当前位置:文档之家› 电压互感器的原理及结构

电压互感器的原理及结构

电压互感器的原理及结构
电压互感器的原理及结构

电压互感器

一 电磁式电压互感器的原理及结构

1电压互感器的工作原理与技术特性

电压互感器的构造、原理和接线都与电力变压器相同,差别在于电压互感器的

容量小,通常只有几十或几百VA ,二次负荷为仪表和继电器的电压线圈,基本上是

恒定高阻抗。其工作状态接近电力变压器的空载运行。

电压互感器的高压绕组,并联在系统一次电路中,二次电压U 2与一次电压成比

例,反映了一次电压的数值。一次额定电压U IN ,多与电网的额定电压相同,二次额

定电压U2N ,一般为100V 、100/3V 、100/3V 。

电压互感器的一、二次绕组额定电压之比,称为电压互感器的额定变比K N ,则

K N =N

N U U 21≈21U U ≈21N N (2-1-1) 式中 N 1、N 2——电压互感器原、副绕组的匝数。

由式(2-1-1)知,若已知二次电压U 2的数值,便能计算出一次电压U 1的近似

值,为

U 1=k N U 2

由于电压互感器的原绕组是并联在一次电路中,与电力变压器一样,二次侧不

能短路,否则会产生很大的短路电流,烧毁电压互感器。同样,为了防止高、低压

绕组绝缘击穿时,高电压窜入二次回路造成危害,必须将电压互感器的二次绕组、

铁心及外壳接地。

2电压互感器的误差及准确度等级

与电流互感器类似,电压互感器的误差也分为电压误差和角误差。

(一) 电压误差△U

是二次电压的测量值U 2乘以额定变比K N (即一次电压的测量值)与一次电压的

实际值U 1之差,并以一次电压实际值的百分数表示,即

△U=1

12U U U k N ×100% (2-1) (二) 角误差δ

折算到一次侧的二次电压U ′2,逆时针方向转1800与一次电压U 1之间的夹δ,

并规定

当-U ′2超前U 1时,δ角为正值,反之,δ角为负值。

(三) 影响误差的因素

电压互感器的误差与其工作情况的关系,可由电压互感器根据T 形等值电路所

作的向量图加以说明,如图2-1所示,其中二次侧各量均折算到一次侧,二次部分

各相量省略未画,为了使相量显得清楚,放大了各阻抗压降部分的比例,并画出一条角误差的座标轴线(一)δ——(+)δ。从图中看出:O′A为一次电压相量

U1,是以下三部分电压的相量和:

(1)反方向的二次电压向量即- U′2。

(2)励磁电流(空载电流)I O在一次绕组的漏阻抗上的压降,即I O (R1+jX1)。

(3)反方向的二次电流向量在原、副绕组漏阻抗的电压降之和,即

-I ′2{R1+R′2}+j(X1+X ′2)}

从相量图中可以看出,影响电压互感器误差的因素有:

(1)原、副绕组的电阻R1、R′2和漏抗X1、X ′2。

(2)空载电流I O。

(3)二次负载电流的大小I′2及其功率因数COSΦ2。

图2-1 电压互感器的相量图

前两个因素与制造有关,第三因素决定于工作条件,即与二次负载有关。当二次电流增大功功率因素COSΦ2降低时,误差也就增大。

(四)电压互感器的准确度等级

电压互感器根据误差的不同,划分为不同的准确度等级。我国电压互感器的准确度分为四级,即0.2级、0.5级、1级、3级,每种准确度等级的误差限值见表2-1。

电压互感器的每个准确度等级,都规定有对应的二次负荷的额定容量S2N (VA)。当实际的二次负荷超过了规定的额定容量时,电压互感器的准确度等级就要降低。要使电压互感器能在选定的准确度等级下工作,二次所接负荷的总容量S2∑必须小于该准确度等级所规定的额定容量S2N。电压互感器准确等级与对应的额定容量,可从有关电压互感器技术数据中查取。

3 电压互感器的类型及基本结构

电压互感器种类较多,按绕组数分为双绕组和三绕组两种,三绕组电压互感器除了一、二次绕组外还有一组(个)辅助二次绕组供绝缘监测及零序回路。按相数分为单相和三相式,额定电压35kV及以上的电压互感器均制造为单相式。按安装地点分为户内和户外式,35kV及以下多制成户内式。按绝缘及冷却方式可分为干式、浇注式,油浸式和充气式,干式(浸绝缘胶)结构简单、无着火爆炸危险,但绝缘强度较低,只适用于6kV以下的户内装置;浇注式结构紧凑、维护方便,适用于3~35kV户内配电装置;油浸式绝缘性能好,可用于10kV以上的户内外配电装置;充气式用于SF6全封闭组合电器中。此外还有电容式电压互感器。(1)JDZJ—10型电压互感器

JDZJ-10型电压互感器为环氧树脂浇铸绝缘,外形结构如图2-2所示。这种电压互感器为单相三绕组,环氧树脂浇注绝缘的户内型互感器。可用三个电压互感器组成三个Y N/y n/d 接线,供中性点不接地系统的电压、电能测量及接地保护之用,可取代老型号的JSJW型三相五柱电压互感器。

1-一次出线 2—套管 3—主绝缘 4—铁心 5—二次出线

图2-2

(2)JDJ-10型电压互感器

油浸式电压互感器,结构如

图2-3所示。铁心和线圈装

在充满变压器油的油箱内,线

圈出线通过固定在箱盖上的套管引

出。用于户外配电装置。

1-铁心 2—线圈 3—一次出线4—二次出线

图2-3

(3)JSJW-10型电压互感器

JSJW-10型电压互感器为三相五柱式电压互感器,其外形及铁芯、绕组接线,

如图2-4所示。绕组分别绕在中间在个铁心上,两侧有两个辅助铁芯柱,作为单相

接地时的零序磁通通道,使原绕组的零序阻抗增大,从而大大限制了单相接地时通

过互感器的零序电流,而不致危害互感器。每个铁心柱均绕有三个绕组,一次绕组

接成星形并引出中线,因此在油箱盖上有四个高压瓷瓶端子。每相有两个二次绕

组,一组为基本绕组接成星形,中性点也引出,接线端子为a、b、c、o;另一组为

辅助绕组接成开口三角形,引出两个接线端子a1、x1。广泛用于小接地电流系统,

作为测量相、线电压和绝缘监察之用。

图2-4

(4)JCC-110型电压互感器

JCC-110型电压互感器是采用串级式结构,参数相同的原绕组线圈单元分别套在铁心上下两柱上,串接在相线和地之间,两个线圈单元的连接点与铁心连接在瓷箱内,铁心与底座绝缘。瓷箱兼作油箱和出线套管,减轻了重量和体积,如图2-5所示。由于每个单元参数相同,电压在各个单元上均匀分布,所以,每一级只处在该装置这一部分电压之下。铁心和线圈采用分级绝缘,因此,可大量节约绝缘材料。在中性点直接接地系统中,每个线圈单元上的电压与相电压Uxg成正比,最末一个与地连接的线圈单元具有副绕组,因而能成比例地反映系统相电压Uxg的变化。当副绕组开路时,由于铁芯中的磁通相等,使电压在各单元线圈上分布均匀,如图2-6(a)所示,每一线圈单元与铁芯的电位差只有Uxg/2。但铁芯与外壳之间存在Uxg/2 的电位差,所以必须绝缘。由于瓷外壳是绝缘的,且绝缘的最大计算电压不超过Uxg/2,所以容易做到,而普通结构的互感器,必须按全电压Uxg设计绝缘。

当副绕组接通负荷后,由于副绕组电流产生去磁磁势,产生漏磁通,使上、下铁芯柱内的磁通不相等,破坏了电压在各线圈单元的均匀分布,使准确度降低。为了避免这种现象,在两单元的铁芯上加装绕向和匝数相同的平衡绕组,并作反极性连接,如图2-6 所示。当两单元铁心内的磁通不相等时,平衡绕组中将产生环

流,如图中箭头所指方向,使上铁心柱去磁,使下铁芯柱增磁,达到上、下铁心内

的磁通基本相等,从而使各线圈单元的电压分布较均匀,提高了准确度。

图2-5 JCC-110型电压互感器结构图

1——油扩张器;2——瓷外壳;3——上柱绕组;4——铁心 5——下柱绕组;6——支撑电木板;7——底座

图2-6 110千伏串级式电压互感器的原理接线图

(a)原理图;(b)绕组的连接

1——铁芯;2——一次绕组;3——平衡绕组;4——二次绕组

JCC-110型电压互感器有两个副绕组,基本二次绕组的电压为100/3V;辅助二次绕组的电压为100V。这种电压互感器的缺点,是准确较低,其误差随串级元件数目的增加而加大。国产的JCC型电压互感器的准确度为1级和3级。

220kV的串级式电压互感器,有两个口字形铁心,由四个线圈单元串联组成,除下铁心装有平衡线圈外,在两个铁心的相邻铁心柱上,还设有连耦线圈,其作用

与平衡线圈相似。

二电容式电压互感器

电容式电压互感器(CVT)成为电力系统高压远距离输电技术发展的必然产物,其与传统的电磁式电压互感器相比具有四个特点:绝缘性能较好,耐压水平高,不会与断路器断口电容产生铁磁谐振;电压等级越高,其相对成本越低,节省设备投资;可兼作载波通讯使用;由于是电容型设备,实现绝缘在线监测更加容易。CVT在220kV及以上电网中应用较为广泛。大庆油田电网由于输电等级较低,为110kV及以下,目前仅在油田热电厂及宏伟电厂采用了110kV电容式电压互感器,现将大庆油田电力集团宏伟电厂电气分厂9516、9517两条线路的CVT测试经验加以分析。对于220kV 及以上的CVT,只是增加了上节分压电容器,并对分压电容器单独进行介损正接线试验,与传统方法无异。

1.CVT结构特点及工作原理。(以TYD110/-0.01H型电容式电压互感器为例)

其由电容分压器和电磁单元两个独立的元件组成,电容分压器的中压端子和接地端子穿过密封的油箱箱盖引入到油箱中分别与电磁单元的高压端子(A)和二次接线板的接地端子(N)相连。载波装置、保护球极(N-E间)在二次接线盒内,当电容式电压互感器作载波使用时,需将N-E间连接片断开;如果不做载波用则须将N-E用连接片短接。电磁单元的油箱内装有中间变压器和补偿电抗器、阻尼器、保护补偿电抗器的低压避雷器,并充有变压器油。中间变压器高压绕组与补偿电抗器串联。电磁单元的二次绕组端子及接地端子均由二次接线盒引出。其结构接线图中主要元件为电容(C1、C2),补偿电抗器,中间电磁式电压互感器TV及阻尼器等。CVT工作原理采用电容分压原理。U1为电网电压;Z2表示仪表、继电器等电压线圈负荷。

U2=UC2=U1=KUU1,

式中:KU= 为分压比,Zi= 互感器带负荷Z2后,其内阻抗(利用等效电源原理,将电容分压原理转化成电容式电压互感器等值电路),当有负荷电流流过时,在内阻抗

上将产生电压降。

使U2与U1, 不仅在数值上而且在相位上有误差,负荷越大,误差越大。要获得一定的准确级,必须增大电容量,这是很不经济的。合理的解决措施是在电路中串联一电感,即补偿电抗器。电感应按产生串联谐振的条件选择L。由于电容式电压互感器含有电容元件及多个非线形电感元件(如补偿电抗器和中间变压器等),在系统合

闸操作或短路故障产生的瞬态过程中,由于非线形电感元件的铁心饱和激发稳定的

次谐波谐振,使得在补偿电抗及中间变压器上产生过电压,最终导致补偿电抗器和中间变压器绕组击穿损坏。为抑制CVT内部铁磁谐振,在互感器二次绕组上并联阻尼

装置。为保护补偿电抗器及加大抑制谐振作用,在其两端并联氧化锌(ZnO)避雷器。

2.CVT的电容量及介损试验方法

C1、C2的测试:考虑到现场正在施工安装,而相邻的线路还在带电运行,有较大的电磁场干扰,因此决定采用自激法。自激法的测量原理为在二次端子如1a-1n处

施加一个小电压,在中间变压器一次侧产生高压作为试验电压来进行测试。试验电

压整定为不超过3kV,对二次接线端子盒内接线柱不会造成损害。使用的仪器是山东泛华生产的AI6000E变频介损测试仪,该仪器将电桥、试验变压器、标准电容器整

合在一起,简单、轻便。且在现场测试过程中分别输出45Hz和55Hz的试验电压,能有效屏蔽试验电源谐波干扰和外界强电场干扰,因此测试精度较高。设备接线:测试前二次接线盒内N-E间连接片必须断开,将CVT测试线接入N端子,Cx线接入A点。加压后,高压由A`进入,则C1与C2可分别做为电桥的一个桥臂由CVT测试线和Cx

线引入电桥,从而实现其内部两个电容的检测。CVT测试线是一根专用的绝缘屏蔽线,是经过出厂校准的,不可以用其它线替代,测试中可直接放置地上,可为试验带来很

大便利。现场接好试验接线后,介损仪可以在一个加压试验过程中,先测量C1然后

自动倒线测量C2,试验结束后统一给出C1与C2的测量结果,这也大大的缩短了试验时间。现场试验结果:9516CVT测试:C1中C1(PF)、tgδ(%)出厂报告分别为14701、0.05;现场测试为14720、0.11。C2中C2(PF)、tgδ(%)出厂报告分别为33742、0.05;现场测试为33760、0.18。9517CVT 测试:C1中C1(PF)、tgδ(%)出厂报告分别为14399、0.05;现场测试为14390、0.10。C2中C2(PF)、tgδ(%)出厂报告分别为33254、0.05;现场测试为33270、0.12。试验表明,电容量的测量值几乎

与出厂值相同,介损值比出厂值稍稍偏大。经分析认为,两者试验方法不同,出厂试

验是在电容未组装以前进行的,是对电容单独采用正接线试验,而现场试验是对整体CVT的测试,附带了电磁单元部分,因此造成介损值稍大。现场对C1、C2两只电容的试验效果还是令人满意的。其余绝缘电阻、直流电阻及工频耐压等试验与常规相同。

3 电容式电压互感器按照其安装位置不同,可分为母线、线路等几种。对于母线CVT,由于该CVT与氧化锌避雷器MOA相连,不必拆除高压引线,只拉开CVT与母线间的一次刀闸,氧化锌避雷器MOA可承受施加于CVT上的交流试验电压,流经避雷器的电流由试验电源提供,不流过电桥本身,故并联的氧化锌避雷器MOA不会对测量产生影响。而线路CVT由于不经隔离开关而直接与线路相连,若使用自激法试验电压将随

线路送出,这是不允许的。因此,需拆除高压引线。

4 产品外形及结构图见图1。

电压互感器接线方式

前言,电压互感器电力系统中通常有四种接线方式,电压互感器接线接地、相位等必须按严格的接法,并且电压互感器二次侧严禁短路。 1)Vv接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的 35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。 (2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。信息请登录:输配电设备网 (3)YN,yn接线方式:多用于大电流接地系统。 (4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV及以下的系统中不采用。 一、一个单相电压互感器接线方式 一个单相电压互感器接线方式

一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。 二、两个单相电压互感器互V/V型的接线方式 两个单相电压互感器互V/V型的接线方式 两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。

电压互感器接线图之vv接法实物图:

JDZ-10电压互感器JDZJ-10电压互感器接线实物图

CVT电容式电压互感器内部结构

CVT——电容型电压互感器 电磁式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。电容式电压互感器由串联电容器抽取电压,再经变压器变压。CVT可防止因铁芯饱和引起铁磁谐振 ------电力技术论坛======专注电力技术、扩大学习交流,结交电力好友、彼此共同进步======% f2 L/ g. g( h6 K8 Q" |6 X电磁式多用于 220kV及以下电压等级。电容式一般用于110KV以上的电力系统,330~700kV超高压较多。 * D- _0 J# B0 J" c 1、概述 电容式电压互感器(简称CVT),1970年研制出国产第一台330KVCVT,1980年和1985年研制出第一代和第二代500KVCVT,1990年和1995年研制出第三代和第四代500KVCVT,30多年来积累了丰富的科研、开发设计和生产经验,在国内开发出一代又一代的CVT新产品,带动了国产CVT的发展。CVT最主要的特点是: ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!) h8 B" ^, V% }1 n0 q、——耐电强度高,绝缘裕度大,运行可靠。 ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!+ _9 V5 l/ B$ g- A/ Q ——能可靠的阻尼铁磁谐振。成功采用新型组尼期,严格进行质量控制,确保出厂的每一台CVT均能在从低到高的任何电压下有效阻尼各种频率的铁磁谐振。T% X: |2 ]8 c" |4 P ——优良的顺变响应特性。当一次短路后其二次剩余电压能在20MS内降到5%以下,特别适应于快速继电保护。 ------电力技术论坛======专注电力技术、扩大学习交流,结交电力好友、彼此共同进步======; R4 e% A& U, O* m1 J0 _, A ——具有电网谐波监测的专利技术。 2、应用U l. f1 o% g: \1 e7 k2 y7 M 电容式电压感器可在高压和超高压电力系统中用于电压和功率测量、电能计量、继电保护、自动控制等方面,并可兼作耦合电容器用于电力线载波通信系统。如有需求,可提供用于谐波电压测量的内部附件及外部接线端子。 - |& k2 G0 w6 b7 ^% { (1)安装运行场所:户外或户内。 ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!- }& I8 |5 s) S Z6 K! k: T (2)海拔:330kv及以下产品不超过2000m。500kv产品不超过1000m,根据订货要求,可提供直至4000m的高原型产品。 (3)环境温度:-40/+40度,-25/+45度。由用户在订货时选定(也可选择其他温

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

电压互感器常见接线图 (图文) 民熔

电压互感器接线图 电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位; 而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 民熔电压互感器简介: JDZ-10高压电压互感器 10kv 半封闭式 0.5级 羊角型

特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片 电压互感器的电力系统通常有四种接线方式。电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。1、单相电压互感器接线方式 一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。二、两个单相电压互感器互V/V型的接线方式

两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。广泛应用于20kV以下中性点不接地或经消弧图接地的电网。3、三台单相电压互 感器Y0/Y0接线方式 三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型

电压互感器的结构及功能

电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电的隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器实际上是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/8915428747.html,。

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

电压互感器接线形式接法

电压互感器V-V接线正确与错误接法(图) 发布日期:2008-5-21 浏览次数:622 图1、图2是正确的Vv接法,但图3是VΛ接法,AB、C B两相电压反向了180°,所以V变成v后,反相成对顶状态。故,图3不是Vv接法。

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接 地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电 压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。 V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。

根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca 线电压变为。 电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且 还起继电保护的作用。

电压互感器地原理及结构

电压互感器 一 电磁式电压互感器的原理及结构 1电压互感器的工作原理与技术特性 电压互感器的构造、原理和接线都与电力变压器相同,差别在于电压互感器的容量小,通常只有几十或几百VA ,二次负荷为仪表和继电器的电压线圈,基本上是恒定高阻抗。其工作状态接近电力变压器的空载运行。 电压互感器的高压绕组,并联在系统一次电路中,二次电压U 2与一次电压成比例,反映了一次电压的数值。一次额定电压U IN ,多与电网的额定电压相同,二次额定电压U2N ,一般为100V 、100/3V 、100/3V 。 电压互感器的一、二次绕组额定电压之比,称为电压互感器的额定变比K N ,则 K N = N N U U 21≈21U U ≈2 1 N N (2-1-1) 式中 N 1、N 2——电压互感器原、副绕组的匝数。 由式(2-1-1)知,若已知二次电压U 2的数值,便能计算出一次电压U 1的近似值,为 U 1=k N U 2 由于电压互感器的原绕组是并联在一次电路中,与电力变压器一样,二次侧不能短路,否则会产生很大的短路电流,烧毁电压互感器。同样,为了防止高、低压绕组绝缘击穿时,高电压窜入二次回路造成危害,必须将电压互感器的二次绕组、铁心及外壳接地。 2电压互感器的误差及准确度等级 与电流互感器类似,电压互感器的误差也分为电压误差和角误差。 (一) 电压误差△U 是二次电压的测量值U 2乘以额定变比K N (即一次电压的测量值)与一次电压的实际值U 1之差,并以一次电压实际值的百分数表示,即 △U= 1 1 2U U U k N ×100% (2-1) (二) 角误差δ 折算到一次侧的二次电压U ′2,逆时针方向转1800与一次电压U 1之间的夹δ,并规定 当-U ′2超前U 1时,δ角为正值,反之,δ角为负值。 (三) 影响误差的因素 电压互感器的误差与其工作情况的关系,可由电压互感器根据T 形等值电路所作的向量图加以说明,如图2-1所示,其中二次侧各量均折算到一次侧,二次部分

电磁式互感器的工作原理

在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。当今电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/8915428747.html,。

电压互感器的结构及作用

电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/8915428747.html,。

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

电磁式电压互感器的主要结构类型

电磁式电压互感器的主要结构类型 电压互感器:将高电压变成低电压的互感器。在正常使用情况下,其比差和角差都应在允许范围内。 按电压互感器的工作原理分类:电磁式、电容分压式、光电式。电压等级为220kv及以下时为电磁式电压互感器,220kv以上是多为电容分压式互感器。 电磁式电压互感器原理接线图: 电磁式电压互感器 工作原理: 电磁式电压互感器的构造原理、构造和接线都与电力变压器相似。电压互感器的一次绕组与二次绕组的电压之比同为他们的匝数之比。特点:1;电压互感器一次侧的电压(电网电压)不收互感器二次负载影响。

2;二次侧的负载是仪表和继电器的电压线圈,阻抗很大,通过的电流很小,电压互感器的工作状态接近于空载装态,二次电压接近二次电动势值,并取决与一次电压值。 电磁式电压互感器的测量误差和准确级: 测量误差: 电压误差: 相位差:旋转180度后的二次电压-U2与一次电压向量U1之间的夹角。 准确级:电压互感器的准确级用最大允许误差表示。有、、、1、3、3P、6P等准确级,分别用在不同的测量与保护场合 减少误差的方法:采用高磁导率的冷轧硅钢片 二次侧接近空载运行时,电磁式电压互感器的误差最小。 准确级:在规定的一次电压和二次负荷变化范围内,负载的功率因素为额定值时,电压误差色最大值。 测量用电压互感器额准确值:、、、1和3 。 保护用电压互感器的准确规定有3p和6p。 运行特点:二次侧不容许短路 电磁式电压互感器的分类: 1:按安装地点:户内式(35kv以下)和户外式(35kv以上) 2:按相数:单相(任意电压级)和三相(20kv以下电压级)

3:按绕组:双绕组和三绕组 4:按绝级结构:干式(结构简单绝缘强度低)、浇注式、充气式和油浸式(绝缘性能好) 电压互感器的结构与变压器有很多相同之处 油浸电磁式电压互感器的结构 油浸式电压互感器按其结构可分为普通式和串级式。 额定电压3~35kV油浸式电压互感器制成普通式结构,其铁芯和绕组浸在充有变压器油的油箱内,绕组通过固定在箱盖上的瓷套管引出。 电压为60kV及以上的电压互感器普遍制成串级式结构。这种结构的主要特点是:绕组和铁心采用分级绝缘,以简化绝缘结构;铁心和绕组放在瓷箱中,瓷箱兼作高压出线套管和油箱 JCCl一110型串级式电压互感器的结构 一个“口”字型铁心采用悬空式结构,用四根电木板支撑着。电木板下端固定在底座上。原绕组分成匝数相等的两部分,绕成圆筒式安置在上、下铁柱上。原绕组的上端为首端,下端为接地端,其中点与铁心相连,使铁心对地电位为原绕组电压的一半。 一般平衡绕组是安放得最靠近铁心柱。依次向外的顺序是:原绕组、基本付绕组、辅助付绕组。 基本付绕组和辅助绕组都放置在下铁心柱上。上、下铁心柱都绕有平衡绕组。

电压互感器接线图及含义

电压互感器接线图及含义 电压互感器的含义:

双绕组和三绕组电压互感器的结构: 供测量用的电压互感器,一般都做成单相双绕组结构.当两端绝缘等级相同时,可以单相使用,也可以组合起来作三相使用。对这种电压互感器的主要技术要求是保证必要的准确级。 供接地保护用的电压互感器还具有一个辅助二次绕组,称三绕组电压互感器。三相的辅助二次绕组结成开口三角形,一旦系统发生单相接地时中性点出现位移,辅助二次绕组上会出现一个零序电压,所以辅助二次绕组现称零序电压线组。 三绕组电压互感器一般做成单相,做成三相时应采用三相五拄式(三相三柱旁扼式)铁心,且电压在10kv及以下,这是为了提供零序磁通的回路。对于这种电压互感器,零序电压绕组的准确级要求不高,一般为3B级或6B级,以保证开口三角端子电压在一定范围之内,但要求具有一定的过励磁特性。 三相五柱式电压互感器与单相电压互感器: 三相五柱设计是高压侧Y0接线,低压侧是Y0(三柱) +开口三角(两柱) 低压侧是Y0(三柱)用于线电压和相电压的测量,中性点接地系统。不接地系统只能测线电压,无专用计量PT时,供计量表计电压量。 开口三角(两柱)在开口三角接有电压继电器,用于监视开口三角电压,检测系统的整体绝缘,用来反映系统发生接地时的零序电压。当开口三角电压达到启动值时,提供给保护需要的零序电压。小接地电流系统通常用于发信号。 这种互感器只限制制成10KV以下电压等级。应用于10KV以下系统。其优点是投资小,接线简单,操作及运行维护方便;其缺点是只发出系统接地的无选择性预告信号,不能确切判定发生接地的故障线路,运行人员需要通过拉路分割电网的方法来进一步判定故障线路,影响了非故障线路的连续供电。该装置的优点是以牺牲非故障线路的供电可靠性为代价的。 当然两个或三个同型号同规格单相互感器也可以组合来测量线电压、相电压或继电器保护之用。以及和电度表、功率表组合量电用。电压等级可以比集成的五柱式做得更高,且可以灵活配置,适用范围更广。

电磁式电压互感器

电磁式电压互感器(VT)和电容式电压互感器(CVT)的定义及区别 电磁式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电容式电压互感器由串联电容器抽取电压,再经变压器变压。CVT可防止因铁芯饱和引起铁磁谐振 电磁式多用于220kV及以下电压等级。电容式一般用于110KV以上的电力系统,330~700kV超高压较多。 电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保 护等的电压源的电压互感器电感式是线圈式的和变压器一样 电容式电压互感器时电容分压后通过电磁式电压互感器二次分压将二次额定电 压规范到100V,57.7V,作用和电磁式电压互感器一样,但前者具有康铁磁谐 振功能,且呈容性可提高系统功率因数,也可用于载波通讯。电容式电压抽取装置就是电容分压器,其输出容量很小只能接输入阻抗大的测量设备,输出电压一般很小,负载能力很差。 电压互感器的工作原理 在测量交变电流的大电压时,为能够安全测量在火线和地线之间并联一个变压器(接在变压器的输入端),这个变压器的输出端接入电压表,由于输入线圈的匝数大 于输出线圈的匝数,因此输出电压小于输入电压,电压互感器就是降压变压器. 电流互感器的工作原理 在测量交变电流的大电流时,为能够安全测量在火线(或地线)上串联一个变压器(接在变压器的输入端),这个变压器的输出端接入电流表,由于输入线圈的匝数小 于输出线圈的匝数,因此输出电流小于输入电流(这时的输出电压大于输入电压, 但是由于变压器是串联在电路中所以输入电压很小,输出电压也不大),电流互感 器就是升压(降流)变压器.

电压互感器和电流互感器

目录 1. 概述 (2) 2. 电压互感器 (2) 2.1. 基本介绍 (2) 2.2. 主要类型 (3) 2.3. 工作原理 (3) 2.4. 注意事项 (4) 2.5. 铭牌标志 (5) 2.6. 基本作用 (5) 2.7. 接线方式 (5) 2.8. 常见异常 (6) 3. 电流互感器 (7) 3.1. 基本介绍 (7) 3.2. 基本原理 (7) 3.3. 型号参数 (8) 3.4. 使用原则 (10) 3.5. 校验方法 (11) 3.6. 注意事项 (12)

1.概述 互感器在供配电系统中主要分为两种:电压互感器和电流互感器。 在供配电系统中,大电流、高电压有时不能直接用电流表和电压表来测量,必须通过互感器按比例减小后测量。互感器的内部结构就是变压器。按照变压器的原理运行。 互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100 伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈。 2.电压互感器 2.1.基本介绍 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 电压互感器(Potential transformer 简称PT,也简称TV)和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和

电压互感器常用接线方式

电压互感器在三相电路中常用的接线方式 电压互感器在三相电路中常用的接线方式有四种 一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器 两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中 三个单相电压互感器接成Y0/Y0形,可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种 采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用 你说的闭口三角没见过,你再仔细看看吧 (闭口三角当三相不平衡有零序电压时,不是短路了么) 请问:为什么进线电压互感器都是V/V式,而母线电压互感器都是三相五柱式(其一次线圈及二次线圈均接成星形,附加二次线圈接成开口三角形)?如果进线和母线都采用三相五柱式可以吗?为什么? 电压互感器一般有单相接线、V-V接线、Y-Y接线、Y0/Y0/△这四种接线方式。 其中由两个单相互感器接线成不完全星形就是V-V接法,它是用来测量各相间电压,但不

(完整word版)电压互感器工作原理.docx

电压互感器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 电压互感器 [1] (Potential transformer简称PT,Voltage transformer也简称VT)和变压器类似,是用来变换线路上的电压的仪器。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单 位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能, 或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、 几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、 以及铁磁谐振等。 基本结构 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压 互感器在运行时,一次绕组N1 并联接在线路上,二次绕组N2 并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 工作原理 其工作原理与变压器相同 [2] ,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成 V-V 形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保 护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引 出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。 线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10KV 及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原 边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。[3] 电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。电压互感器和变压器很相像,都是用来变换线路上的电压。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V 和 380V ,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线 路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。

电流互感器和电压互感器的接线方式

电力系统中的二次设备——继电保护及全自动装置等绝大多数是根据发生故障时电增大、电压降低的特点而工作的,这些电气一般都是通过电流互感器和电压互感器的副圈加到二次设备上.故在此将电流互感器、电压互感器的接线方式加以说明。 一、电流互感器的接线方式 在继电保护装置中电流互感器的接线方主要有四种:三相完全星形接线方式;两相完全星形接线方式;两相差接线方式;两相继电器式接线方式。 1.三相完全星形接线方式 三相星形接线方式的电流保护装置对各故障(如三相短路、两相短路、两相短路并地、单相接地短路)都能使保护装置起动,足切除故障的要求,而且具有相同的灵敏度如图2-l。 当发生三相短路时,各相都有短路电讯即A相?DA,B相?BD,C相?DC.反应到电流互感器二次例的短路电流分别为?a、?b、?c,它们分别流径A相、B相、C相继电器的线圈,使三只继电器(如图2一1中的a、b、c)动作.当发生A、B两相短路时A、B两相分别有短路电流?DA、?DB,它们流径电流互感器后,反应到其二次测分别为?a、?b,又分别将电流继电器a、b起动,去切除故障.当发生出接地故障好,则A相继电器a起动,切除故障。

电流互感器接成三相完全星形接线方式,适用于大电流接地系统的线路继电保护装置5变压器的保护装置。 1.两相不完全星形接线方式 此种接线是用两只电流互感器与两只电流继电器在A、C两相上对应连接起来。此种接线方式只适用于小电流接地系统中的线路继电保护装置,如6~35KV的线路保护均应采用此种接线方式。 此种接线方式,对各种相间短路故障均能满足继电保护装置的要求.但是此种接线方式不能反应B相接地短路电流,(因B相未装电流互感器和继电器)所以对B相起不到保护作用,故只适用小电流接地系统。 由于此种接线方式较三相完全星形接线方式少了三分之一的设备,节约了投资,又可提高供电可靠性,故得到了广泛的应用。 不完全星形接线方式不装电流互感器的一根规定为B相。如果在变电站或发电厂出线断路器的电流保护使用的电流互感器两相装的不统一,则当发生不同地点又不相同的两点接他故障时,会造成保护装置的拒动而越级掉闸,如图2-3所示。 3.两相三继电器式接线方式、两相三继电器式接线方式如图2-4所示。

相关主题
文本预览
相关文档 最新文档