当前位置:文档之家› 医学图像处理-复习纲要

医学图像处理-复习纲要

医学图像处理-复习纲要
医学图像处理-复习纲要

《医学图像处理》复习纲要

第1章引论

1.数字图像处理(DIP)的基本定义和本课程所界定的大致范围

数字图像、图像处理、图像分析/理解、计算机视觉

2.数字图像处理发展的基本历程和应用领域

重点:在医学图像处理中(CAT、CT、PET、MRI、体内三维再现技术等)的发展应用

3.从成像来源的角度了解DIP的划分、比较各自特点及应用场合

电磁波谱成像、显微镜成像(TEM、SEM)、声波/超声波成像、计算机合成图像4.DIP的基本流程步骤

第2章DIP基础

1.视觉基本要素

杆状体(Rods)和锥状体(Cones)、盲点、主观亮度、亮度适应性、亮度辨别力(Weber ratio);几种视觉现象(说明感觉亮度不是光强的简单函数):Mach效应、同时对照度、光幻觉;描述彩色光的三个基本量:辐射度(radiance)、光通量/流明数(luminance)和亮度(brightness)

2.图像感知和获取、采样和量化

三种基本的图像采集形式(单个、线和阵列)、图像的照射和放射分量模型、数字图像的空间坐标表示、图像存储尺寸的计算、图像的空间和灰度分辨率、checkerboard现象和伪轮廓现象、等性能曲线及解释、混叠/莫尔(波纹)效应及解释

3.象素间的基本关系测度

近邻(neighbors)(4、对角、8)、邻域; 邻接(adjacency)(4、8、混合)与连接(connectivity);区域、边界和边缘(沿);路径、路径长度、连接分量/集、闭路径;距离测度:距离定义、城市街区距离、Euclidean距离、棋盘(chessboard)距离、Dm距离;

第3章空域图像增强技术

1.灰度变换及基本函数

基本概念:负变换、对数变换、幂律变换(Gamma校正)、分段线性变换、灰度切割、位平面切割;

要求:理解这些变换的基本含义及对图像作用后会产生什么样的效果、并会灵活运用这些变换于不同的图像增强场合

2.直方图处理

灰度直方图的定义、基本含义、与图像外观的关系、及其作用;

直方图均衡化(线性化):基本思想与原理、特点与作用、算法基本步骤、应用场合

直方图匹配(规定):基本原理、特点与作用、变换函数、实现流程;会灵活运用(如怎么去设计规定的直方图)

怎么运用直方图的统计特征于图像增强:均值、方差及主要含义、全局运用与局部运用

3.增强中的算术与逻辑操作

与、或、非:特点、作用、怎么运用

图像加/平均、减、乘操作的主要原理、特点、作用效果、应用场合;

4.空间滤波

线性滤波与非线性滤波、填充问题(基于邻域的操作)

线性滤波:基本概念、滤波器/模板/掩码、线性卷积与相关

线性平滑滤波(盒滤波器、加权平均滤波)、排序统计滤波(中位、中值、最大、最小及其它自定义的百分位):基本原理、特点、优缺点与应用场合

空间锐化滤波器:数学原理与基础、作用

一阶导数/梯度算子(Roberts, Sobel, Prewitt)、二阶导数/Laplacian算子:各自主要特征、优缺点、主要作用、怎么运用

本章应用实例:联合增强

第4章频域增强技术

1.基础:二维离散傅立叶变换

2.基本概念:图像频谱及物理意义(很重要)、频域和空域分辨率、填充与周期展开;

3.频域滤波的基本流程框架

4.基本的滤波器类型(高、低通):理想、Butterworth、Gaussian;基本原理、主要属性、主要用途;要求掌握一定的推导技巧和能灵活运用

5.空域与频域滤波器间的转换-卷积定理;频域和空域增强技术间的比较6.同态滤波:概念、原理、算法基本流程、主要用途

第5章图像恢复

1.基本概念,与图像增强技术的区别和联系;图像退化及恢复过程模型

2.噪声:来源、空/频域的属性(从与图像的关系角度);

重要的噪声概率模型:高斯、Reyleigh、指数、均匀、脉冲(椒盐);对表达公式要熟悉、对基本特征要掌握;能根据图像的统计特征(如直方图分布)对噪声参数进行估计;

3.只有噪声情况下的恢复技术-空间滤波:1)线性:均值滤波(算术、几何、谐波、逆谐波;2)排序统计:中值、最大/小、中点、alpha修剪;3)自适应均值滤波(基本思想与流程)。要求:掌握基本原理、基本属性、和各自的优缺点

与用途。

4.周期噪声消除:带限与陷波滤波器

5.线性位置不变退化模型及退化函数估计:1)观察;2)试验;(这两种有个基本了解就行);3)利用先验知识建模退化函数;4)滤波方法:逆滤波、Wiener 滤波(重点);约束最小均方滤波、几何均值、空间变换等(了解);

第6章彩色图像处理

两大类:真彩色和伪彩色处理;

颜色基础:电磁波谱;彩色光的三个基本度量变量(辐射度、光通量、亮度);彩色光谱范围:380nm~720nm;光的三基色(RGB):CIE定义的波长(蓝:435.8nm, 绿:546.1nm, 红:700nm);光的二次色(补色):magenta、cyan、黄色;颜料的三基色和二次色(图6.4);CIE彩色图(图6.5);颜色特征度量的三种基本量:brightness, hue, saturation;三激励值、三色系数;

颜色模型(系):RGB、CMY、CMRK、HIS;各自特征、含义、主要的应用场合;

颜色系间的相互转化;

第7章

第8章图像压缩

两大类型:有损压缩、无损压缩;

基本概念:数据冗余类型(编码、象素间、生理视觉);相对信息冗余;压缩率;置信准则(客观、主观);

图像压缩模型(图8.6):映射器、量化器、符号编码器;

信息论基础:自信息、互信息、熵

编码定律:无噪编码(shannon第一定律)、带噪编码(shannon第二定理);

无损压缩的基本方法:变长编码、Huffman编码、算术编码、LZW编码;要求:掌握基本原理、算法流程、性能特点。重点:前两种

有损压缩:有损预测模型(图8.21);DM方法、DPCM方法,变换编码的几种类型。要求:了解基本概念、主要特点;

第9章形态学图像处理

第10章图像分割技术

医学图像处理考试复习重点

C h a p t e r1 1.A n i m a g e m a y b e d e f i n e d a s a t w o-d i m e n s i o n a l f u n c t i o n,f(x,y),w h e r e x a n d y a r e s p a t i a l c o o r d i n a t e s,a n d t h e a m p l i t u d e o f f a t a n y p a i r o f c o o r d i n a t e s (x,y)i s c a l l e d t h e i n t e n s i t y o r g r a y l e v e l o f t h e i m a g e a t t h a t p o i n t. 2.I m a g e p r o c e s s i n g i n c l u d e s i m a g e a c q u i s i t i o n,i m a g e s t o r a g e,i m a g e t r a n s m i s s i o n a n d d i g i t a l i m a g e p r o c e s s i n g. 3.L o w l e v e l p r o c e s s i n v o l v e s p r i m i t i v e o p e r a t i o n s s u c h a s i m a g e p r e p r o c e s s i n g t o r e d u c e n o i s e,c o n t r a s t e n h a n c e m e n t,a n d i m a g e s h a r p e n i n g. 4.M i d-l e v e l p r o c e s s i n v o l v e s t a s k s s u c h a s s e g m e n t a t i o n,d e s c r i p t i o n,a n d c l a s s i f i c a t i o n (r e c o g n i t i o n)o f i n d i v i d u a l o b j e c t s. 5.A s f o r m i d-l e v e l p r o c e s s,i t s i n p u t s a r e i m a g e s,b u t i t s o u t p u t s a r e a t t r i b u t e s e x t r a c t e d f r o m t h o s e i m a g e s. 6.D i g i t a l i m a g e p r o c e s s i n g e n c o m p a s s e s p r o c e s s e s w h o s e i n p u t s a n d o u t p u t s a r e i m a g e s a n d,i n a d d i t i o n,e n c o m p a s s e s p r o c e s s e s t h a t e x t r a c t a t t r i b u t e s f r o m i m a g e s,u p t o a n d i n c l u d i n g t h e r e c o g n i t i o n o f i n d i v i d u a l o b j e c t s. 7.I m a g e r e s t o r a t i o n i s b a s e d o n m a t h e m a t i c a l o r p r o b a b i l i s t i c m o d e l s o f i m a g e d e g r a d a t i o n. 8.I m a g e c o m p r e s s i o n i s t o r e d u c e t h e s t o r a g e r e q u i r e d t o s a v e a n i m a g e,o r t h e b a n d w i d t h r e q u i r e d t o t r a n s m i t i t. 9.M o r p h o l o g i c a l p r o c e s s i n g i s t o e x t r a c t i m a g e c o m p o n e n t s t h a t a r e u s e f u l i n t h e

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

医学图像处理(名词解释广医)

1.单元数组:单元数组中的数据成员是用数字来标识的,是每一个元素为一个单元的数组 2.结构体:结构体的数据成员是用名称来标识的,组成成员为字段,结构体采用点号来调 用(访问)字段中的数据;7 3.灰度图像:灰度图像对应着一个数据矩阵(二维数组),数组元素的值表示图像在该位 置上的亮度值;23 4.二值图像:灰度级为2的图像就是二值图像,二值图像只有两个颜色,黑与白;23 5.RGB图像:RGB图像有三个颜色值,用mxnx3数组表示,分别表示红色值。绿色值、蓝 色值;23 6.HSV图像:HSV图像也是用mxnx3数组表示的,三个矩阵分别表示色彩值、饱和度、 亮度;24 7.索引图像:索引图像由数值矩阵和颜色映射数组组成,数值矩阵是每个像素的颜色索引 编号,通过这个编号到颜色数组中寻找颜色;24 8.JPEG图像JPEG标准时目前比较流行的连续色调静止画面标准,是一种很灵活的 格式,具有调节图像质量的功能,允许用不同的压缩比列对文件进行压缩,支持多种压缩级别;27 9.GIF图像:GIF文件的数据时一种基于LZW算法的、连续色调的无损压缩的格式, 分为静态GIF和动画GIF两种;27 10.MPEG图像:是国际标准化组织制定的标准,可以压缩视频、音频。动画数字形式; 29 11.基于图像的动画制作:动画效果是由一幅幅图形变化产生的,如果这些图形来自于图像, 那么就称改动画为基于图像的动画;31 12.最近邻插值方法:最近邻插值方法是imresize函数默认的插值方法,就是令变 换后像素的灰度值等于距它最近的输入像素的灰度值;39 13.双线性插值方法:双线性插值是由两个变量的插值函数的线性插值扩展,其核心 思想是在两个方向分别进行一次线性插值;41 14.双立方插值方法:“双”的意思就是在计算了横向插值影响的基础上,把上述运算 拓展到二维空间,再计算纵向插值影响的意思,双立方插值的每个插值是由它附近的(4 x 4)个邻近象素值推算出来的,双立方插值算法能够得到相对清晰的画面质量,不过计算量也变大;41 15.领域操作:是指在图像操作时,输入要处理的像素的某领域内各个像素值,输出 要处理的像素的新值;48 16.分离块操作:使用函数colfilt进行图像领域distinct操作56 17.图像增强:是对图像进行操作,得到视觉更好或者更有用的新图像;59 18.灰度调整:灰度调整方法是基于灰度直方图的一种图像增强方法,增加灰度图像 的明暗对比度,使图像变得更加清楚;60 19.图像滤波:滤波是一种应用广泛的图像处理技术,可以通过滤波来强调或删除图 像的某些特征,滤波是一种领域操作,即处理后的图像每个像素值是原来像素周围的颜色值经过某种计算得到的;69 20.图像矩阵的特征值:设 A 是n阶方阵,如果存在数m和非零n维列向量x,使得 Ax=mx 成立,则称m 是A的一个特征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量;84

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

医学图像处理复习重点

医学图像处理复习重点 1、图像:事物的一种表示、写真或临摹,…..,一个生动的或图形化的描述,是对事物的一种表示。 2、图像的分类:(1)数学函数产生的图像(2)可见的图像(3)不可见的物理图像 3、图像表示:常见图像是连续的,用f(x,y)表示一幅图像,其中x,y表示空间坐标点的位置,f 表示图像在点(x,y)的某种性质的数值,如亮度等。f ,x,y可以是任意实数。 4、数字图像处理的定义(两方面):对一个物体的数字表示施加一系列的操作以达到某种预期的结果,它包括以下两方面内容:(1)将一幅图像变为另一幅经过加工的图像,是图像到图像的过程。(2)将一幅图像转化为一种非图像的表示,如一个决策等。 5、数字图象处理系统的基本组成结构:(1)图象数字化设备:扫描仪、数码相机、摄象机与图象采集卡等。(2)图象处理计算机:PC、工作站等,它可以实现通信(通信模块通过局域网等实现网络传输图像数据)、存储(存储模块采用磁盘、光盘)和图像的处理与分析(主要是运算,用算法的形式描述,用软件实现)。(3)图象输出设备:打印机等。 6、研究的内容:(1)图像增强技术(2)图像配准技术(3)图像分割技术(4)图像三维显示技术(5)医学图像数据库 7、黑白图像:是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。2值图像的像素值为0、1。 8、灰度图像:每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度。以上两种为非彩色图像。 9、彩色图像:彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 10、像素的性质:图像是由一些极小尺寸的矩形小块组合而成的。组成图像的这种最小基本元素称作象素(Pixel)。 例如,一幅MR图像在水平方向上有256个象素,垂直方向上也有256个象素。整幅图像共有256=65536 256个象素。这就是图像的大小(size),又称作图像的尺度。图像尺度的计算公式为 S=Nx*Ny 11、物理尺寸:象素本身也有自己的大小,即对应实际物体空间的大小。 12、强度:对于黑白图像来说,图像的强度是用灰度的等级(Gray level)表示的。灰度等级往往用2的整数次幂表示,例如8bit(256 个灰度等级)。 13、图像的运算(算术运算加减乘除较多、逻辑运算较少): 13.1算术运算 13.1.1加法运算的定义:C(x,y) = A(x,y) + B(x,y) 主要应用举例:(1)去除“叠加性”噪音(2)生成图象叠加效果 (1)去除“叠加性”噪音 对于原图象f(x,y),有一个噪音图象集{ gi(x,y) } i =1,2,...M其中:gi(x,y) = f(x,y) + h(x,y)iM 个图象的均值定义为:g(x,y) = 1/M (g0(x,y)+g1(x,y)+…+ gM(x,y))当:噪音h(x,y)i为互不相关,且均值为0时,上述图象均值将降低噪音的影响。 (2)生成图象叠加效果 对于两个图象f(x,y)和h(x,y)的均值有:g(x,y) = 1/2f(x,y) + 1/2h(x,y)会得到二次暴光的效果。推广这个公式为:g(x,y) = αf(x,y) + βh(x,y)其中α+β= 1我们可以得到各种图象合成的效果,也可以用于两张图片的衔接

医学图像处理单选题样题

| 姓 名~ 】) 牡丹江医学院医学影像学院 — ]

% % & : > 、 1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D:CT的成像方法的研究 - 4、医学图像后处理包括对 A:MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C:USI成像方法的研究 D:CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI ( 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 - 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查

9、CT成像的特点 A:全方位成像 ` B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学 成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 | B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 ~ B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像 ! * 【 ~ ; 15、核医学成像主要是取决于 A:脏器或组织的血流与细胞功能 B:成像设备的磁场强度 C:成像设备的X射线强度 D:人体组织与器官的氢原子数含量 16、融合技术应用于医学成像的目的是 A:使两张图片更好的连接 B:同时显示功能性信息及解剖学位置 C:方便比较两张医学图片的对比度 ¥ D:实现断层解剖学成像的3D显示 17、分子影像学是 A:探测构成疾病基础的分子异常 B:详细观察体内分子的细微结构 C:研究人体内分子的发光特点 D:研究探针的运动轨迹 18、那种融合技术有应用价值

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

医学数字图像处理习题

医学数字图像处理习题 1、简述图象处理的技术分类。 2、简述数字图像处理的主要方法。 3、图象函数(,,,,)I F x y z t λ=表示了怎样的一幅图象? 4、解释数字图像的几个名词:空间分辨率,密度分辨率,空间频率。 5、什么是线性系统?什么是空间不变的线性系统? 6、什么是δ-函数?什么是δ-函数的筛选性? 7、 您能推荐点几本关于医学图象处理的教学参考书(中文和英文)吗? 8、您认为我们的医学图象处理课应保证哪些基本内容和基本训练? 9、两维傅里叶变换的可分离性有什么实际意义? 10、 证明离散傅里叶变换和反变换都是周期函数。 11、 试证明傅立叶变换的频域位移性质: 12、 根据Laplace 算式和傅里叶变换的微分性质,求出傅里叶变换对: 222(,)(2)()(,)f x y u v F u v πΔ??+。 13、 设有一组随机矢量[]12 3 x x x x =,其中[]10 0 1T x =,[]20 1 0T x =, []3 1 0 0T x =, 请分别给出x 的协方差矩阵。 14、 请说明:如何方便地将空间频率坐标系的原点移到MN 空间频率方阵的中心(, 设图象函数为。 )2/,2/N M ),(y x f 15、 对N=8,计算斜矩阵(Slant Array)。 16、 什么是小波变换?请给出一维连续小波变换的定义。 17、 请给出二维连续小波的容许性条件。 18、 请简述紧支集的概念。 19、 请简述框架、紧框架和几乎紧框架的概念。 20、 试给出Haar 小波、Mexico Hat 小波和Morlet 小波的定义,并说明各自它们各自的用途。 21、 什么是图象增强?图象增强的技术分几大类? 22、 什么是直方图?什么是直方图均衡化?什么是直方图匹配? 23、 写出空域图象平滑的表示式,空域低通滤波有几种方法?简述其要点。 24、 写出频域低通滤波的数学表达式。常用的有几种滤波器?他们的特点是什么? 25、 设仅利用象素点(,)x y 的4-近邻象素(不用点(,)x y )组成一个低通滤波 器。 (1) 给出它在频域的等价滤波器; (,)H u v (2) 证明所得的结果确实是一个低通滤波器。 26、 有一种计算梯度的基本步骤是计算(,)f x y 和 (1,)f x y +的差。

数字图像处理课程论文

数字图像处理 课程论文 论文作者姓名:xxx 专业:通信工程班级:一班学号: 日期:

目录 一、前言 (1) 二、MATLAB数字图像处理 (1) 三、实验目的 (1) 四、实验原理 (2) 五、算法说明 (2) 5.1、imread (2) 5.2、imshow (2) 5.3、edge (3) 5.4、rgb2gry (3) 5.5、find (3) 5.6、max/min (3) 六、实验步骤 (4) 6.1、实验思路 (4) 6.2、具体步骤 (4) 6.2.1、读图 (5) 6.2.2、边缘检测 (5) 6.2.3、测边端 (5) 6.2.4、算圆心与直径 (5) 6.2.5、显示处理后图像 (5) 七、源程序 (6) 八、结论 (6) 九、不足与改进 (6) 十、参考文献 (6)

一、前言 MATLAB是集数值计算,符号运算及图形处理等强大功能于一体的科学计算语言。作为强大的科学计算平台,它几乎能够满足所有的计算需求。自MATLAB4.0问世以来,MATLAB语言就一直受到工程应用的各个领域的学者和工程师们的关注。2001年Mathworks公司又推出了强大的MA TLAB升级版本MA TLAB6.0,使其在符号运算和图形处理功能上得到了进一步完善。除此之外,新版本的MA TLAB还增强了它的各种应用工具箱,使MATLAB的应用面越来越广,功能也越来越强大。因此MATLAB已成为最为普遍的计算工具之一。 MATLAB软件具有很强的开放性和适用性。在保持内核不便的情况下,MATLAB可以针对不同的应用学科推出相应的工具箱(toolbox)。目前,MATLAB已经把工具箱延伸到了科学研究和工程应用的诸多领域,诸如数据采集、概率统计、信号处理、图像处理和物理仿真等,都在工具箱(Toolbox)家族中有自己的一席之地。此外,MA TLAB还支持用户用自己编写的M文件(MATLAB的程序文件)组成自己的工具箱,极大的方便了用户的使用和维护。本文想就MA TLAB中提供的图像处理工具箱(Image Processing Toolbox)来求一张图片中圆的圆心与直径. 二、MATLAB数字图像处理 MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际上MA TLAB 中的绝大多数的运算都是通过矩阵这一形式进行的。这一特点也就决定了MA TLAB在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。而MATLAB 的长处就是处理矩阵运算,因此用MATLAB处理数字图像非常的方便。 MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。MA TLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作。 三、实验目的 1、初步了解与掌握MA TLAB语言的基本用法; 2、掌握MATLAB语言中图象数据与信息的读取方法; 3、了解图像边缘提取的基本概念; 4、了解进行边缘提取的基本方法; 5、掌握用MA TLAB语言进行图像边缘提取的方法。

计算机医学图像处理

计算机医学图像处理 摘要: 本文着重介绍了计算机在医学图像处理方面的应用。主要表现为 CT、数字减影技术、超声图像以及目前正在国际上兴起的体视化技术( Volume Visualization) 等。 关键词: 计算机医学图像体视化技术 1医学图像的种类及其分类 1. 1医学图像种类 现代医学离不开医学影像( 图像) 信息的支持。 而医学研究和临床诊断所需要的医学影像是多种多 样的, 如病理切片图像、X 射线透视图像、CT 和 MRI 扫描影像、核医学影像、超声影像、红外线热成 像图像及窥镜图像等等。 1. 2医学图像分类及用途 功能各异的医学影像分为结构影像技术和功能 影像技术两大类。前者主要用于获取人体各器官解 剖结构图像, 借助此类结构透视图像, 不需要解剖检 查, 医学人员就可以诊断出人体器官的器质性病变。 CT 及MRI 便属于此类结构影像的代表。 然而在人体器官发生早期病变, 但器官外形结 构仍表现为正常时, 器官的某些生理功能, 如新陈代 谢等却开始发生异常变化。此时采用结构影像做结 构解剖性检查便无法及时诊断出病变的器官, 而需 借助基于SPECT 及PET 的功能影像技术。功能影 像能够检测到人体器官的生化活动状况, 并将其以 功能影像的方式呈现出来。 2计算机对医学图像的处理应用 2. 1直接控制成像过程( CT ) 的应用 CT 的本质是一种借助于计算机进行成像和数 据处理的断层图像技术。虽然X 线透视和照相可使 人们了解人体的内部结构, 断层摄影可粗略地表示 病灶的位置, 影像增强系统和静电摄影提高了透视 和断层摄影的分辨率, 但只有CT 通过计算机在排 除散射线和重叠影像的干扰并对X 线人体组织吸 收系统矩阵作定量分析后, 才从根本上解决了分辨 率问题。与普通的X 线透视横断层图像不同的是在 CT 技术中, 用测量X 线强度的检测系统代替作为图像接受器的胶片, X 线管与检测器系统同步旋转 运动: 用检测器以数据矩阵形式多次采集的投影值, 依据反投影原理和一定的数学模型重建图像代替一 次投影直接成像。总之, 计算机在CT 系统中的作用 是至关重要的。它要完成测量数据的采集、图像建 立、图像重建、图像评价和图像存储等任务, 它还要 将透过人体的X 线所组成的数字矩阵经处理、运算 后又变为可见的图像输出。没有计算机技术, CT 设

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

医学数字图像处理期末考试重点汇编

1、模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像。 2、数字图像:空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。 3、当一幅图像的 x和 y坐标及幅值 f都为连续量时,称该图像为连续图像。 为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间v和幅值的离散化处理。 (1)图像的采样:对图像的连续空间坐标 x和 y的离散化。 (2)图像灰度级的量化:对图像函数的幅值 f的离散化。 4、均值平滑滤波器可用于能否锐化图像?为什么?不能,均值滤波法有力的抑制了噪声,同时也引起了模糊,模糊程度与邻域半径成正比。 5、均匀采样: 对一幅二维连续图像 f(x, y)的连续空间坐标 x和 y的均匀采样,实质上就是把二维图像平面在 x方向和 y方向分别进行等间距划分,从而把二维图像平面划分成 M × N个网格,并使各网格中心点的位置与用一对实整数表示的笛卡尔坐标(I, j)相对应。二维图像平面上所有网格中心点位置对应的有序实整数对的笛卡尔坐标的全体就构8成了该幅图像的采样结果。 6、*均匀量化: 对一幅二维连续图像 f(x, y)的幅值 f的均匀量化,实质上就是将图像的灰度取值范围[0, Lmax]划分成L个等级(L为正整数, Lmax=L-1),并将二维图像平面 上 M× N个网格的中心点的灰度值分别量化成与 L个等级中最接近的那个等级的值。 7、图像增强技术根据处理空间的不同,可以分为哪两种方法?空域方法和频域方法 8、**空间分辨率 ( 1 )空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定。 (2**)一种常用的空间分辨率的定义*是单位距离内可分辨的最少黑白线对数目(单 位是每毫米线对数),比如每毫米80线对。另外,当简单地把矩形数字化仪的尺寸看作是“单位距离”时,就可把一幅数字图像的阵列大小 M×N称为该幅数字图像的空间分辨率。 (3)对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,景物中的细节越能更好地在数字化后的图像中反映出来,也即反应该景物的图像的质量就越高。 (4)一幅数字图像的阵列大小(简称为图像大小)通常用 M×N表示。在景物大小不变的情况下,采样的空间分辨率越高,获得的图像阵列 M×N就越大;反之,采

计算机图形图像处理Photoshop课程标准

《计算机图形图像处理Photoshop》课程标准 衡阳技师学院龙大奇 长沙财经职业中专吴玉桃 课程名称:计算机图形图像处理Photoshop 建议学时:96~108 适用专业:计算机应用 教学条件:多媒体教室、机房 一、课程概述 (一)课程性质:1 20 Photoshop 是 Adobe 公司推出的一款目前非常流行、应用非常广泛的图片处理软件。伴随着计算机的普及和计算机在各行业的广泛应用,Photoshop 发挥了越来越大的作用。计算机和数码相机的普及,使用者可以在家中进行简单的图片处理,这使得 Photoshop 可以作为一个应用软件在所有学生中推广。社会上各种数码冲印、数码影楼、数码海报广告的出现也直接为很好学习 Photoshop 的学生提供了就业机会。 Photoshop 具备非常强大的图片处理功能,能很好的为动画、多媒体、网页制作等等提供经过处理制作的图片素材,图片处理的好坏直接关系到作品的美观效果,是计算机应用专业的学生必修的一门课程。 (二)课程定位 《计算机图形图像处理Photoshop》属于一门专业必修课,它之前的课程为《计算机应用基础》等课程;它之后为《Dreamweaver网页设计》、《Flash二维设计》、《3ds Max三维设计》等专业核心课程。在计算应用专业中起承上启下、连贯前后课程,围绕专业核心技能设置的。鉴于计算机图形图像处理的重要意义和在设计中重要作用,本课程作为平面设计的岗位职业能力培养,可以充分发挥学生的特长,拓展就业渠道。 二、课程设计理念 Photoshop 教学过程中应注重培养学生的思考和动手能力,把知识点穿插在实例中进行教学,一方面启迪学生去思考实例是如何实现的,另一方面让学生通过操作完成实例的创作。使学生在轻松愉快的过程中完成学习任务,掌握 Photoshop 的使用。教师应重视实例的选择,要求实例能突出新知识点,同时也兼顾旧知识点,操作的难度要适中,通过教学过程中的启迪和帮助能够完成教学任务。

数字图像处理试题及答案

一、填空题(每题1分,共15分) 1、列举数字图像处理的三个应用领域 医学 、天文学 、 军事 2、存储一幅大小为10241024?,256个灰度级的图像,需要 8M bit 。 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越 差 。 4、直方图均衡化适用于增强直方图呈 尖峰 分布的图像。 5、依据图像的保真度,图像压缩可分为 无损压缩 和 有损压缩 6、图像压缩是建立在图像存在 编码冗余 、 像素间冗余 、 心理视觉冗余 三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是 色调 、 饱和度 亮度 。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法: ` min max min ((,))*255/()g x y g g g -- 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。 ( B ) A 图像整体偏暗 B 图像整体偏亮 C 图像细节淹没在暗背景中 D 图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。( B ) A 平均灰度 B 图像对比度 C 图像整体亮度 D 图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A 、RG B B 、CMY 或CMYK C 、HSI D 、HSV / 4、采用模板[-1 1]T 主要检测( A )方向的边缘。 A.水平 C.垂直 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A 、去噪 B 、减小图像动态范围 C 、复原图像 D 、平滑图像 7、彩色图像增强时, C 处理可以采用RGB 彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 — 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入 一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __

图像处理期末考试整理

数字图像处理与计算机视觉复习Ace Nirvana整理 第一章绪论 1.1前言 人类传递信息的主要媒介是语音和图像。 听觉信息20%,视觉信息>60%,其他(如味觉、触觉、嗅觉) <20%,“百闻不如一见”。 医学领域:1895年X射线的发现。 1.2数字图像处理的起源 数字图像处理的历史可追溯至二十世纪二十年代。 最早应用之一是在报纸业,当时,引入巴特兰电缆图片传输系统,图像第一次通过海底电缆横跨大西洋从伦敦送往纽约传送一幅图片。 第一台能够进行图像处理的大型计算机出现在20世纪60年代。数字图像处理的起源可追溯至利用这些大型机开始的空间研究项目,可以说大型计算机与空间研究项目是数字图像处理发展的原动力。 计算机断层是一种处理方法,在这种处理中,一个检测器环围绕着一个物体(或病人),一个X射线源,带有检测器的同心圆绕着物体旋转,X射线通过物体并由位于环上对面的相应的检测器收集起来,然后用特定的重建算法重建通过物体的“切片”的图像,这些切片组成了物体内部的再现图像。 计算机断层技术获得了1979年诺贝尔医学奖。 从20世纪60年代至今,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。 如今图像处理技术已给人类带来了巨大的经济和社会效益。不久地将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 1.3图像处理的应用意义 (1)图像是人们从客观世界获取信息的重要来源 人类是通过感觉器官从客观世界获取信息,即通过耳、目、口、鼻、手通过听、看、味、嗅和触摸的方式获取信息。在这些信息中,视觉信息占60%~70%。 视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。其次是人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪,由此可见,图像信息对人类来说是十分重要的。 (2)图像信息是人类视觉延续的重要手段 人的眼睛只能看到可见光部分,但就目前科技水平看,能够成像的并不仅仅是可见光,一般来说可见光的波长为0.38 um ~0.8um ,而迄今为止人类发现可成像的射线已有多种,如:gamma射线:0.003nm~0.03nm x射线:0.03nm~3 nm 紫外线:3nm~300 nm可见光:300nm~800nm红外线:0.8um~300um微波:0.3 cm~100 cm无线电波:100cm~。 (3)图像处理技术对国计民生有重要意义 图像处理技术发展到今天,许多技术已日趋成熟。在各个领域的应用取得了巨大的成功和显著的经济效益。如在工程领域、工业生产、军事、医学以及科学研究中的应用已十分普遍。 在工业生产中的设计自动化及产品质量检验中更是大有可为。在安全保障及监控方面图像处理技术更是不可缺少的基本技术;至于在通信及多媒体技术中图像处理更是重要的关键技术。因此,图像处理技术在国计民生中的重要意义是显而易见的。

相关主题
文本预览
相关文档 最新文档