当前位置:文档之家› 储罐设计

储罐设计

储罐设计
储罐设计

储罐区的平面布置与管道设计的几点心得

储罐区的平面布置与管道设计的几点心得 发表时间:2017-12-24T16:17:14.620Z 来源:《建筑学研究前沿》2017年第19期作者:张岩 [导读] 本文主要介绍了化工储罐区的储罐分类,设备布置方法,储罐和泵的选型,罐区配管注意事项。 天津辰力工程设计有限公司工艺管道室 摘要:本文主要介绍了化工储罐区的储罐分类,设备布置方法,储罐和泵的选型,罐区配管注意事项。 关键词:储罐;闪点;防火堤;隔堤;防火间距 1、概述 化工生产装置可分为主生产装置区和罐区,罐区是用来储备生产所需原料或储存成品的区域,属于中转环节,起着呈上起下的作用,罐区的运转情况正常与否影响着整个化工装置系统的正常运转。因此,在化工工程设计中对罐区的工艺及配管设计一定要引起重视。 2、储罐区设备布置的实施步骤 2.1储罐区的设备布置应符合下列现行的国家规范中的相关具体条文: 1)建筑设计防火规范:GBJ16-2001 GBJ16-97 2)石油化工企业设计防火规范:GB50160-99 GB50160-92(99 年版) 3)石油库设计规范:GBT74-84 及局部修改条文 GBJ74-84 及局部修订条文 4)爆炸和火灾危险环境电力装置设计规范 GB50058-92 2.2 储罐区布置设计所需要接受的条件: 1)总平面布置图(初步) 2)工艺流程图 3)设备一览表:给出储罐的型式及尺寸。 4)物料特性表:给出火灾的危险性分类,以及闪点、爆炸、界限等性质。 2.3 储罐区设备布置图的设计 (1)先根据物料特性确定出所储存的物料的火灾危险性分类的类别,共分为以下几个类别: 甲 A 类:15℃时的蒸汽压力>0.1MPa 的烃类液体及其它类似的液体; 甲 B 类:甲 A 类以外,闪点<28℃的可燃液体。 乙 A 类:闪点≥28℃至≤45℃的可燃液体。 B 类:闪点>45℃至<60℃的可燃液体。丙 A 类:闪点≥60℃至≤120℃的可燃液体。丙 B 类:闪点>120℃的可燃液体。非可燃性液体:如循环水或消防水等物质。另外:根据物料的性质:确定所储存的物料是沸溢性液体或非沸溢性液体。 沸溢性液体的概念是在储罐着火的情况下由于热波的作用,使罐底水层急速汽化,而会发生沸溢现象的粘性烃类混合物。 (2)根据所储存物料的类别和相应规范确定每个储罐组的总容积及相应的储罐个数,应符合下列规定: 1)同一罐组内,宜布置火灾危险性类别相同或相近的储罐。 2)沸溢性液体的储罐、不应与非沸溢性液体储罐同组布置。 3)液化烃的储罐,不应与可燃液体储罐同组布置。 4)固定顶罐组的总容积大于120000m3。 5)浮顶,内浮顶罐组的总容积,不应大于 600000m3。 6)罐组内的单罐容积大于或等于 10000m3 的储罐个数不应多于 12 个,单罐容积小于 10000m3 的储罐个数不应多于 16 个,但单罐容积均小于 1000m3 的储罐,以及丙B 类液体储罐个数不受此限制。 (3)根据同一罐组内的储罐个数及所储存物料的类别,按下列规定确定相邻储罐的防火间距: 1)罐组内相邻可燃液体地上储罐的防火间距: (4)确定储罐的防火间距后,对于可燃液体储罐应根据物料类别和储罐的容量确定防火堤和隔堤的尺寸和高度,具体规定如下:(1)防火堤内的有效容积应符合下列规定: (a)固定顶罐,不应小于罐组内1个最大储罐的容积: (b)浮顶罐,内浮顶罐不应小于罐组内浮顶罐,内浮顶罐不应小于罐组内1个最大储罐容积的一半。 (c)当固定顶罐与浮顶罐,内浮顶罐同组布置时,应取上述a)、b)中规定的较大值。

原油储罐基础工程施工组织设计方案

第一章编制依据 本施工组织设计是根据: 1.**15万方储油罐地基与基础工程施工招标文件。 2.**油库15万方原油储罐基础施工图纸。 3.现行国家有关施工及验收规范。 4.江苏省及扬州市地方政府有关法规、法令及文件规定。 5.本企业质量体系及企业内部工法。 6.中华人民共和国建设部令第15号《建设工程施工现场管理规定》 7.国家现行的安全生产操作规程及《炼油、化工施工安全规程》等安全方面的有关 规定。 8.踏勘工地现场和调查咨询资料。 9.其他有关规范及文献资料。 结合我司以往施工过同类工程(**工程)的施工经验进行编制的。

第二章工程概况 本工程为**集团管道储运公司工程处新建的15万方原油储罐基础,位于×××。主要工程内容包括:T1、T2两座原油储罐基础。 1原油罐基础设计情况 原油罐基础外径R=50.32m(半径),环墙厚度为800mm,高度为2300mm。T 1罐基础中心施工标高30.525m,环墙施工顶标高29.77m,油罐底由中心坡向四周 =0.015;T2罐基础中心施工标高30.665,环墙施工顶标高29.91m,油罐底由中心坡向四周 =0.015。 地基采用振冲碎石桩复合地基,罐基础为800mm厚C25钢筋砼环墙,罐基中间各层从上到下依次为:油罐底板→150mm厚沥青砂绝缘层→400mm厚砂垫层→450mm厚素土夯实并找坡→碎石垫层→复合地基; 环墙基础环向钢筋接头采用焊接或机械连接,钢筋净保护层厚度35mm。 2工程特点 2.1本工程土石方工程量大,工期紧迫。 2.2在大型储罐中,环墙质量的好坏对罐的建造质量至关重要。因环墙为薄壁超 长结构,极易受温度与收缩应力等因素的影响而出现裂缝,施工难度大。 3施工建议 3.1为克服环墙因温度及收缩应力可能出现的裂缝,我司建议在混凝土中掺入PPT -

过程设备设计试题(附答案)

一. 填空题 1. 储罐的结构有卧式圆柱形.立式平地圆筒形. 球形 2. 球形储罐罐体按其组合方式常分为纯桔瓣式 足球瓣式 混合式三种 3. 球罐的支座分为柱式 裙式两大类 4. 双鞍座卧式储罐有加强作用的条件是A《0.2L条件下 A《0.5R 5. 卧式储罐的设计载荷包括长期载荷 短期载荷 附加载荷 6. 换热设备可分为直接接触式 蓄热式 间壁式 中间载热体式四种主要形式 7. 管壳式换热器根据结构特点可分为固定管板式 浮头式 U型管式 填料函式 釜式 重沸器 8. 薄管板主要有平面形 椭圆形 碟形 球形 挠性薄管板等形式 9. 换热管与管板的连接方式主要有强度胀接 强度焊 胀焊并用 10. 防短路结构主要有旁路挡板 挡管 中间挡板 11. 膨胀节的作用是补偿轴向变形 12. 散装填料根据其形状可分为环形填料 鞍形填料 环鞍形填料 13. 板式塔按塔板结构分泡罩塔 浮阀塔 筛板塔 舌形塔 14. 降液管的形式可分为圆形 弓形 15. 为了防止塔的共振 操作时激振力的频率fv不得在范围0.85Fc1 Fv 1.3Fc1内 16. 搅拌反应器由搅拌容器 搅拌机两大部分组成 17. 常用的换热元件有夹套 内盘管 18. 夹套的主要结构形式有整体夹套 型钢夹套 半圆管夹套 蜂窝夹套等 19. 搅拌机的三种基本流型分别是径向流 轴向流 切向流其中径向流和轴向流对混合起 主要作用 切向流应加以抑制

20. 常用的搅拌器有桨式搅拌器 推进式搅拌器 涡轮式搅拌器 锚式搅拌器_ 21. 用于机械搅拌反应器的轴封主要有填料密封 机械密封两种 22. 常用的减速机有摆线针轮行星减速机 齿轮减速机 三角皮带减速机 圆柱蜗杆减速机 23. 大尺寸拉西环用整砌方式装填 小尺寸拉西环多用乱堆方式装填 二. 问答题 1. 试对对称分布的双鞍座卧式储罐所受外力的载荷分析 并画出受力图及剪力弯矩图。 2. 进行塔设备选型时分别叙述选用填料塔和板式塔的情况。 答 填料塔 1分离程度要求高 2 热敏性物料的蒸馏分离 3具有腐蚀性的物料 4 容易发泡的物料 板式塔 1塔内液体滞液量较大 要求塔的操作负荷变化范围较宽 对物料浓度要 求变化要求不敏感要求操作易于稳定 2 液相负荷小 3 含固体颗粒 容易结垢 有结晶的物料 4 在操作中伴随有放热或需要加热的物料 需要在塔内设置内部换热组件 5 较高的操作压力 3. 比较四种常用减速机的基本特性。 摆线针轮行星减速机 传动效率高 传动比大 结构紧凑 拆装方便 寿命长 重量轻 体积小 承载能力高 工作平稳 对过载和冲击载荷有较强的承 受能力 允许正反转 可用于防爆要求齿轮减速机 在相同传动比范围内具有体积小

大型原油储罐设计中主要安全问题及对策

大型原油储罐设计中主要安全问题及对策 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985 年从日本引进。发达国家建造、使用大型储罐已有近30 年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进 行分析,并提出对策,为工程设计提供参考。 1 大型原油储罐工程危险性分析 1.1 原油危险性分析 原油为甲B 类易燃液体,具有易燃性;爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2 火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。 泄漏的原油暴露在空气中,即构成可燃物。原油泄漏,在储运中发生较为频繁,主要有冒罐跑油,脱水跑油,设备、管线、阀件损坏跑油,以及密封不良造成油气挥发,另外还存在着罐底开焊破裂、浮盘沉底等特大型泄漏事故的可能性。 腐蚀是发生泄漏的重要因素之一。国内外曾发生多起因油罐底部腐蚀造成的漏油事故。对原油储罐内腐蚀情况初步调查的结果表明,罐底腐蚀情况严重,大多为溃疡状的坑点腐蚀,主要发生在焊接热影响区、凹陷 及变形处,罐顶腐蚀次之,为伴有孔蚀的不均匀全面腐蚀,罐壁腐蚀较轻,为均匀点蚀,主要发生在油水界面,油与空气界面处。相对而言,储罐底部的外腐蚀更为严重,主要发生在边缘板与环梁基础接触的一面。 浮盘沉底事故是浮顶油罐生产作业时非常忌讳的严重恶性设备事故之一。该类事故的发生,一方面反映了设计、施工、管理等方面的严重缺陷,另一方面又将造成大量原油泄漏,严重影响生产、污染环境并构成火灾隐患。 2 大型原油储罐设计中的主要安全问题及其对策 2.1 储罐地基和基础 储罐工程地基勘察和罐基础设计是确保大型储罐安全运营最根本的保证。根据石化行业标准规定,必须在工程选址过程中进行工程地质勘察,针对一般地基、软土地基、山区地基和特殊土地基,分别探明情况,提出相应的地基处理方法,同时还应作场地和地基的地震效应评价,避免建在软硬不一的地基上或活动性地质断裂带的影响范围内。 常见的罐基础形式有环墙(梁)式、外环墙(梁)式和护坡式。应根据地质条件进行选型。罐基础必须具 有足够的整体稳定性、均匀性和足够的平面抗弯刚度,罐壁正下方基础构造的刚度应予加强,支持底板的基床应富于柔性以吸收焊接变形,宜设防水隔油层和漏油信号管,地下水位与基础顶面之间的距离不得小于毛细水所能达到的高度(一般为 2m )。

储罐设计

毕 业 设 计 容器施工图设计—导热油储罐 完成日期 2014 年 6 月 10 日 院系名称: 化学工程学院 专业名称: 过程装备与控制工程 学生姓名: 陈培培 学 号: 2010032306 指导教师: 邓春 企业指导: 马程鹤、武彦巧

容器施工图设计—导热油储罐 摘要 导热油是用于间接传递热量的一类热稳定性较好的专用油品,属于烃类有机物,导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快等特性。钢制储罐作为重要的基础设施,广泛应用于石油化工行业,本毕业设计主要依据《钢制卧式容器》[1]进行导热油储罐的机械设计计算。计算部分包括:设备的选材和焊接的确定、强度及稳定性的设计计算和校核、支座和法兰的选用。最后,利用AutoCAD绘图软件绘制出满足机械强度设计计算要求的导热油储罐的设备总图。 关键词:导热油、储罐、机械设计

Design of h eat transfer oil storage tank Abstract Heat transfer oil is a type of special oil product with excellent thermal stability and is widely used indirect heat transfer .It belongs to the hydrocarbon organics . Heat transfer oil has good performance of thermal cracking and chemical oxidation , high heat transfer effect and fast heat dissipation .Steel storage tank as an important infrastructure ,is widely utilized in petrochemical industry .This paper aims to do the mechanical design of heat transfer oil storage tank on the basis of ―JB/T 4731-2005 Steel horizontal vessels on saddle supports ‖The design includes the selection of equipment material and determination of welding , design and examination of strength and stability ,selection of support and flange .Finally , software ,general drawing for the heat transfer oil storage tank is plotted via AutoCAD. Key words: h eat transfer oil . storage tank . mechanical design

储罐区防火堤设计参考文本

储罐区防火堤设计参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

储罐区防火堤设计参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 前言(1) 火灾危险性为甲、乙、丙类的液体储罐或储罐组,应 设置防火堤,防止储罐爆炸起火时液体到处流散,造成火 灾蔓延扩大。由于防火堤貌似简单,往往没有引起人们足 够的重视,在实际设计中,总是存在这样那样的问题,就 防火堤的设计浅谈几点认识与看法。 防火堤的设置条件(2) 不是所有可燃液体储罐都需要设防火堤。据现行有关 规范规定,下列情况之一的储罐、堆场,如有防止液体流 散的设施,可不设防火堤: 1.闪点超过120℃的液体储罐、储罐区。近年沿海 地区的新建港区大量出现棕榈油成品油罐区,该油品为食

用油,闪点远大于120℃,属于比较安全的可燃液体。出于运输成本考虑油罐区紧靠码头,用地十分紧张,因此,该类罐区往往不设防火堤,只设置了简易围堤,以保障基本安全。 2.桶装的乙、丙类液体堆场。例如桶装润滑油等,为便于运输中转,往往不设防火堤。 3.甲类液体半露天堆场。这类半露天堆场常常是一些有盖无墙的棚房,例如液化石油气实瓶间,一般不设防火堤。 除了上述几类情形,根据现行国家规范的有关规定,甲、乙、丙类液体的地上、半地下储罐或储罐组,应设置非燃烧材料的防火堤。 防火堤的基本要求(3) 防火堤的根本目的是临时存放围堤内储罐的事故漏油,防止漏油到处流淌,因此,它的基本要求有两个:其

15M3 甲醇储罐设计

目录 一序言 (一)设计任务 (二)设计思想 (三)设计特点 二储罐总装配示意图 三材料及结构的选择 (一)材料的选择 (二)结构的选择 四设计计算内容 (一)设计温度和设计压力的确定 (二)名义厚度的初步确定 (三)容器的压力实验 (四)容器应力的校核计算 (五)封头的设计 (六)人孔的设置 (七)支座的设计确定 (八)各物料进出管位置的确定及其标准的选择(九)液位计的设计 (十)焊接接头设计 五设计小结 六参考资料

太原科技大学材料科学与工程学院 过程设备课程设计指导书 课程设计题目: (15)M3甲醇储罐设计 课程设计要求及原始数据(资料): 一、课程设计要求: 1.使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 3.设计计算采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4.工程图纸要求计算机绘图。 5.毕业设计全部工作由学生本人独立完成。 二、原始数据: 设计条件表

管口表 课程设计主要内容: 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 应交出的设计文件(论文): 1.设计说明书一份 2.总装配图一张 (折合A1图纸一张)

一序言 (一)设计任务: 针对化工厂中常见的甲醇储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。(三)设计特点: 容器的设计一般由筒体,封头,法兰,支座,接口管及人孔等组成。常,低压化工设备通用零件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的筒体,封头的设计计算,低压通用零件的选用。 各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

储罐基础设计的合理性

储罐基础设计的合理性 随着国民经济的发展,人们物质生活的提高,对能源及化工用品的需求量增大,化工行业得到蓬勃发展,各种石油产品储罐以及化工行业的气罐、液体原料罐日益增多,成为设计人员经常碰到的课题。 罐基础设计的合理与否直接影响到储罐是否能安全,正常的工作,从事故发生的原因来看一般反应在以下几个方面。 基础的选型是设计是否能达到安全、经济、合理的关键,基础的选型应根据储罐的形式、容积、储存的介质,地质条件、业主所能提供的材料情况以及当地的施工技术条件。 1,当储罐直径小于等于6米时,可采用整板基础,采用此基础的优点是基础整体性好,沉降均匀,由于没有了环墙内夯土,所以施工进度快且质量易得到保证,缺点是混凝土和钢筋用量较大,施工时要采取减小大体积混凝土带来不利影响的措施 2,当储罐直径大于6米时可采用环墙基础,外环墙式和护坡式基础,优点是混凝土和钢筋用量较省,缺点是由于储罐底部夯土较深,施工时间较长且需采取冲水试压等措施,基础沉降量大,环墙的宽度必须和地基以及罐底压强相协调,否则会照成环墙和罐底沉降差过大,以致罐底钢板拉裂或顶破。 3,存储低温介质的钢储罐基础必须采用深基础,其罐底做架空板,板底与地面留有空隙(约800mm)以防止罐内低温介质作用于土壤,形成冻土。 4,存储高温介质钢储罐要根据介质温度的不同采用不同的隔热措施,当介质温度高于95度时,与罐底接触的罐基础表面应采取隔热措施,一般可采用平铺三层浸渍沥青砖,罐底面和砖顶面应刷冷底子油两遍。 5,存储剧毒,酸,碱腐蚀介质的钢储罐应做成实体架空基础(自地面300mm 以下做成整板基础,其上部做架空基础),目的是若罐内介质泄露,介质会顺着架空基础的槽内流出,容易被及时发现,且介质不会流入土壤中,对其产生腐蚀,影响地基承载力。 钢储罐基础应设置沉降观测点,具体要求详见《石油化工企业钢储罐地基与基础设计规范》SHT3068-2007.在基础施工完成后要进行充水试压,目的是对基础及储罐进行检测,同时对地基进行预压,充水预压时要注意控制充水速度及预压时间,以免认为的对基础和罐体照成破坏。 基础可以根据具体的地基情况而比较常见的采用环墙基础、筏板基础、桩基础和地基处理,地基处理在钢储罐基础设计中是经常遇见的,下面介绍一个工程实例:

空气储罐设计

设计要求 1、设计题目:空气储罐的机械设计 2、最高工作压力:0.8 MP a 3、工作温度:常温 4、工作介质:空气 5、全容积:163 m 设计参数的选择: 设计压力:取1.1倍的最高压力,0.88MP<1.6属于低压容器。 筒体几何尺寸确定:按长径比为3.6,确定长L=640000mm,D=1800mm 设计温度取50 因空气属于无毒无害气体,材料取Q345为低合金钢,合金元素含量较少,其强度,韧性耐腐蚀性,低温和高温性能均优于同含量的碳素钢,是压力容器专用钢板,主要用于制造低压容器和多层高压容器! 封头设计:椭圆形封头是由半个椭圆球面和短圆筒组成,球面与筒体间有直边段。直边段可以避免封头和和筒体的连接焊缝处出现经向曲率突变,以改善曲率变化平滑连续,故应力分布比较均匀;且椭圆形封头深度较半球形封头小得多,易冲压成型,在实际生产中多有模具,是目前中低压容器应用较多的封头。 因此选用以内径为基准的标准型椭圆形封头为了防止热应力和边缘应力的叠加,减少应力集中,在封头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。封头材料与筒体相同,选用头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。 选材和筒体一致Q345R

接管设计3.4 接管设计优质低碳钢的强度较低,塑性好,焊接性能好,因此在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。优质中碳钢的强度较高,韧性较好,但焊接性能较差,不宜用作接管用钢。 由于接管要求焊接性能好且塑性好。故选择 20 号优质低碳钢的普通无缝钢管制作各型号接管 3.5 法兰设计法兰连接的强度和紧密性比较好,装拆也比较方便,因而在大多数场合比螺纹连接、承插式连接、铆焊连接等型式的可拆连接显得优越,从而获得广泛应用。 平焊法兰连接刚性较差,只能在低压,直径不太大,温度不高的情况下使用。由于Q345R 为碳素钢,设计温度 50℃ <300℃,且介质无毒无害,可以选用带颈平焊法兰,即 SO 型法兰。 储罐的设计压力较小要保证法兰连接面的紧密性,必须合适地选择压紧面的形状。 对于压力不高的场合,常用突台形压紧面。突面结构简单,加工方便,装卸容易,且便于进行防腐衬里。储罐由于设计压力为 0.88MPa,空气无毒无害,可选择突面(RF)压紧面。 由于法兰钢件的质量较大,需要承受大的冲击力作用,塑性、韧性和其他方面的力学性能也较高,所以不用铸钢件,可以采用锻钢件。接管材料为 20 号钢,法兰材料选用 20Ⅱ锻钢。 3.6接管与法兰分配 3.6.6 N1、N2空气进、出口公称尺寸 DN250,接管尺寸? 273 x6 。接管采用无缝钢管,材料为 20 号钢。伸出长度为 150mm 。 选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO300-2.5 RF3.6.2 N3排污口; 公称尺寸 DN40,接管采用 45 x3.5 无缝钢管,材料为 20 号钢,外伸长度为150mm。选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO40-1.6 RF 3.6.3 N4安全阀口公称尺寸 DN80,接管采用?89 x4 无缝钢管,材料为 20 号钢,外伸长度为 150mm。根据 GB12459-99,选用 90°弯头;弯头上方仍有一定

变刚度调平在大型储罐基础设计中的应用

浙江建筑,第26卷,第5期,2009年5月Zhejiang Constructi on,Vol .26,No .5,May .2009 收稿日期:2008-12-03 作者简介:陈长林(1975—),男,安徽合肥人,工程师,从事建筑结构设计工作。 变刚度调平在大型储罐基础设计中的应用 Appli cati on of Sti ffness Var i a ti on Leveli n g i n Huge Storage Tank Desi gn 陈长林1 ,樊诗兰 2 CHEN Chang 2lin,FAN Shi 2lan (1.温州市工业设计院,浙江温州325003;2.温州市长城建设监理有限公司,浙江温州325003) 摘 要:建造在软土地基上的大型储罐基础,由于地基土的压缩变形会产生各种沉降变形,其中罐周不均匀沉降即沉降差对其影响最为不利。通过变刚度调平设计,可以大大降低储罐基础的不均匀沉降,工程实践证明这种方法是切实可行的。 关键词:变刚度调平设计;沉降差;大型储罐基础 中图分类号:T U473.1+3 文献标识码:B 文章编号:1008-3707(2009)05-0030-02 目前,钢储罐的容量不断增大,有的储罐直径甚至接近100m 。储罐大型化后,其基础荷载大,覆盖面积也较大,在储罐建设中经常会遇到不良土质、不均匀土层、沟壑暗滨等非理想土层作为储罐的地基。而建在这种软土地基上大型储罐不可避免地会产生各种沉降变形。储罐的主要沉降有:整体均匀沉降、整体平面倾斜沉降、罐周不均匀沉降、罐周局部沉降以及底板的碟形沉降和局部沉降,其中罐周不均匀沉降即沉降差对结构的影响最为不利 [1] 。从而需 要对之进行处理,但是地基处理是否得当直接关系到工程的质量、进度和经济,因此合理地选择处理方法是非常必要的。 几种常见的地基处理方法[2-3] : (1)加载预压:在储罐安装就位后,利用储罐内进水试漏的同时对地基进行预压; (2)水泥搅拌:分湿法和干法两种,它利用深层搅拌机将水泥浆与地基土在原位拌和,形成柱状水泥体,可提高承载力,减小沉降量; (3)CFG 桩:在碎石桩中掺和石屑、粉煤灰的低标号桩,它同褥垫层一起组成复合地基; (4)强夯置换:采用高能量夯锤,原理是置换与挤淤; (5)桩基础:该方法安全性高,适合于各类罐基础。 1 变刚度调平设计的基本原理 按传统基础的概念设计采用均匀布桩(相同桩 距、相同桩长)基础,初始竖向支承刚度是均匀分布的。设置于其上的刚度有限的基础(承台)受均布荷载作用时,由于土与土、桩与桩、土与桩的相互作用导致地基或桩群的竖向支承刚度分布发生内弱外强变化,会导致罐基础出现内大外小的蝶形沉降和内小外大的马鞍形反力分布。而这种变形与反力分布模式必然导致底板整体弯矩、冲切力和剪力增大,引发上部结构的过大次应力,降低使用寿命。为此本文提出了按照变刚度调平的原理进行大型储罐基础设计。 《建筑桩基技术规范(JGJ 9422008)》[4] 提出:“变刚度调平设计是考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法”。变刚度调平设计突破传统设计理念,是一种新的概念设计方法,旨在减小差异变形、降低承台内力和上部结构次内力,以节约资源,提高建筑物使用寿命,确保正常使用功能。其基本思路是通过调整地基和基桩的刚度分

储罐区的平面布置与管道设计的几点心得

储罐区的平面布置与管道设计的几点心得 摘要:本文主要介绍了化工储罐区的储罐分类,设备布置方法,储罐和泵的选型,罐区配管注意事项。 关键词:储罐;闪点;防火堤;隔堤;防火间距 1、概述 化工生产装置可分为主生产装置区和罐区,罐区是用来储备生产所需原料或储存成品的 区域,属于中转环节,起着呈上起下的作用,罐区的运转情况正常与否影响着整个化工装置 系统的正常运转。因此,在化工工程设计中对罐区的工艺及配管设计一定要引起重视。 2、储罐区设备布置的实施步骤 2.1储罐区的设备布置应符合下列现行的国家规范中的相关具体条文: 1)建筑设计防火规范:GBJ16-2001 GBJ16-97 2)石油化工企业设计防火规范:GB50160-99 GB50160-92(99 年版) 3)石油库设计规范:GBT74-84 及局部修改条文 GBJ74-84 及局部修订条文 4)爆炸和火灾危险环境电力装置设计规范 GB50058-92 2.2 储罐区布置设计所需要接受的条件: 1)总平面布置图(初步) 2)工艺流程图 3)设备一览表:给出储罐的型式及尺寸。 4)物料特性表:给出火灾的危险性分类,以及闪点、爆炸、界限等性质。 2.3 储罐区设备布置图的设计 (1)先根据物料特性确定出所储存的物料的火灾危险性分类的类别,共分为以下几个类别: 甲 A 类:15℃时的蒸汽压力>0.1MPa 的烃类液体及其它类似的液体; 甲 B 类:甲 A 类以外,闪点<28℃的可燃液体。 乙 A 类:闪点≥28℃至≤45℃的可燃液体。 B 类:闪点>45℃至<60℃的可燃液体。丙 A 类:闪点≥60℃至≤120℃的可燃液体。丙 B 类:闪点>120℃的可燃液体。非可燃性液体:如循环水或消防水等物质。另外:根据物料的性质:确定所储存的物料是沸溢性液体或非沸溢性液体。 沸溢性液体的概念是在储罐着火的情况下由于热波的作用,使罐底水层急速汽化,而会 发生沸溢现象的粘性烃类混合物。 (2)根据所储存物料的类别和相应规范确定每个储罐组的总容积及相应的储罐个数,应 符合下列规定: 1)同一罐组内,宜布置火灾危险性类别相同或相近的储罐。 2)沸溢性液体的储罐、不应与非沸溢性液体储罐同组布置。 3)液化烃的储罐,不应与可燃液体储罐同组布置。 4)固定顶罐组的总容积大于120000m3。 5)浮顶,内浮顶罐组的总容积,不应大于 600000m3。 6)罐组内的单罐容积大于或等于 10000m3 的储罐个数不应多于 12 个,单罐容积小于10000m3 的储罐个数不应多于 16 个,但单罐容积均小于 1000m3 的储罐,以及丙B 类液体储 罐个数不受此限制。 (3)根据同一罐组内的储罐个数及所储存物料的类别,按下列规定确定相邻储罐的防火 间距: 1)罐组内相邻可燃液体地上储罐的防火间距: (4)确定储罐的防火间距后,对于可燃液体储罐应根据物料类别和储罐的容量确定防 火堤和隔堤的尺寸和高度,具体规定如下: (1)防火堤内的有效容积应符合下列规定:

压缩空气储罐设计

目录 绪论 (3) 第一章压缩空气的特性 (4) 第二章设计参数的选择 (5) 第三章容器的结构设计 (6) 3.1圆筒厚度的设计 (6) 3.2封头厚度的计算 (6) 3.3筒体和封头的结构设计 (6) 3.4人孔的选择 (7) 3.5接管,法兰,垫片和螺栓(柱) (9) 3.6鞍座选型和结构设计 (11) 第四章开孔补强设计 (14) 4.1补强设计方法判别 (13) 4.2有效补强范围 (13) 4.3有效补强面积 (14) 4.4补强面积 (14) 第五章强度计算 (16) 5.1水压试验应力校核 (15) 5.2圆筒轴向弯矩计算 (15) 5.3圆筒轴向应力计算及校核 (16) 5.4切向剪应力的计算及校核 (17) 5.5圆筒周向应力的计算和校核 (20) 5.6鞍座应力计算及校核 (22) 5.7地震引起的地脚螺栓应力 (24) 第六章设计汇总 (25) 参考文献.............................................................. 错误!未定义书签。

绪论 课程设计是一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 迅速准确的进行工程计算的能力; 4. 用简洁的文字,清晰的图表来表达自己设计思想的能力 本次设计为压缩空气储罐,在三周时间内内,通过相关数据及对国家标准的查找计算出合适的尺寸,设计出主体设备及相关配件,画出装备图零件图以及课程设计说明书。 压缩空气储罐的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求, 合理地进行设计。

储罐区防火堤设计——防火隔堤的设计(5)实用版

YF-ED-J4869 可按资料类型定义编号 储罐区防火堤设计——防火隔堤的设计(5)实用 版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

储罐区防火堤设计——防火隔堤的设计(5)实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 对于沸溢性液体地上、半地下储罐,《建 规》规定每个储罐应设一个防火堤或防火隔 堤,而《石规》规定每个隔堤内不应超过两 个,两部规范的要求不尽相同。沸溢性液体一 般指含水率在0.3%-0.4%的油品,常见的有原 油、渣油、重油等,由于这些油品的含水率较 高,自由水在火灾的高温作用下汽化,体积急 剧膨胀,将浮在上面的着火油品抛出罐体,发 生可怕的沸溢现象。油品沸溢会造成火灾蔓延 扩大,因此要设防火堤或隔堤来限制油品流

淌。笔者认为,只要用地许可,都应尽可能实现“每罐一隔”而不是“每两罐一隔‘。 根据《建规》和《石规》的规定,防火堤高度应高于隔堤高度不少于0.2m,至于防火隔堤的容积,《建规》和《石规》都没有明确规定。笔者认为,应与防火堤的有效容积要求一致,防火隔堤的对象是沸溢油品储罐,其容积如果太小,不能防止油品外溢,则失去了隔堤的意义。诚然,防火隔堤的有效容积是否可算至隔堤堤顶高度而无需减去0.2m高度,这点放宽,还是可以接受的。

10000立方米的汽油储罐设计

6*10000m3成品油库安全设计 一汽油的理化性质 1.1 物理化学性质 汽油的重要性能有为蒸发性、抗爆性、安定性和腐蚀性。 1.2 汽油的危险特性 1.2.1 油料的火灾危险特性 油料具有较强的挥发性和扩散性,具有易燃易爆特性,具有易积累静电和热膨胀性。由于这些特性的存在,使它具有较大的火灾危险性:挥发性;扩散性;易燃性;易爆性;易积聚静电荷性;热膨胀性;沸溢性。 1.3 安全防护措施 汽油的安全防护措施可以分为以下几类。 1 工程控制。生产过程密闭,全面通风。 2 呼吸系统防护。高浓度环境中,佩带供气式呼吸器。应急或有计划进入浓度未知区域,或处于立即危及生命或健康的状况 3 眼睛、身体和手的防护。一般不需特殊防护,但高浓度接触时安全防护眼镜。且必须穿工作服。对于手,一般不需特殊防护,高浓度接触戴防护手套。 4 其他防护。工作现场严禁吸烟。避免长期反复接触。进入罐或其它高浓度区作业,须有人监护。 二油罐的整体设计 2.1 油罐的选型 2.2 10000m3油罐设计参数 储罐内径:φ 28000mm 罐壁高度:18000mm 公称容积:10000m3计算容量:11084m3 设计压力:490Pa~1960Pa 设计风压:850Pa 设计温度:-10~50 ℃腐蚀裕度: 1.5mm 地震烈度:7 焊缝系数:0.9 2.3 材料确定 根据汽油物性选择罐体材料,汽油几乎没有腐蚀性,且有属于低压灌,可以考虑16MnR这两种钢材。 2.4 结构设计

内浮顶油罐的结构形式其实就是内浮盘和密封装置的结构形式。本设计采用边缘板的钢制单盘式内浮顶和弹性材料密封结构。 2.4.1内浮盘 内浮盘由一层薄的单盘板,在其外侧围以一圈边缘板焊制而成。盘上带有若干立柱,使浮盘下沉时最终支撑在罐底上,以免浮顶与罐内附件相碰。为了检修需要,内浮盘上还设有人孔。 2.4.2密封装置 内浮顶油罐要求密封间隙为150mm,密封为196N/m时,达到良好的密封性能。本设计采用弹性材料密封结构,由密封袋、软泡沫塑料块、固定钩板等组成。考虑到储存介质为汽油,密封袋采用丁腈耐油橡胶带制作,厚度取1.5mm。 2.4.3 内浮顶与罐壁之间的密封 圆弧转角是为不致戳破密封胶袋。每米圆周长度设置固定钩板。内浮盘与罐壁之间间隙取 150mm,采用断面宽度 230~250mm 的软泡沫塑料密封块,密封力约为200N/m。为消除蒸汽空间,弹性块应侵入液面下 20-50mm,外层密封袋能在使用环境中经久耐用,且不污染储液。为防止液体的毛细现象,要在橡胶密封袋上压有锯齿。 三罐体的设计 3.1 罐壁设计 随着储罐的大型化,储罐的直径和钢材总重量也随之增大。大型储罐的设计应尽可能地减少钢材的消耗量. 达到比较好的经济合理性。罐壁钢材的重量在大型储罐罐体的总重量中约占35%~50% ,因此确定罐壁厚度的罐壁强度计算. 对于减少罐壁的重量从而降低整个储罐的钢材消耗量、对于大型储罐的经济合理性具有决定性的作用。考虑贮液静压力,罐壁应由上至下逐渐增厚,但实际制造中不可能采用过多的板厚规格。罐壁的最大应力为环向应力,一次薄膜应力与局部应力相叠加,最大应力值分面在距罐底1000mm 左右的位置,并随贮罐直径和罐底、罐壁厚度增加而升高。 1 与罐底板相焊的最低层罐壁应适当加厚,且选用较宽的板材,以上各层则分档减薄,最小厚度4mm。 2 在最低层罐壁上开清扫口及人孔时,对罐壁强度有一定削弱,应对开孔大小、结构、热处理、探伤等提出明确要求。 储罐罐壁除应满足强度要求外,还应具有足够的抗风能力,以避免储罐在风载作用下失稳。随着储罐大型化和高强度钢的采用,使储罐罐壁减薄,储罐的抗风稳定性设计越趋重要。对于大型储罐来说,为防止储罐抗风圈以下的罐壁局部被风吹,通常需要在罐壁适当的位置上设置一道或数道加强圈。加强圈的功能是在罐壁上形成节线圈,以提高储罐的抗外压能力。当两个加强圈之间(或加强圈与抗风圈、包边角钢、罐底等加强截面之间)的罐壁许用临界压力大于设计外压时,就可以认为罐壁具备了足够的抗风能力。对于加强圈的设计计算,各国标准中部有详细的计算方法,我国标准SH3046《石油化工立式圆筒形钢制焊接储罐设计规范》中也对加强圈的计算做了详细的描述。

过程设备设计第五到八章习题答案

第五章储运设备 1 设计双鞍座卧式容器时,支座位置应按哪些原则确定?说明理由。双鞍座卧式储罐的受力状态可简化为受均布载荷的外伸简支梁,由材料力学可知当外伸长度A=0.207时,跨度中央的弯矩与支座截面处弯矩绝对值相等,所以一般近似取A≤0.02L,其中L为两封头切线间的距离,A为鞍座中心线至封头切线间距离2)当鞍座邻近封头时,封头对支座处的筒体有局部加强作用,为充分利用加强效应,在满足A≤0.2L下应尽量满足A≤0.5R0 (R0为筒体外径) 3卧式容器支座截面上部有时出现“扁塌”现象是什么原因?措施?原因:当支座截面处的圆筒不设加强圈,且A<0.5Ri时,由于支座处截面受剪力作用而产生周向弯矩,在周向弯矩作用下,导致支座处圆筒上半部发生变形,产生所“扁塌”现象。 措施: 1)设置加强圈 2)A<0.5Ri,使支座靠近封头布置,利用加强圈或封头的加强作用 3)补设加强圈,且A<0.5Ri 4 双鞍座卧式容器中应计算哪些应力?分析这些应力如何产生的?(1)圆筒上的轴向应力,由轴向弯矩引起 2)支座截面处圆筒和封头上的切应力和封头的附加拉伸应力,由横向剪力引起3)支座截面处圆筒的周向弯曲应力,由截面上切应力引起 4)支座截面处圆筒的周向压缩应力,通过鞍座作用于圆筒上的载荷所导致 5 鞍座包角对卧式容器筒体应力和鞍座自身强度有何影响? 鞍座包角θ时鞍式支座设计时需要的一个重要参数,其大小不仅影响鞍座处圆筒截面上的应力分布,而且也影响卧式储罐的稳定性及储罐支座系统的重心高低。鞍座包角小,则鞍座重量轻,但是储罐一支座系统的重心较高,且鞍座处筒体上的应力较大。常用包角有120,135,150 6 在什么情况下应对双鞍座卧式容器进行加强圈加强? 如卧式储罐支座因结构原因不能设置在靠近封头处,且圆筒不足以承受周向弯矩

LPG储罐区安全设计

第一章概述 1.1 LPG的物化性质 液化石油气(Liquefied petroleum gas简称LPG)为丙烷、丁烷、丙烯、丁烯等轻烃组成的混合物,各组分的物理化学性质(表1-1),一般前两者为主要组分。常温常压下为无色低毒气体。由炼厂气或天然气(包括油田伴生气)加压、降温、液化得到的一种无色、挥发性气体。当临界温度高达90℃以上,5~10个大气压下即能使之液化。 表1-1 LPG各组分的物理化学性质 1

当空气中含量达到一定浓度范围时,LPG 遇明火即爆炸。故具有易燃易爆、低温、腐蚀等特性,添加恶臭剂后,有特殊臭味,低温或加压时为棕黄色液体。 (一)比重 LPG 是混合物,其比重随组成的变化而变化,气态时比重比空气大1.5~2.0倍,在大气中扩散较慢,易向低洼处流动。 (二)饱和蒸汽压 LPG 的饱和蒸汽压是指在一定的温度下,混合物气、液相平衡时的蒸汽压力也就是蒸汽分子的蒸发速度同凝聚速度相等时的压力。受温度、组成变化的影响,常温下约为 1.3~2.0MPa 。 (三)体积膨胀系数 LPG 液态时和其他液体一样,受热膨胀,体积增大;温度越高,体积越大,同温下约为水的11~17倍。 (四)溶解度 溶解度是指液态时LPG 的含水率。LPG 微溶于水。 (五)爆炸极限窄,点火能量低,燃烧热值高 LPG 爆炸极限较窄,约为2~10%,而且爆炸下限比其他燃气低。着火温度约为430~460℃,比其他燃气低燃烧热值高,约为22000~290003m Kcal .燃烧所需要的空气量大,约需23~30倍的空气量,而一般城市煤气只需3~5倍的空气量。 (六)电阻率 LPG 的电阻率为10~10cm ?Ω,LPG 从容器、设备、管道中喷出时产生的静电压达到9000V 。 1.2 LPG 火灾危险特性 燃烧伴随爆炸、破坏性大、火焰温度高,辐射热强、易形成二次爆炸、火灾初发面积大。 (一)、易燃性。LPG ,属甲类火灾危险物质。它只需极小的能量(0.2~0.3毫焦)即可引燃,万立方米的爆炸性混合物,遇火花即可发生化学性爆炸。 (二)、易聚积性。LPG 在充分气化后,气体的密度比空气要大1.5~2倍,极易在厂房和房屋等不通风或地面的坑、沟、下水道等低洼处聚积,不易挥发飘散而形成爆炸性混合物。 (三)、易扩散性。LPG 是由多种低碳数的烃类组分组成的,其中有些轻组分物质的密

相关主题
文本预览
相关文档 最新文档