样品到什么温度是有一定要求的,

加热的温度越高,水分跑出来固然越快,但也会导致样品分子结构的破坏。一般试管内样品加热的时间约10分钟左右。

(6)在样品加热过程中,水分逐渐逸出,U形管右侧油位逐渐

下降,到一定程度(10分钟左右)趋于稳定。

(7)U形管右侧油位的下降程度(用Δh表示,见图4)与样品中逸出的水分量有关。我们可以根据油位的变化,推断出样品中的水分含量。为了知道油位的下降和样品中的水分含量的关系,我们要对这套装置进行标定。

5.水分测定装置的标定

(1) 标定目的

如前所述,实验时,不同的水分含量在右侧油面上会产生不同的压力,也就是说,油位会有不同的下降程度Δh 。那么,我们就可以建立一个直角坐标(见图8),纵坐标为m ·W 表示样品中的水分含量,横坐标为油位的高度变化Δh (即下降的距离),那么,我们将用不同的水分含量的样品做的实验,结果以坐标点的形式标注在坐标系中。可以看到,各点可近似地连接为一条直线。在数学中,纵坐标为y ,横坐标为x ,如果在坐标系中也有这么根斜线,它的方程式为:

y=k ·x

其中,K 即为该直线的斜率。

在此,我们同样可以把水分量与油位的变化以下式表示:

m ·W = k ·Δh 其中,K 同样为直线的斜率。

如果,我们在已知水分含量的情况下,做了多次实验,并得到了这一条直线,那么,在以后的正式样品的测试中,只要记录U

形管中的液位的变化Δh ,那么,就可很快地求得样品中的含水量m ·W = k ·Δh 。一般地,m ·W 的单位用g 表示,Δh 的单位用mm 表示。

斜率大小由实验装置(主要是压差管)的内容积决定,压差管

的玻璃球小,斜率平坦,因为内部空间小,少的水分含量就能产生比较大的压力,如球泡较大,要产生同样大的压力,就需要有比较多的水分含量了。

(2) 标定方法

首先要找到一种物质,它应该含有固定的含水率,而且在合适的高温下,内在的水分子能脱离物质逸出而不致破坏其物质本身。一般情况下,下列几种物质可供我们使用:

a .钼酸纳

钼酸纳的分子式为Na 2M O O 4·2H 20,其分子量为241.92,在它的分

子式中,含有二个结晶水(H 20),其分子量为36,如果以W 表示每克该物质中的水分的含量(即含水

率),那么:

如在5mg 的钼酸纳中,就会有结晶水0.74405mg,也就是说,在合适的高温形态下(一般200℃左右),它们会有0.74405mg 的水逸出,以蒸汽的状态充塞在处于真空状态的水分测定装置的管道和右边的玻璃球中,继而对右侧油位面产生压力。

b .钨酸纳

钨酸纳的分子式为Na 2WO 4 .2H 20,其分子量为329.75,二个水分

的分子量为36,那么:

c .硫酸铜

要注意,并不是所有含有结晶水的物质,在合适的温度下,其

结晶水都能从物质中逸出。这里所介绍的硫酸铜就是这样的。

硫酸铜的分子式是C u SO 4·5H 20,其分子量为249.6,但其5个结

晶水中,只能逸出4个,因此,其含水率:

我们目前使用的是第一种 ── 钼酸纳。

选定了试验用的标准样品,我们就可以按下列步骤,进行整个装置的标定工作:

a.分4、8、12、16、20mg 左右称取五种量的钼酸纳。称量必须精确到0.1mg ,记录下来。由于称量很小,因此,称量时宜直接放入试管底部中称取,不要粘到管壁上,严格防止粘落到管口。称量以后,

如不马上实验,应置于干燥皿中。

b.将加热炉筒摇至最低,升温至200℃左右,稳定。

c.打开空阀,将装有钼酸纳的试管的锥孔(管口)套上压差管右侧直管下的锥口,稍向上用力(另一只手协助,防止压差管断裂),

朝一个方向旋转数十圈,以保证密封。

d.在试管与加热炉筒之间垫入一块隔热垫块。

e.关闭空阀,抽真空,至<100Pa(公司内部标准≤20Pa)。

f.关闭边阀(也可再关闭真空泵),关闭中阀。

g.移去隔热垫块,将加热炉筒换上,试管插入炉筒中间的试管套中。试管底部应与试管套底接触。小心操作,注意不要损坏。

h.油位开始变化,且越来越大,约十分钟,趋于稳定。待变化十分缓慢,不易觉察时,记录油位的变化Δh。

i.开启中阀,油位恢复平衡,慢慢地开启边阀,再慢慢开启空阀,系统与大气连通。

j.取(旋转)下试管,换上另一支装有标准样品并已称重、记录的

试管,重复上述步骤,至已准备的试管全部试验完毕。

由此,得到了5组水分含量(m·w)与油位变化量(Δh)的数据,将其标注在m·w-Δh坐标图上,得到五个点,连接起来就是一条近似的直线(见图8,图9)。

坐标中m· w是样品的含水量,其中:

W-在这里是,标准样品的含水率,如钼酸纳为0.14881。

m-标准样品的质量,用0.1mg精度的天平称得,如4.0mg。

m与W的乘积即为质量的m的样品中的水分含量。如4.0mg的钼酸纳,内含水分为:

4mg×14.881%=0.595mg

如实验正确,五点可近似连为一直线,就可求得该m·W的装置的K值。

如不能近似地连为一直线,就要检查实验中的问题。如样品称重的不正确,气密性不符合等等。

如果我们继续增加标准样品的试验用量,我们会发现,当达到一定值时,Δh不再随样品量的增加而成比例地增加,甚至不再增加,如图9实线部分。这表明,由于水分量的增加,对该系统而言已达到了蒸汽的饱和状态,如果继续增加,还可观察到玻璃泡壁上出现雾状水汽凝结,这也就是过饱和蒸汽现象。在此已无使用价值,我们使用的只是直线部分即A点以左区域。注意,K值与环境温度有关,一般保持在250C左右的环境温度下,以减少测试误差。

图9

三.装配工艺要求

1.机械装配

看清图纸和技术要求,严格按图施工,是每一个操作工人的基本素质;凭经验自以为是,不看图纸,是工作中的大忌。装配工作,除了必须保证内在技术指标,还必须保证产品的外观。客户对产品的直观印象将直接关系到客户对该产品的购买欲。因此,从装配工人到技术人员、管理人员,必须是一丝不苟、认真把关,确保产品质量。

(1)玻璃仪器

玻璃仪器装配时要做到轻拿轻放,注意防止破碎。安装固定部分时要垫软垫,要顺其自然,不能过分用力。玻璃装置安装时要自然妥贴。如不能妥贴放置安装,说明玻璃装置本身质量问题,如是硬性装配,就可能造成玻璃件的直接破碎,或由于玻璃应力的客观存在,而在运输中、使用中、甚至是在静止一段时期后自然破裂。

(2)玻璃装置与胶管的连接

连接时应先在联接处涂抹硅脂,让玻璃装置联接处得以充分润滑,手扶玻璃件的就近处,然后,再小心地将胶管缓慢地来回旋进。上述要求绝不可掉以轻心,否则,稍不注意,就会造成玻璃件的损坏。

(3)阀塞和阀体的安装

阀塞和阀体是加工单位按图纸要求配磨加工的,密封性要求很高。我们安装时要对号入座,不能

搞错,否则,直接影响到气密性,在抽真空时可能达不到要求。我们装配工在装配调试后要把阀塞与阀体用橡皮筋对号定位固定,这样就不会出现因阀塞和阀体搞错而发生的不应该发生的产品质量问题。(4)加硅油时要注意,不要沾污其它地方。如沾污了必须清理干净,这是个相当麻烦的事,应充分注意。污染的产品是绝对不能出厂的。

2.气密试验

装置装配完毕,即可进行气密试验:

(1)连接真空泵和真空规。

(2)将试管与测试装置连接。

(3)顺序开启中阀和边阀,关闭空阀。

(4)抽真空至<100Pa(公司内部标准在10分钟内抽至≤20Pa)。

(5)关闭边阀(后,也可再关闭真空泵)。

(6)关闭中阀,维持1小时,观察U形管的油面变化应<1mm。

(7)顺序开启中阀,开启边阀,开启空阀。

气密试验达不到要求,其它再好,也等于零。

3.其它装置的装配工艺及试验要求

(1)升降装置

升降装置必须做到灵活、平稳、晃动小,晃动过大,将损坏压差玻璃装置。

(2)加热筒

加热筒与试管套有硅油作导热,使热能能均匀传递到试管上(见图10 )。

图10

试管和试管套的配合间隙有限,如把试管直接插入加热炉炉

膛,要么,存在有很大间隙,隔了一层空气,热传递慢且不均匀,要么由于实际上二部件不可能对准,加热筒上升时的晃动和二部件

的中心偏差,将使玻璃部件破裂。所以我们的设计是将试管插入试管套中,再将试管套浸在油里,在试管套和炉膛间有充分的间隙,而间隙中充满了硅油,既保证了试管和炉膛的自由配合,又保证热能的均匀传递。油的多少,要控制得当,加多了要溢出,加少了也不行,原则上是使油在高温250℃时满而不溢为最好。在装配技术要求上给出了加油的量,应严格掌握。此外,还要注意硅油的高温老化问题,硅油长时间处于高温状态下,会越来越稠,粘度增加,影响导热,且容积减少,对传导热能影响很大。因此,必须经常检查,及时更换,确保装置的质量。

4.隔热垫块

在标定试验及正式试验时,加热炉膛已达到设定温度并恒温。在还未进行试验时,试管离炉膛的距离还是很近的,高温将烘烤试

管,因此,在这二者之间垫入隔热垫块(隔热垫块是一块固形的棕色石棉橡胶板),也就是为了使温度在不需要的时候不要传到试管上去。

5.缓冲瓶

缓冲瓶(见图11)。为了避免在抽真空时,真空泵突然断电(或抽真空停机),使真空泵油倒灌进玻璃装置,在真空泵与玻璃测试装置之间串入缓冲瓶(见图7),这样,即使在意外情况下,真空泵油要倒灌入玻璃装置(此时,装置中可能处于真空状态,而真空泵的另一侧却是大气压力),也是灌入缓冲瓶而不致影响玻璃测试装置。

图11 缓冲瓶

四.SF-1装置的技术指标

1.含水率测定范围

SF-1装置可以测得的最高含水量约为1.5mg,这样:当试样质量为3g时含水率测定范围为5~500PPm;当试样质量为0.5g时,含水率测定范围为30~3000PPm。限定测定范围的原则是,下限值以肉眼能分辨为限,上限值以

系统不产生过饱和蒸汽(即不进入过饱和区-非线性区)为度。

2.实验温度范围

室温:~250℃

显示误差:±3℃(在80℃、200℃、220℃点上)

温度波动:±2℃

五.压差法水分测定的适用范围

压差法水分测定只适用于5~3000PPm微量水分的测定,不适用于含量较多的水分测定,因此,它特别适用于:

1.化纤生产工艺过程中的熔融纺丝前的原料含水率测试;

2.真空包装尼龙6等的含水率测定;

3.其它适用此法的水分测定。

它还不适用于以下材料的测试:

1.在水分逸出时,材料中有其它物质也同时逸出的,且其逸出量会明显影响到水分含量的测试精度的;

2.在试验温度下,材料结构发生变化,不能保证水分含量准确测定的。

六.一般材料的参考试验温度

聚酯PET ── 220℃

尼龙66 ── 220℃

尼龙6 ── 180℃

附:

真空规的水银加注方法。

真空规在未使用以前,里面的水银泡是空的,需要用户在第一次使用前,将水银灌入,请依据下法操作:

1 .配备漏斗1 只;

2 .配备内径Φ6长约100 m m 橡胶管1 根(如使用胶管前,发现其内有滑石粉或其它之类的东西,必须要清理干净);

3 .将橡胶管两端分别与漏斗出口和转动式真空规接口处套接好;

4 .倾斜450,将水银缓慢加入真空规内,灌入量约为10-12ml(见图12)。

如无漏斗和胶管,可用硬纸自制喇叭口插入真空规接口处,再将水银灌入,但不够方便,一般不采用;

5 .水银灌入真空规后,必须做好清理工作。平时如图5a放置。

图12

备注:真空规的使用方法:

(1)真空规如图5a放置,在接口处涂以硅脂后用真空胶管与待测系统连接。

(2)抽真空(真空规在图5a位置)。

(3)测量时把真空规逆时针方向转动900到图5b的位置。此时真空规内刻度板前右侧玻璃管道中的水

银面对准刻度上的零线。

(4)真空规内刻度板前的左侧管道内的水银柱上升后,其水银面所指示的刻度即为系统之真空度。

卡尔费休水分测定的原理介绍

卡尔-费休库仑法水分测定仪测试原理 一、引言 测定物质中水分含量的方法很多,现对常用的几种方法就其经济性、准确性做简单的对比分析。 1干燥法优点:仪器价格低廉。缺点:精度差;仅能测定至10-3级;在干燥蒸馏过程中挥发性物质亦被蒸发,不能测定物质中水分含量的真值,试验时间过长。 2光谱、色谱法优点:可以测至10-6级。缺点:仪器价格昂贵;环境要求高;准备时间长(几个小时);不利于产品的过程控制。 3卡氏容量法优点:测试品种多,相对于卡氏库仑法有些特殊物质在特定试剂条件下可以测定(如酮类、醛类)。缺点:在最佳状态下仅能测至10-4级;耗材(试剂)大;测定时间偏长。 4卡氏库仑法优点:仪器价格中等;耗材少;可以测定至10-6级;时间短,一般物质在掌握好进样量的前提下使用淄博华坤电子仪器有限公司DT-30系列全自动(以下简称华坤仪器)60秒内即可完成测定,是过程控制和仲裁判定的最佳方法。缺点:有些具有副反应的物质如酮类、醛类不能测定。 对于多数物质而言,选择卡氏库仑法仪器做为质量控制测定水分含量是一种即经济又准确的方法。 二、卡氏库仑法仪器原理 1.1935年卡尔-费休(KarlFischer)首先提出了利用容量分析测定水分的方法,这种方法即是GB6283《化工产品中水分含量的测定》中的目测法。目测法只能测定无色液体物质的水分。后来,又发展为电量法。随着科技的发展,继而又将库仑计与容量法结合起来推出库仑法。这种方法即是GB7600《运行中变压器油水分含量测定法(库仑法)》中的测试方法。现在的分类目测法和电量法统称为容量法。卡氏方法分为卡氏容量法和卡氏库仑法两大方法。两种方法都被许多国家定为标准分析方法,用来校正其他分析方法和测量仪器。 2.卡氏库仑法测定水分是一种电化学方法。其原理是仪器的电解池中的卡氏试剂达到平衡时注入含水的样品,水参与碘、的氧化还原反应,在吡啶和甲醇存在的情况下,生成氢碘酸吡啶和甲基硫酸吡啶,消耗了的碘在阳极电解产生,从而使氧化还原反应不断进行,直至水分全部耗尽为止,依据法拉第电解定律,电解产生碘是同电解时耗用的电量成正比例关系的,其反应如下: H2O+I2+SO2+3C5H5N 2C5H5N HI+C5H5N SO3 C5H5N SO3+CH3OH C5H5N HSO4CH3

实验一食品水分活度的测定

※<实验一食品水分活度的测定(6学时)——扩散法> 一、目的和要求 1、熟知扩散法测水分活度的原理; 2、加深对食品水分活度的理解和认识; 3、掌握扩散法测定水分活度的方法。 二、原理 用一般食品水分测定方法定量地测定的水分即含水量,不能说明这些水是否都能被微生物利用,对食品的生产和保藏均缺乏科学的指导作用;而水分活度则反映食品与水的亲和能力大小,表示食品中所含的水分作为生物化学反应和微生物生长的可利用价值,水分活度近似地表示为在某一温度下溶液中水蒸汽分压与纯水蒸汽压之比值。 扩散法即用坐标内插法来测定食品的水分活度,这种方法并不需要特殊的仪器装置,可将一系列已知水分活度的标准溶液与食品试样一起放入密闭的容器中,在恒温下放置一段时间,测定食品试样重量的增减,根据增减值绘出曲线图,从图上查出食品重量不变值,即为该食品试样的水分活度A w。 三、材料、试剂和仪器 1、材料:鱼粉 2、标准饱和盐溶液,其标准饱和溶液的A w值如下表: 标准饱和盐溶液的A w值(25℃) 标准试剂A w标准试剂A w LiCl 0.11 NaBr·2H2O 0.58 CH3COOK 0.23 NaCl 0.75 MgCl2·6H2O 0.33 KBr 0.83 K2CO30.43 BaCl20.90 Mg(NO3)2·6H2O 0.52 Pb(NO3)20.97 3、主要仪器设备 康威氏(Conway)扩散皿(构造如图1-1)、分析天平、恒温箱 四、实验步骤 1、在康威氏皿的外室放置标准盐饱和溶液,在内室的铝箔皿中加入1g左右的食品试样,试样与铝箔先用分析天平准确称量并记录。 2、在玻璃盖涂上凡士林密封,放入恒温箱在25±5℃下保持2小时,准确称试样重,以后每半小时称一次,至恒重为止,算出试样的增减重量。 3、若试样的A W值大于标准试剂,则试样减重;反之,若试样的A W比标准试剂小,则试样重量增加,因此要选择3种以上标准盐溶液与试样一起分别进行试验,得出试样与各种标准盐溶液平衡时重量的增减数。 4、以食品试样增减的毫克数为纵坐标,以水分活度A W为横坐标作图(如图1-2),在图中A点是试样与MgCl2·6H2O标准饱和溶液平衡后重量减少20.2mg,B点是试样与Mg(NO3)2·6H2O 标准饱和溶液平衡后失重5.2mg,C点是试样与NaCl标准饱和溶液平衡后增加的重量为

费休氏水分测定法

费休氏水分测定法 1.绪论: 水分无处不在,水分含量测定是实验室中最常见的一种方法。 除了需要复杂设备的方法,如红外反射光谱,气象色谱或微波光谱等,特别介绍两种简单的方法: A.干燥法(烘箱,红外灯和红外天平) 这种方法通常会出现在各种标准中,但是存在以下缺点: 实际上,这种方法测定的是干燥所损失的部分,而不仅仅是水分.除了水分,还有药品中其他挥发性组分和分解的物质。必须严格按预设的条件(干燥温度和持续时间)操作,才能获得具有可比性的结果。 需要很长时间才能获得结果(需要在干燥箱中数小时)。这就限制了该方法的使用,特别是在生产监控过程。 B.与干燥法相比,这是一种专一性的方法。如果不发生副反应,所测定的只是水分。 方法快速(通常只需几分钟),而且可验证.因而可形成完整的证明文件。该方法自从60年前首次以来,已迅速发展成为许多实验室不可代替的方法. Karl Fisher(1901﹣1958),简称KF,在大部分实验室。 采用KF滴定法可以同时测定游离水和结晶水,如结晶的表面水或结晶水。该方法适用范围广,可以测定ppm到100%的水分含量,结果准确,重现性好。 2.原理: 卡氏水分测定法是利用碘在吡啶和甲醇溶液中氧化二氧化硫所需定量的水参加反应的原理来测定样品中的水分含量,本法可适用任何溶解于费休氏试液但不与费休氏试液起化学反应的药品的水分测定,故对遇热易破坏的样品仍然能用本法测定。 碘和SO 2是作为吡啶的加和物。卡氏试剂中作为反应物的不是SO 2 而是SO 2 和甲醇的 形成的单甲基亚硫酸根: 2CH 3OH+SO 2 →CH 3 OH 2 ++ _SO 3 CH 3 吡啶并不参与反应,而只是作为缓冲物质(如:采用水杨酸钠,在相同PH值下,反应速率相同)。所以吡啶可以用其他合适的碱(RN)代替。加入碱反应平衡显著向右移动。这说明在甲醇溶液中KF反应方程式如下式所示: H 2O + I 2 + [RNH]+_SO 3 CH 3 + 2RN [RNH]+_SO 4 CH 3 +2[RNH]+I_ 3.容量法和库仑法 以下几点对两种方法都非常重要: KF试剂必须尽可能准确,精密的加入,分辨率尽可能高。 滴定池必须尽可能密封,减少空气中的水分渗入。 通过旋摇滴定杯中已预干燥地溶液将附着在壁上的水分除去。 3-1:容量滴定法 根据碘和二氧化硫在吡啶和甲醇溶液中与水起定量反应的原理,由滴定溶液颜色变化(由淡黄色变为红棕色)或用永停滴定法指示终点,利用纯化水首先标定出每1ml费休氏试液相当于水的重量(mg),在根据样品与费休氏试液的反应计算出样品中的水分含量。 在上个世纪首先研制出活塞式玻璃滴定管,长用的活塞式玻璃定量管的体积有5ml,10ml或20ml分辨率可达0.25ul…1ul.即使采用密闭的滴定杯,每分钟空气中水分渗入的量还是有可能达到相当于20 ul KF试剂的程度,滴定仪可以自动测定该值,作为

卡尔费休氏水分测定法

1.前言 卡尔·费休水分测定法是以甲醇为介质以卡氏液为滴定液进行样品水分测量的一种方法。此方法操作简单,准确度高,广泛应用于医药、石油、化工、农药、染料、粮食等领域。尤其适用于遇热易被破坏的样品。 一般情况下,产品中水分的含量异常会严重地影响产品的质量和使用效果。例如:药品、日用品、食品中所含水分过高会影响其稳定性、理化性状、及使用效果和保质期,化学试剂中所含水分过多会影响其化学特性等。因此,对产品中的水分进行检查并控制其限度非常重要。以前,人们普遍应用加热干燥法,此种方法不但繁琐、费时,而且系统误差较大不能满足现代化生产中对产品检验的需要。 1935年,Karl Fischer发现了一种用滴定法测定含水量从1ppm到100%的样品的方法。该方法测定水分含量的用途广泛、结果准确可靠、重复性好,能够最大限度的保证分析结果的准确性。而且该方法滴定时间短,一般情况下测定一个样品仅需2到5分钟,适应现代化生产中快速检测的要求。因而卡尔·费休氏水分测定法得到了各界的一致认可,现在已成为国际上通用的经典水分测定法。 2.基本原理 卡尔·费休水分测定法是一种非水溶液中的氧化还原滴定法,其滴定的基本原理是碘氧化二氧化硫时需要一定量的

水参与反应,化学反应方程式如下: I2+SO2+2H2O → 2HI+H2SO4 (2-1) I2+SO2+H2O+3RN+R1OH → 2RNHI+RNSO4R1 (2-2) 卡氏试剂中含有分子碘而呈深褐色,当含有水的试剂或样品加入后,由于化学反应,生成甲基硫酸化合物(RNSO4R1)而使溶液变成黄色,由此可用目测法判断终点,即由浅黄色变成橙色.但是目测法误差教大而且在测定有颜色的物质时会遇到麻烦。国家标准大都规定用“永停法”来判定卡氏反应的终点,其原理为:在反应溶液中插入双铂电极,在两电极之间加上一固定的电压,若溶剂中有水存在时,则溶液中不会有电对存在,溶液不导电,当反应到达终点时,溶液中存在I2和I-电对,即: 2I-= I2+2e (2-3) 因此,溶液的导电性会突然增大,在设有外加电压的双铂电极之间的电流值突然增大,并且稳定在我们事先设定一个阈值上面,即可判断到了滴定终点,机器便会自动停止滴定,从而通过消耗KF试剂的体积计算出样品的含水量。 3.溶剂的选择 3.1常用溶剂 由于此法是测量样品中水分含量,因此需要使用一种非水物质作为溶剂,使样品溶解。通常情况下,甲醇是比较理想的溶剂。此反应是可逆反应,为了使反应向右进行,反应

食品中水分测定方法

方法有如下几种: 1、有损检测 则是指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分检测的主流。 2、直接干燥法 直接干燥法是指将待测样品置于烘箱中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分含量。 3、红外线加热干燥法 红外线加热干燥法是利用红外线加热样品使其失水,从而达到测量水分含量的目的。代表仪器为SFY-20,测量精度为±0.1%,测量时间为1200s,测水范围为0~100%,主要影响因素为温度和加热时间。该法不能进行在线测量。 4、微波加热法 微波加热法是利用微波炉的磁控管所产生的2450MHz或915MHz的超高频率微波快速振荡粮食中的水分子,使分子相互碰撞和摩擦,进而去除粮食中的水分。代表仪器为MMA30,测量精度≤0.01%,测量时间为100s,测水范围为12%~100%,主要影响因素为微波炉的功率、谷物质量、密度和介电特性。该法不能进行在线测量。与传统干燥法相比,这两种方法缩短了测量周期、减少了能耗。其中,红外法不需加热介质,提高了热能利用率;微波法操作方便,并可同时测量多种样品,但它存在温层效应和棱角效应,造成微波的不均匀,从而影响测量精度。 5、电容法 电容法是根据水分的介电常数远远大于粮食中其它成分的介电常数,水分含量的变化势必引起电容量变化的原理,通过测量与样品中水分变化相对应的电容变化即可知粮食的水分含量。代表仪器为SCY-1A,其测量精度≤0.3%,测量时间为5s,测水范围为10%~20%,主要影响因素为温度、品种和紧实度。该法可进行在线测量。以上两种方法的测量原理非常简单,技术相对来说也比较成熟,但都存在不足之处:直接干燥法. 测量周期较长,人为干扰因素多,并且不能进行在线测量;电容法的影响因素较多,在精度和重复性等方面难以达到国家规定标准。随着人工智能和数据融合技术的发展,为数据综合处理提供了新的途径,目前也取得了一些可喜的结果。 6、介电损失角法 研究表明:谷物含水率不同,介电损失角也不同,并且呈单值分段线性关系。该方法经济实用、测量精度高,尤为适合测量高水分谷物。代表仪器为MSA6450,测量时间为0.1s,测水范围为1%~30%,主要影响因素为温度和品种。该法可进行在线测量。 7、复阻抗分离电容法 复阻抗分离电容法通过复阻抗分离电路的设计,有效消除电阻参量的影响,而只保留电容参量的变化。这种方法对提高电容式水分计测量精度具有重要意义。 8、高频阻抗法 高频阻抗法是依据在敏感频带(100k~250kHz)施以外加电场的情况下粮食水分与其交流阻抗呈现对数关系这一理论来测量其水分的。代表仪器为LSK-1,测量精度≤0.5%,测量时间为1.2s,主要影响因素为温度、品种、紧实度与电极间距。该法不能进行在线测量。

红外线水分测定 说明书

SFY-20红外线快速水分测定仪 使用说明书 上海高致精密仪器有限公司 第一章概述 首先感谢您选用本公司生产的SFY-20红外线快速水分测定仪。请您在使用前详细阅读本说明书, 1.1用途、特点 SFY-20红外线快速水分测定仪,采用热解重量原理设计的,是一种新型快速水分检测仪器。水分测定仪在测量样品重量的同时,红外加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,红外加热可以最短时间内达到最大加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。该仪器操作简单,测试准确,显示部分采用红色数码管,示值清晰可见,分别可显示水分值,样品初值,终值,测定时间,温度初值,最终值等数据,并具有与计算机,打印机连接功能。因此该水分仪可广泛应用于一切需要快速测定水分的行业,如医药,粮食、种子,菜籽,烟草,化工,茶叶,食品、肉类、种子、石墨、油墨、锯末、沙土、砂石以及纺织,农林、造纸、橡胶、塑胶等行业中的实验室与生产过程中。 1.2 SFY-20主要技术指标 水分测定范围(%): 0.01%-100% 测定试样重量(g): 0-90 最大称重量:(g): 20 称量最小读数(g): 0.001 水分含量可读性(%): 0.01 温度设定范围(℃):室温-160 显示参数: 7种 通讯接口:标准RS232接口 波特率:9600/S比特 通讯方式:MCS51系列单片机通讯方式2。 供电电源:电压220v±10%频率50HZ±1HZ 试样温度:-40℃-50℃ 工作环境温度:-5℃-50℃ 相对湿度:≤80%RΗ 外形尺寸:380mm×205mm×325mm 净重量:3.7kg 1

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

水分测定方法有许多种分析

水分测定方法有许多种,常采用的水份测定方法如下: 1、热干燥法: ①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。

例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2 发酵糖(NaHCO3+KHC4H4O6) △→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘 1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。

水分测定仪工作原理

水分测定仪工作原理 The Standardization Office was revised on the afternoon of December 13, 2020

中国科协2005年学术年会论文集 企业计量测试与质量管理 卡尔-费休库仑法水分测定仪 原理及应用范围 单位:山东省计量科学研究院 淄博华坤电子仪器有限公司 作者:林振强、赵玮、任昌峰 日期:二○○五年五月十日

摘要:在国民经济中,石化产品占有重要的地位。该类产品品种繁多,但大部分都有一项必须检测的重要指标——水分含量。在检测中选择何种方法、如何选择仪器、如何测定其合格,是众多化验工作中的一项大事。作为一类测定物质中水分含量的计量仪器,目前有干燥法、卡尔-费休(KarlFischer,以下简称卡氏)容量法和卡氏库仑法等多种仪器。但就多数物质而言最为经济、最为准确的方法当属卡氏库仑法。本文以卡氏库仑法为依据,参照淄博华坤电子仪器有限公司开发生产的DT-30系列全自动微量水分测定仪来探讨其原理及应用范围。并以几年来使用仪器的心得体会来推动卡氏库仑法仪器的应用和促进多学科领域中试验工作的开展。 关键词:卡尔—费休库仑法水分测定原理范围

一、引言 测定物质中水分含量的方法很多,现对常用的几种方法就其经济性、准确性做简单的对比分析。 1干燥法优点:仪器价格低廉。缺点:精度差;仅能测定至10-3级;在干燥蒸馏过程中挥发性物质亦被蒸发,不能测定物质中水分含量的真值,试验时间过长。 2光谱、色谱法优点:可以测至10-6级。缺点:仪器价格昂贵;环境要求高;准备时间长(几个小时);不利于产品的过程控制。 3卡氏容量法优点:测试品种多,相对于卡氏库仑法有些特殊物质在特定试剂条件下可以测定(如酮类、醛类)。缺点:在最佳状态下仅能测至10-4级;耗材(试剂)大;测定时间偏长。 4卡氏库仑法优点:仪器价格中等;耗材少;可以测定至10-6级;时间短,一般物质在掌握好进样量的前提下使用淄博华坤电子仪器有限公司DT-30系列全自动微量水分测定仪(以下简称华坤仪器)60秒内即可完成测定,是过程控制和仲裁判定的最佳方法。缺点:有些具有副反应的物质如酮类、醛类不能测定。 对于多数物质而言,选择卡氏库仑法仪器做为质量控制测定水分含量是一种即经济又准确的方法。 二、卡氏库仑法仪器原理 1.1935年卡尔-费休(KarlFischer)首先提出了利用容量分析测定水分的方法,这种方法即是GB6283《化工产品中水分含量的测定》中的目测法。目测法只能测定无色液体物质的水分。后来,又发展为电量法。随着科

水分活度,水活性

水分活度的测定 随着食品科学技术的发展,食品水分活性的重要性愈来愈受到人们的重视,各国科学家正在研究通过控制水分活性来达到免杀菌保存食品的新途径。 1理想公式计算法 根据水分活性(以下简称A w )的定义,它可近似等于食品在密封容器内的水蒸汽压(P )与在相同温度下的纯水蒸汽压(Po )之比: o W P P A = 根据拉乌尔定律,若立项溶液的溶质和溶剂摩尔数分别为m 1和m 2,则: 2 12m m m P P A o W +== 设一摩尔理想溶质溶于一千克水(计55.51摩尔),则此理想溶液的水分活性为: A w =55.51/1+55.51=0.9823 在含电介质的非理想溶液的A w 值可根据下式计算: ln A w =-υm φ/55.51 式中υ为1分子溶质产生的离子数,m 为溶液的摩尔浓度,φ是由溶质决定的常数。 但是大多数食品是由多种组分构成的复杂系统,它的a w 值难以用一般公式法计算,虽然也有许多推荐公式,但都有一定适用范围,主要在食品的可溶性成分以及数量已经明确的条件下适用。比如配制微生物培养基以及研制新的中间水分食品推荐下面公式较为适用: A w =A w1×A w2×A w3×…… 即总的水分活性A w 等于各组分水分活性值的乘积。 一般说来,实际上测定食品水分活性都采用直接测定法。 2直接测定法 根据蒸汽压、湿度动力学等原理相应出现了不少直接测定仪器。国外也发展了许多测定水分活性的电子仪器,其测定原理有的是根据二电极中吸湿性物质的电导变化,也有的是直接依靠气体热传导的湿度传感器来检测。这类仪器具有快速、灵敏、精确度高的优点,我国可加强这类仪器的研制。在目前情况下,这种电子仪器的造价高,有些尚需进口,不利于推广。下面介绍一种坐标内插法,它不需要特殊的仪器装置。一般实验室都可采用。 2.1仪器及用具 康维皿容器,分析天平,恒温箱。

水分测定方法总结

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2

发酵糖(NaHCO3+KHC4H4O6)△→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→ 再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。

Sh10A型水份测定仪说明书资料

SH-10A水分快速测定仪使用说明书 一、仪器的用途 本仪器可供工矿企业、农业、科研机构的试验室需要对化工、制药原料、燃料、成品、半成品、颗粒或粉状及谷物、土壤、造纸、食品、茶叶等所含的游离水分进行测试,它们的含水量大多是一项重要的技术经济指标,Sh10A型烘干法水分测定仪对于试样能够经受红外线辐射波照射而不至于被挥发或分解的物质均能使用本仪器,并能及时指导生产。 二、主要技术参数 最大载荷 10g 定时器范围 0~30min 微分标尺分度值 5mg 恒温精度±2℃ 微分标尺读数范围 0~1g 秤盘直径φ100mm 准确度等级一级电源及功耗 220V/50Hz 260W 调温范围 80~160℃外形尺寸 28×37.5×56cm 重量(净量) 12kg 三、仪器原理与结构 Sh10A型烘干法水分测定仪是根据称重法和烘箱法原理设计,将物质在烘干前和烘干后的质量进行比较,以得到物质内所含水分的百分比。本仪器由单盘上皿式天平、红外线干燥箱及电器控温三大部件组成,天平的秤盘置于红外线干燥箱内,当试样物质受穿透性强的红外线辐射波热能后,游离水分迅速蒸发,当试样物中的游离水分充分蒸发后,通过天平的光学投影装置,可直接读出试样物质含水率的百分比。烘干速度快,重复性好,控温电路采用半导体热敏电阻及可控硅控温线路,其升温速度快,恒温性能好,电网电压波动时对温度变化影响小,该仪器还装有定时器及报警装置,操作简单。 图一、图二、图三为仪器结构示意图。

1. 投影屏11.支架21.光学柱 2. 控温旋钮12.横梁22.秤盘 3. 定时旋钮13.大平衡螺母23.秤盘架 4. 电源开关14.指针24.小平衡螺母 5. 垫脚15.光源灯座25加码盘 6. 水平调整脚16.光源灯支架26.阻尼片 7. 水准器17.集光镜 8. 天平开关旋钮18.微分标尺

食品水分活度的测定-标准文本(食品安全国家标准)

食品安全国家标准 食品水分活度的测定 1 范围 本标准规定了康卫氏皿扩散法和水分活度仪扩散法测定食品中的水分活度。 本标准适用于预包装谷物制品类、肉制品类、水产制品类、蜂产品类、薯类制品类、水果制品类、蔬菜制品类、乳粉、固体饮料的食品水分活度的测定。 本标准不适用于冷冻和含挥发性成分的食品。 本标准的康卫氏皿扩散法适用食品水分活度的范围为0.00~0.98;水分活度仪扩散法为0.60~0.90。 第一法康卫氏皿扩散法 2 原理 在密封、恒温的康卫氏皿中,试样中的自由水与水分活度(A w)较高和较低的标准饱和溶液相互扩散,达到平衡后,根据试样质量的变化量,求得样品的水分活度。 3 试剂和材料 3.1 试剂 所有试剂均使用分析纯试剂;分析用水应符合GB/T 6682规定的三级水规格。 3.2 试剂配制 按表1配制各种无机盐的饱和溶液。 表1 饱和盐溶液的配制 (续)

4 仪器和设备 4.1 康卫氏皿(带磨砂玻璃盖):见图1。 4.2 称量皿:直径35 mm,高10 mm。 4.3 天平:感量0.0001 g和0.1 g。 4.4 恒温培养箱:0℃~40℃,精度± 1℃。 4.5 电热恒温鼓风干燥箱。

l1—外室外直径,100 mm; l2—外室内直径,92 mm; l3—内室外直径,53 mm; l4—内室内直径,45 mm; h1—内室高度,10 mm; h2—外室高度,25 mm。 5 分析步骤 5.1 试样的制备 5.1.1 粉末状固体、颗粒状固体及糊状样品 取有代表性样品至少200 g,混匀,置于密闭的玻璃容器内。 5.1.2 块状样品 取可食部分的代表性样品至少200 g。在室温18 ℃~25 ℃,湿度50% ~ 80%的条件下,迅速切成约小于3 mm× 3 mm× 3 mm的小块,不得使用组织捣碎机,混匀后置于密闭的玻璃容器内。 5.1.3 瓶装固体、液体混合样品 可取液体部分 5.1.4 质量多样混合样品 取有代表性的混合均匀样品 5.1.5 液体或流动酱汁样品 可直接采取均匀样品进行称重

费休氏水分测定法标准操作规程

1.目的: 建立费休氏水分测定法标准操作规程,规范费休氏水分测定法检验操作,保证检验的质量。 2.范围: 适于本公司原辅料、成品的水分测定操作。 3.责任: 质量管理科、中心化验室、检验员。 4.检验依据: 《中国药典》2015年版四部水分测定法操作方法。 5.内容: 5.1 简述 ◆费休氏水分测定法是利用碘在吡啶和甲醇溶液中氧化二氧化硫时需要定 量的水参加反应的原理来测定样品中的水分含量,本法可适用任何可溶解于费休氏试液但不与费休氏试液起化学反应的药品的水分测定,故对遇热易破坏的样品仍能用本法测定。 ●基本反应为 I2+SO2+H2O→2HI+SO3- -,生成氢上述反应是可逆的,但有吡啶存在时,无水吡啶能定量地吸收HI和SO 3 碘酸吡啶和亚硫酸吡啶。亚硫酸吡啶亦不稳定,能与水发生副反应,消耗一部分水,因而干扰测定。加入无水甲醇可使亚硫酸吡啶转变成稳定的甲基硫酸氢吡啶,避免了

上述副反应的发生。 ●滴定的总反应为 C 5H 5 N·I 2 + C 5 H 5 N·SO 2 + C 5 H 5 N + CH 3 OH + H 2 O→2 C 5 H 5 N·HI + C 5 H 5 NHSO 4 CH 3 (1) 由上式可知,吡啶与甲醇不仅作为溶剂,而且参与滴定反应,此外,吡啶还可以与二氧化硫结合降低其蒸气压,使其在溶液中保持比较稳定的浓度。 ◆容量滴定法 根据碘和二氧化硫在吡啶和甲醇溶液中能与水起定量反应的原理;由滴定溶液颜色变化(由淡黄色变为红棕色)或用永停滴定法指示终点;利用纯水首先标定出每lml 费休氏试液相当于水的重量(mg);再根据样品与费休氏试液的反应计算出样品中的水份含量。 ◆库仑滴定法 ●与容量滴定法相同,库仑滴定法也是根据碘和二氧化硫在吡啶(有些型号仪器改用无臭味的有机胺代替吡啶)和甲醇溶液中能与水起定量反应的原理来进行测定的。 ●与容量滴定法不同,在库仑滴定法中,碘是由含碘化物的电解液在电解池阳极电解发生碘。 2I- → I 2 +2e- (2) 只要滴定池中存在水,发生的碘就会按反应(1)进行反应。当所有的水都反应完毕,阳极电解液中会剩余少许过量的碘。此时,双铂电极就能检测出过量的碘,并停止产生碘,根据法拉第定理,产生碘的数量与流过的电流和时间成正比。在反应(1)中,碘和水以1:1反应。1摩尔水(18.0g)对应于2×96487库仑,也就是说,每毫克水会消耗掉10.72库仑的电量,当电源固定时,根据电解至终点的时间即可计算出水分含量,本法尤其适合于药品中微量水分(0.0001~0.L%)的测定,并具有很高的精确度。而且含水量是根据电解电流和电解时间计算,只须加入供试品前,先将电解液通电流电解至碘刚生成少许,停止电解,再加入供试品继续电解即可,不须用标准水标定滴定液。 5.2 仪器与用具 ◆实验条件与要求

水分测定仪工作原理

中国科协2005年学术年会论文集 企业计量测试与质量管理 卡尔-费休库仑法水分测定仪 原理及应用范围 单位:山东省计量科学研究院 淄博华坤电子仪器有限公司 作者:林振强、赵玮、任昌峰 日期:二○○五年五月十日

摘要:在国民经济中,石化产品占有重要的地位。该类产品品种繁多,但大部分都有一项必须检测的重要指标——水分含量。在检测中选择何种方法、如何选择仪器、如何测定其合格,是众多化验工作中的一项大事。作为一类测定物质中水分含量的计量仪器,目前有干燥法、卡尔-费休(KarlFischer,以下简称卡氏)容量法和卡氏库仑法等多种仪器。但就多数物质而言最为经济、最为准确的方法当属卡氏库仑法。本文以卡氏库仑法为依据,参照淄博华坤电子仪器有限公司开发生产的DT-30系列全自动微量水分测定仪来探讨其原理及应用范围。并以几年来使用仪器的心得体会来推动卡氏库仑法仪器的应用和促进多学科领域中试验工作的开展。 关键词:卡尔—费休库仑法水分测定原理范围

一、引言 测定物质中水分含量的方法很多,现对常用的几种方法就其经济性、准确性做简单的对比分析。 1干燥法优点:仪器价格低廉。缺点:精度差;仅能测定至10-3级;在干燥蒸馏过程中挥发性物质亦被蒸发,不能测定物质中水分含量的真值,试验时间过长。 2光谱、色谱法优点:可以测至10-6级。缺点:仪器价格昂贵;环境要求高;准备时间长(几个小时);不利于产品的过程控制。 3卡氏容量法优点:测试品种多,相对于卡氏库仑法有些特殊物质在特定试剂条件下可以测定(如酮类、醛类)。缺点:在最佳状态下仅能测至10-4级;耗材(试剂)大;测定时间偏长。 4卡氏库仑法优点:仪器价格中等;耗材少;可以测定至10-6级;时间短,一般物质在掌握好进样量的前提下使用淄博华坤电子仪器有限公司DT-30系列全自动微量水分测定仪(以下简称华坤仪器)60秒内即可完成测定,是过程控制和仲裁判定的最佳方法。缺点:有些具有副反应的物质如酮类、醛类不能测定。 对于多数物质而言,选择卡氏库仑法仪器做为质量控制测定水分含量是一种即经济又准确的方法。 二、卡氏库仑法仪器原理 1.1935年卡尔-费休(KarlFischer)首先提出了利用容量分析测定水分的方法,这种方法即是GB6283《化工产品中水分含量的测定》中的目测法。目测法只能测定无色液体物质的水分。后来,又发展为电量法。随着科技的发展,继而又将库仑计与容量法结合起来推出库仑法。这种方法即是GB7600《运行中变压器油水分含量测定法(库仑法)》中的测试方法。现在的分类目测法和电量法统称为容量法。卡氏方法分为卡氏容量法和卡氏库仑法两大方法。两种方法都被许多国家定为标准分析方法,用来校正其他分析方法和测量仪器。 2.卡氏库仑法测定水分是一种电化学方法。其原理是仪器的电解池中的卡氏试剂达到平衡时注入含水的样品,水参与碘、二氧化硫的氧化还原反应,在吡啶和甲醇存在的情况下,生成氢碘酸吡啶和甲基硫酸吡啶,消耗了的碘在阳极电解产生,从而使氧化还原反应不断进行,直至水分全部耗尽为止,依据法拉第电解定律,电解产生碘是同电解时耗用的电量成正比例关系的,其反应如下: H2O+I2+SO2+3C5H5N→2C5H5N·HI+C5H5N·SO3 C5H5N·SO3+CH3OH→C5H5N·HSO4CH3 在电解过程中,电极反应如下: 阳极:2I--2e→I2 阴极:I2+2e→2I- 2H++2e→H2↑ 从以上反应中可以看出,即1摩尔的碘氧化1摩尔的二氧化硫,需要1摩尔的水。所以是1摩尔碘与1摩尔水的当量反应,即电解碘的电量相当于电解水的电量,电解1

卡尔·费休水分测定原理与技术

卡尔·费休水分测定原理与技术 卡尔·费休法简称费休法,是1935年卡尔·费休(KarlFjscher)提出的测定水分的容量分拆方法。费休法是测定物质水分的各类化学方法中,对水最为专一、最为准确的方法。虽属经典方法但经过近年改进,提高了准确度,扩大了测量范围,已被列为许多物质中水分测定的标准方法。 费休法属碘量法,其基本原理是利用碘氧化二氧化硫时,需要—定量的水参加反应: 12十S02十2H2O=2HI十H2SO4 (1)上述反应是可逆的。为了使反应向正方向移动并定量进行,须加入碱性物质。实验证明,吡啶是最适宜的试剂,同时吡啶还具有可与碘和二氧化硫结合以降低二者蒸气压的作用。因此,试剂必须加进甲醇或另一种含活泼OH基的溶剂,使硫酸酐吡啶转变成稳定的甲基硫酸氢吡啶。试剂的理论摩尔比为碘:二氧化硫:吡啶,甲醇=1:1:3:1。测定技术 费休试剂的配制和标定通常,配制费休试剂时只有碘应严格依照化学计量,其它组分则是过量的,一般采用的摩尔比为碘:二氧化硫:吡啶:甲醇=1:3:10:50。配制费休试剂所用各物质必须严格控制其含水量,一般不得超过0.1%,若进行微量分析时,不应超过数个ppm。配制步骤 取无水吡啶133mL与碘42.33g,置入具塞棕色试剂瓶中,振摇至碘全部溶解后,加入无水甲醇333ml。难确称量试剂瓶重,通入经浓硫酸脱水的二氧化硫气体至试剂瓶增重32g,将瓶塞塞牢、摇匀,于暗处放置48h后标定。依此配制的费休试剂的滴定度约为含水3—5g/mL。 当使用专用试剂瓶时,可在通二氧化硫至增重32g时,把液面的位置作一标记,以后每次配制,只需取一定量的各物质置入试剂瓶中,通入二氧化硫气体,使试剂溶液掖面升高至标记处即可,这样可省去费时的称重操作。为使费休试剂稳定,有另一种配制方法,即先配成二组溶浓,在使用前混合。一组为碘和甲醇溶液I;另一组为二氧化硫和吡啶溶液II。溶液I:取碘63p,置入试剂瓶中,加366mL无水甲醉,括至碘全部溶解。溶液II:取100mL无水吡啶,置入试剂瓶小,准确称量,然后通入干燥的二氧化硫气体,使其增重32g。新配制的费体试剂很不稳定,随放置时间增加,浓度逐渐降低。在前二、三日内,淌定皮有显著下降,以后降低援慢,一周以后,滴定度每日约减少1%,之后则变化更趋缓慢。滴定度开始迅速下降的原因主要是试剂中各组分所含残存水分的作用,随后滴定度缓慢下降的原因则是副反应的影响。因此,费你试剂配制以后,应放置一用以上,用前标定。 费休试剂的标定方法一般有纯水标定、含水甲酵标准溶液标定和稳定的结晶水合物标定三种。 (1) 纯水标定法 取数个干燥具塞滴定瓶,加入25mL无水甲醇,用费休试剂滴定至终点。这时滴定瓶内呈无水状态,随即用注射取样器迅速注入已准确称量的纯水30.00mg,在剧烈搅拌下,以费休试剂滴定至终点,求得每毫升费体试剂相当于水的质量M^. (2)含水甲醇标准溶液标定法(i)含水甲醇标准溶液的配制含水中醇标准溶液是用无水甲醉加入 定还的燕螺水配成的。无水甲醇应经过金届镁粉二次处理,然后蒸馏,把蒸出的甲醇立即用来配制。 取充分干燥的500mL存虽瓶,在瓶中加入无水甲醇400mL,用注射器(或小滴瓶)减员法准确称设蒸馏水0.2500,注入容量瓶中,迅速塞牢瓶塞,振荡均匀后,用元水甲醇稀释至刻度。即使经过多次处理的甲醇,也难免含有微量水分,因此必须对此值予以校正。

WA-1A型微量水分测定仪的详细说明书

WA-1A型微量水分测定仪 使用说明书 南京科环分析仪器有限公司

一.概述 WA-1A型微量水分测定仪是卡尔费休微库仑电量法,该仪器可以以纯水为标准物质进行自我标定。采用了先进的自动控制电路和大电解电流及电流自动控制技术。4位LED数字显示测定结果直接数字显示,分析速度快,操作简单,方便可靠。广泛应用于石油、化工、电力、铁路、农药、医药、环保等部门. 符合以下标准: GB/T7600-1987;GB6283-1982;SH/T0246;GB/T11133-1989;GB/T7380-1995;GB106 70-1989;GB10670-1989;GB/T606-2003; 二.技术参数 滴定方式:电量滴定(库伦分析) 显示:4位LED数字显示 读出单位:μg 电解电流控制:0~300mA自动控制 测量范围:3ug~100mg 灵敏阀:1μg H2O 精确度:3μg~1mg水误差不大于±0.3% 1mg水误差不大于±0.5% 电源:220V±10%、50Hz 功率:< 40W 使用环境温度:5~40℃ 使用环境湿度:≤ 85% 外型尺寸:320×260×146 重量:约7.5kg 三.工作原理 卡尔菲休试剂同水的反应式为: I2 + SO2+ 3C5H5N + H2O —→ 2C5 H5N?HI + C5H5N?SO3 (1) C5H5N?SO3 + CH3OH —→ C5H5N?HSO4CH3 (2)

所用试剂溶液是由占优势的碘和充有二氧化硫的砒啶、甲醇等混合而成。通过电解在阳极上形成碘,所生成的碘,依据法拉第定律,同电荷量成正比例关系。如下式: 2Iˉ+ 2e —→ I2 (3) 由(1)式可以看出,参加反应的碘的摩尔数等于水的摩尔数。把样品注入电解液中,样品中的水分即参加反应,通过仪器可反映出反应过程中碘的消耗量,而碘的消耗量可根据电解出相同数量碘所用的电量,经仪器计算,在数字显示器上直接显示出测定的水分量。该仪器采用电解电流自动控制系统,电解电流的大小可根据样品中水分的含量进行自动控制,最大可达到300mA。在电解过程中,水分逐渐减少,滴定速度随之按比例减小,直到电解终点控制回路开启。这一系统保证了分析过程中的高精度、高灵敏阀和高速度。另外,在测定过程中,难免还会引进一些干扰因素,如从空气中侵入的水分,使滴定池吸潮,而产生空白电流。但是,由于仪器具有寄存空白电流的功能,所以在显示屏上所显示的数字就是被测试样中真正的水含量。 四 . 结构特征 仪器主机:(见图一、图二)

相关主题
文本预览
相关文档 最新文档