当前位置:文档之家› 完全平方公式提升练习

完全平方公式提升练习

完全平方公式提升练习
完全平方公式提升练习

完全平方公式提升练习题

一、完全平方公式

(1)(-21ab 2-3

2c )2; (2)(x -3y -2)(x +3y -2); (3)(x -2y )(x 2-4y 2)(x +2y );

(4)(2a +3)2+(3a -2)2 (5)(a -2b +3c -1)(a +2b -3c -1);

(6)(s -2t )(-s -2t )-(s -2t )2; (7)(t -3)2(t +3)2(t 2+9)2.

二、完全平方式

1、若k x x ++22是完全平方式,则k =

2、.若x 2-7xy +M 是一个完全平方式,那么M 是

3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =

4、如果2

24925y kxy x +-是一个完全平方式,那么k = 三、公式的逆用

1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.

5.代数式xy -x 2-4

1y 2等于( )2 四、配方思想

1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.

2、已知0136422=+-++y x y x ,求y x =_______.

3、已知222450x y x y +--+=,求21(1)2

x xy --=_______. 4、已知x 、y 满足x 2十y 2十4

5=2x 十y ,求代数式y x xy +=_______.

5.已知014642222=+-+-++z y x z y x ,则z y x ++= .

6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,

请说明该三角形是什么三角形?

五、完全平方公式的变形技巧

1、已知 2

()16,4,a b ab +==求223a b +与2()a b -的值。2、已知2a -b =5,ab =23,求 4a 2+b 2-1的值.

3、已知16x x -=,求221x x +,441x x +

4、0132=++x x ,求(1)221x x +(2)441x

x +

六、利用乘法公式进行计算

(1)972; (2)20022; (3)992-98×100;

(4)49×51-2499. (5))200011)(199911()311)(211(2

222----

Λ

七、“整体思想”在整式运算中的运用

1、当代数式532++x x 的值为7时,求代数式2932-+x x =________.

2、已知2083-=x a ,1883-=x b ,168

3-=x c ,求:代数式bc ac ab c b a ---++222的值。

3、已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac

的值为( ). A .0 B .1 C .2 D .3

4、 已知2=x 时,代数式10835=-++cx bx ax ,当2-=x 时,代数式835-++cx bx ax 的值

5、若123456786123456789?=M ,123456787123456788?=N

试比较M 与N 的大小

练习:

1.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是

A.x n 、y n 一定是互为相反数

B.(x 1)n 、(y 1)n 一定是互为相反数

C.x 2n 、y 2n 一定是互为相反数

D.x 2n -1、-y 2n -1一定相等

2、已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .

3、若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,

)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )

A .M>N

B . M

C . M=N

D .无法确定

4.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ).

A .一15

B .一2

C .一6

D .6

5.若4,222=+=-y x y x ,则20022002y x +的值是( ).

A .4

B .20022

C . 22002

D .42002

6.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪

拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).

A .))((22b a b a b a -+=-

B .2222)(b ab a b a ++=+

C .2222)(b ab a b a +-=-

D .222))(2(b ab a b a b a -+=-+

7.(1)若x+y =10,x 3+y 3=100,则x 2+y 2=

(2)若a-b=3,则a 3-b 3-9ab = .

8.已知x 2-5x +1=0,则x 2+21x

=________.

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

完全平方公式练习题一

完全平方公式为: 注:1.完全平方公式和平方差公式不同: 形式不同. 结果不同:完全平方公式的结果是三项,即 (a ?b )2=a 2 ?2ab+b 2 ; 平方差公式的结果是两项, 即(a+b )(a?b )=a 2?b 2. 2. 解题过程中要准确确定a 和b ,对照公式原形的两边, 做到不丢项、 不弄错符号、2ab 时不少乘2。 3. 口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。 例1 用完全平方公式计算: (1)(2x ?3)2 ; (2) (4x +5y )2 ; (3) (mn ?a )2 练习: 1、计算:2 )221 (y x - (n +1)2-n 2 (2x 2-3y 2)2 2、下列各式中哪些可以运用完全平方公式计算 (1)()()x y y x +-+ (2)()()a b b a -- (3)()()ab x x ab +--33 (4)()()n m n m +-- 例2.计算: (1)(-1-2x )2 (2)()()n m n m +--22 (3))432)(432(-++-y x y x (4)22)32 1()321(b a b a +-

练习: (1)()2c b a -+ (2) (-2x +1) 2 (3))4)(2)(2(22y x y x y x --+ (4)??? ??+-??? ??-b a b a 32132 1 拓展:1.已知31=+ x x ,则=+221x x ________________ 2. 已知131-=x y ,那么2323122-+-y xy x 的值是________________ 3、已知2216)1(2y xy m x +-+是完全平方公式,则m = 4、若22()12,()16,x y x y xy -=+=则=

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

平方差公式和完全平方公式基础拔高练习(含答案)汇编

学习-----好资料 1. _______________________ ( a 2+b 2) (a 2- b 2) = ( ) 2-( ) 2= . 2. ________________________________________ (-2x 2-3y 2) (2x 2-3y 2) = (__))-( ) 2= . 3. ________________ 20X 19= (20+ ______ ) (20- __ ) = ___ - = . 4. 9.3 X 10.7= ( ____ — ____ ) ( ____ + ___ ) = ____ — ___ . 5. 20062 — 2005X 2007 的计算结果为( )A . 1 B . - 1 C . 2 D . - 2 6. 在下列各式中,运算结果是 b 2- 16a 2的是()A. (-4a+b ) (-4a -b ) B . (-4a+b ) (4a - b ) 7. 运用平方差公式计算. (8) (a -1) (a -2) (a+1) (a+2) (1) 102X 98 3 1 (2) 2-X 3 4 4 (3)— 2.7 X 3.3 1007X 993 (5) 121 X 112 3 3 (6)— 19- X 201 5 5 C. (b+2a ) (b -8a ) .(—4a - b ) (4a - b )

学习-----好资料 (9) (a+b ) (a — b ) + (a+2b ) (a — 2b ) (10) (x+2y ) (x — 2y ) — ( 2x+5y ) (2x — 5y ) (12) (a+b ) (a — b ) — ( a — 3b ) (a+3b ) + (— 2a+3b ) (— 2a — 3b ) 8. _____________ ( 3a+b ) ( ) =b 2— 9a 2; (a+b — m )( 1 9. 先化简,再求值:(3a+1) (3a —1) — ( 2a — 3) (3a+2),其中 a=—-. (11) (2m- 5) (5+2m ) + ( — 4m — 3) (4m — 3) )=b 2—( a — m ) 2.

知识点 完全平方公式(填空)

1、多项式x2+2mx+64是完全平方式,则m=±8. 考点:完全平方式。 分析:根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍. 解答:解:∵x2+2mx+64是完全平方式, ∴2mx=±2?x?8, ∴m=±8. 点评:本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解. 2、代数式4x2+3mx+9是完全平方式,则m=±4. 考点:完全平方式。 分析:本题考查完全平方公式的灵活应用,这里首末两项是2x和3的平方,那么中间项为加上或减去2x和3的乘积的2倍. 解答:解:∵4x2+3mx+9是完全平方式, ∴3mx=±2×3?2x, 解得m=±4. 点评:本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.3、设4x2+mx+121是一个完全平方式,则m=±44. 考点:完全平方式。 分析:这里首末两项是2x和11这两个数的平方,那么中间一项为加上或减去2x和11积的2倍. 解答:解:∵4x2+mx+121是一个完全平方式, ∴mx=±2×11?2x, ∴m=±44. 点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 4、若9x2+mx+25是完全平方式,则m=±30. 考点:完全平方式。 专题:计算题。 分析:这里首末两项是3x和5这两个数的平方,那么中间一项为加上或减去3x和5积的2倍,故m=±30. 解答:解:∵(3x±5)2=9x2±30x+25, ∴在9x2+mx+25中,m=±30. 点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 5、已知x2﹣4x+a是一个完全平方式,则a为4. 考点:完全平方式。 分析:根据乘积二倍项先确定出这两个数是x和2,再根据完全平方公式结构特点,a等于2的平方. 解答:解:∵4x=2×2x, 则a=22=4.

完全平方公式(完整知识点)

完全平方公式 完全平方公式即(a±b)2=a2±2ab+b2 该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 必须注意的: ①漏下了一次项 ②混淆公式(与平方差公式) ③运算结果中符号错误 ④变式应用难于掌握。 学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

这两个公式的结构特征: 1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方 和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右 边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内). 完全平方公式口诀 前平方,后平方,二倍乘积在中央。 同号加、异号减,符号添在异号前。(可以背下来) 即 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(注意:后面一定是加号) 公式变形(习题) 变形的方法 (一)、变符号: 例1:运用完全平方公式计算: (1)(-4x+3y)2(2)(-a-b)2 分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。 解答: (1)原式=16x2-24xy+9y2 (2)原式=a2+2ab+b2 (二)、变项数:

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

41完全平方公式(基础)知识讲解

完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解. 【答案】B ; 【解析】A 、221x x -++其中有两项-x 2、12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误; B 、2221(1)x x x -+-=--,符合完全平方公式特点,故本选项正确; C 、221x x --其中有两项x 2、-12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;

乘法公式——完全平方公式专题训练试题精选(一)附答案

- -. 完全平方公式专题训练试题精选(一) 一.选择题(共30小题) 1.(2014?六盘水)下列运算正确的是() A. (﹣2mn)2=4m2n2B. y2+y2=2y4 C. (a﹣b)2=a2﹣b2 D. m2+m=m3 2.(2014?)下列计算正确的是() A. 2a3+a2=3a5B. (3a)2=6a2 C. (a+b)2=a2+b2 D. 2a2?a3=2a5 3.(2014?)算式999032+888052+777072之值的十位数字为何?() A.1B.2C.6D.8 4.(2014?)若a+b=2,ab=2,则a2+b2的值为() A.6B.4C.3D.2 5.(2014?南平模拟)下列计算正确的是() A. 5a2﹣3a2=2 B. (﹣2a2)3=﹣6a6 C. a3÷a=a2 D. (a+b)2=a2+b2 6.(2014?拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是() A.2,0 B.4,0 C.2,D.4, 7.(2012?鄂州三月调考)已知,则的值为() A.B.C.D.无法确定8.(2012?西岗区模拟)下列运算正确的是() A. (x﹣y)2=x2﹣y2B. x2+y2=x2y2 C. x2y+xy2=x3y3 D. x2÷x4=x﹣2 9.(2011?天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0 10.(2011?)下列运算正确的是() A. x2+x3=x5B. (x+y)2=x2+y2 C. x2?x3=x6 D. (x2)3=x6 11.(2011?浦东新区二模)下列各式中,正确的是() A. a6+a6=a12B. a4?a4=a16 C. (﹣a2)3=(﹣a3)2 D. (a﹣b)2=(b﹣a)2

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

苏教版七年级下册数学[完全平方公式(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 【400108 因式分解之公式法 知识要点】 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.

完全平方公式的几何背景专题训练试题精选附复习资料

完全平方公式的几何背景专题训练试题精选 一.选择题(共6小题) 1.(2010?丹东)图①是一个边长为()的正方形,小颖将图①中的阴影部分拼 成图②的形状,由图①和图②能验证的式子是() A.()2﹣(m﹣n)2=4 B.()2﹣(m22)=2 C.(m﹣n)2+222D ()(m﹣n)2﹣n2 . 2.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们 可以得到两数和的平方公式:()22+22.你根据图乙能得到的数学公式是() B.(a﹣b)22﹣22C.a()2D.a(a﹣b)2﹣A.()(a﹣b)2﹣ b2 3.如图,你能根据面积关系得到的数学公式是() A.a2﹣b2=()(a﹣b)B.()22+22C.(a﹣b)22﹣22D.a()2

4.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是() A.B.()2C.(a﹣b)2D.a2﹣b2 5.如图的图形面积由以下哪个公式表示() B.(a﹣b)22﹣22C.()22+22D.a2﹣b2=()(a﹣b)A.a2﹣b2(a﹣b)(a ﹣b) 6.如果关于x的二次三项式x2﹣16是一个完全平方式,那么m的值是()A.8或﹣8 B.8C.﹣8 D.无法确定 二.填空题(共7小题) 7.(2014?玄武区二模)如图,在一个矩形中,有两个面积分别为a2、b2(a>0,b>0)的正方形.这个矩形的面积为(用含a、b的代数式表示)

8.如图,边长为(2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是.(用含m的代数式表示) 9.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为. 10.如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a()2成立.根据图2,利用面积的不同表示方法,写出一个代数恒等式. 11.如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为

完全平方公式几何意义专题

完全平方公式几何意义专题 第 页 1、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。 图a 图b (1)你认为图b 中的阴影部分的正方形的边长等于 。 (2)请用两种不同的方法求图b 中阴影部分的面积。 方法1: 方法2: (3)观察图b 你能写出下列三个代数式之间的等量关系吗? 代数式: ()(). , ,2 2mn n m n m -+ (4) 根据(3)题中的等量关系,解决如下问题:若5,7==+ab b a ,求2)(b a -的值。 2、乘法公式的探究及应用. (1)将左图阴影部分裁剪下来,重新拼成一个长方形(右图所示),那么这个长方形的宽是 ,长是 ,面积是 . (2)比较左、右两图的阴影部分面积,可以得到乘法公式 .(用式子表达) (3)运用你所得到的公式,计算(2m+n ﹣p )(2m ﹣n+p ) 3、乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式) (2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式). (3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达) (4)运用你所得到的公式计算:10.3×9.7. 4、(1)将下列左图剪切拼成右图,比较两图的阴影部分面积,可以得到乘法公式:(用式子表达).(2)运用你所得到的乘法公式,计算:(a+b﹣c)(a﹣b﹣c). 5、如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2). (1)图2中的阴影部分的面积为; (2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是; (3)根据(2)中的结论,若x+y=5,x?y=,则x﹣y=; (4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?. 6、图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形. (1)请用两种不同的方法求图b中阴影部分的面积: 方法1:(只列式,不化简) 方法2:(只列式,不化简) (2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:; (3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式练习题30道

1 (a-2b)2 2 (a-b)2 3 ( -2)2= -21 x+ 4. (3x+2y)2-(3x-2y)2 5 (3a 2-2a+1)(3a 2+2a+1) 6. (a-b)2=a 2-ab+b 2 7. (a+3b)2 8. (x+9)(x-9)=x 2-9 9 (a+3b)2-(3a+b) 10. (5x 2-4y 2)(-5x 2+4y 2) 11. (3y+2x)2 12. -(-21x 3n+2-32 x 2+n )2 13. (3a+2b)2-(3a-2b)2 14. (x 2+x+6)(x 2-x+6)

15. (a+b+c+d)2 16. (9-a 2)2-(3-a)(3-a)(9+a)2 . 17. (x 3+2)2-2(x+2)(x-2)(x 2+4)-(x 2-2)2,其中x=-21 . 18. 20012 19. 9992 20.证明:(m-9)2-(m+5)2是28的倍数,其中m 为整数.(提示:只要将原式化简后各项 均能被28整除) 21.解方程:(x 2-2)(-x 2+2)=(2x-x 2)(2x+x 2)+4x 22. (x +2)(x -3)+(x +2)(x +4) 23. 2(a-3)(a-3)-a+3 24. (x + a)2 – (x – a)2 25. 1990×29-1991×71+1990×71-29×1991 26. 2)2 332 (y x - 27. 2)2(n m +- 28. )1)(1)(1(2--+m m m 29. 22)()(y x y x +- 30. )2)(2(z y x z y x --++

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式变形的应用练习题_2

(一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

平方差公式和完全平方公式基础+提高练习题

平方差公式和完全平方公式基础+提高 A卷:基础题 1.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.(a+b)(b-a) D.(a2-b)(b2+a)2.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y) (x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 3.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 4、判断下列各式是否正确 ,如果错误,请改正在横线上 (1)(a+b)=a+b( )________________ (2) (a+b)=a+2ab+b( )______________ (3) (a-b)=a-b( )________________ (4)(a-2)=a-4( )________________ 5.(-2x+y)(-2x-y)=______. 6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 9.利用平方差公式计算:20×21. 10.计算:(a+2)(a2+4)(a4+16)(a-2). 完全平方式常见的变形有: B卷: 提高题 1、已知x-y=9,x·y=5,求x+y的值.

2、已知a+b=5 ,ab=-2 ,求a+b的值 3、m+=(m+)- . 4、若x-y=9,.则x+y=91, x·y= . 5.已知求与的值。 6.已知求与的值。 7、已知求与的值。 8、已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值 9、已知,求的值。 10、已知,求的值。 11、,求(1)(2) 12、试说明不论x,y取何值,代数式的值总是正数。 13、已知m2+n2-6m+10n+34=0,求m+n的值 14、已知,都是有理数,求的值。 15、已知 求与的值。 16、若x+mx+4是一个完全平方公式,则m的值为( )

相关主题
文本预览
相关文档 最新文档