当前位置:文档之家› 狼兔问题的数学建模

狼兔问题的数学建模

狼兔问题的数学建模
狼兔问题的数学建模

狼追兔子的问题

1.1 摘要:

数学建模可以使抽象的问题用数学符号和语言清楚的表达出来。针对此题是高阶常微分方程问题。此例问题虽然问法多样,但解法基本一致,这道题狼和兔子在运动过程中属微分方程模型与一阶常微分方程。

狼追兔子问题来源很久,早在几百年前就有人在研究他,由于数学的发展水平不是很高和软件的局限,所以没有研究透彻。如今随着数学学科的发展和应用软件的飞速发展,对于这个的研究已进入新阶段。

由于狼要盯着兔子追,所以狼行走的是一条曲线,且在同一时刻,曲线上狼的位置与兔子的位置的连线为曲线上该点处的切线。建立二者的运动微分方程,计算它们的运动轨迹,用软件MATLAB求解微分方程模型。计算出兔子是否安全回到自己的巢穴。

1.1.1 问题的来源及意义:

(一) 问题重述与分析: 现有一只兔子,一只狼,兔子位于狼的正西100米处。

假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度是兔子的两倍。问题是兔子能否安全回到巢穴?

(二)题起源于导弹跟踪问题,与狼追兔子问题在解决方法上是大致一样的。

导弹跟踪的研究对于再军事上有很重要的意义。将导弹跟踪问题能简化为狼追兔子问题,都是高阶常微分方程模型,要涉及常微分方程,学会在实际问题中运用数学方法建模和求解。

1.1.2问题的分析:

饿狼追兔问题一阶微分方程初值问题数值解。

兔子它的洞在距离它现在吃草处正北方的60米处,在兔子的正东面100米处有一头饿狼正潜伏着观察兔子多时了兔子发现了狼的存在.兔子拼命的沿直线向洞逃跑,兔子知道不赶快进洞命休已,狼和兔子同时启动并且死死盯着兔子扑去.兔子跑的虽然快,但狼的速度是兔子速度的2倍.假如兔子和狼都匀速运动. 为了研究狼是否能够追上兔

子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。

1.1.3 模型假设:

狼在追击过程中始终朝向兔子;

狼追击兔子的轨迹看作是一条光滑的曲线,即将动点P ),(y x 的轨迹看作一条曲线,曲线方程表示为)(x y y =。

1.1.4 模型建立:

(一)问题分析:1. 以t =0时,兔子的位置作为直角坐标原点,兔子朝向狼的方向为

x 轴正向;则显然有兔子位置的横坐标01=x 。

2. 对狼来说,当x =100,y =0,即

100==x y

在t =0刚开始追击时,狼的奔跑方向朝向兔子,此时即x 轴负方向, 则有

100='=x y

图1 兔子与狼的运动轨迹

x

h A(100,0)

O

(二) 建立模型:

1变量说明

1v :兔子的速度(单位:码/秒)

r :狼与兔子速度的倍数;

2v :狼的速度(单位:码/秒),显然有12rv v =

t :狼追击兔子的时刻(t=0时,表示狼开始追兔子的时刻)

1s :在时刻t ,兔子跑过的路程,)(11t s s =

2s :在时刻t ,狼跑过的路程,)(22t s s =

1、追击方向的讨论

由于狼始终朝向兔子,则在狼所在位置P ),(y x 点过狼的轨迹处的切线方向在距y 轴上的截为1y 。

设切线上的动点坐标为(X ,Y ),则切线方程为

)(x X y y Y -'=-

(1)

在(1)中,令X =0,则截距x y y Y '-=。 此时t v y 11=。

则此时截距等于兔子所跑过的路程,即:

1y Y =,

从而可得

x y y y Y '-==1

(2)

2、 狼与兔子速度关系的建模

在t 时刻,兔子跑过的路程为

t v y s 111== (3)

由于狼的速度是兔子的r 倍,则狼跑的路程为

112ry rs s == (4)

狼跑过的路程可以用对弧长的曲线积分知识得到,如下。

dx y s x

?

'+=100221 (5)

联立(2)、(4)、(5)得

)(11100

2x y y r ry dx y x

'-=='+?

(6)

对(6)两边求对x 的导数,化简得

rx

y y 2

1'+='' (7)

微分方程(7)式的初始条件有:

0100==x y 0100='=x y

3、 是否追上的判断

要判定狼是否追上兔子,可以通过(7)式判定。

对(7)式,

当x =0,如果计算求解得到60≥y ,则视为没有追上;

当x =0,如果计算求解得到60

模型求解:

运用Matlab 求解:

由微分方程得到其Matlab 函数

function yy=odefunlt(x,y)

%以狼在追击过程中的横坐标为自变量

yy(1,1)=y(2);

yy(2,1)=sqrt(1+y(2).^2)./(2.*x);

主程序:

tspan=100:-0.1:0.1;

y0=[0 0];

[T,Y] = ode45('odefunlt',tspan,y0);

n=size(Y,1);

disp('狼的坐标(x=0.1)')

disp(Y(n,1))

1.1.5 模型结果与分析:

运行结果:

狼的坐标(x=0.1)

62.1932

通过上面运行结果可知,狼并没有追上兔子.

1.1.6 参考文献:

微分方程模型见:数学模型引论(第二版)高等教育出版社【书号】7040101645 作者:唐焕问赫明峰

E. A. Bender, 数学模型引论,朱尧辰、徐伟宣译,科学普及出版社,1982.

南京地区工科院校数学建模与工业数学讨论班编,数学建模与实验,河海大学出版社,1996 557790 数学模型引论2006-06-16 高等教育出版社

数学建模期末考试A试的题目与答案

华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带 一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 ?或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分 (2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ?I ?S 设h 为个人身高,又横截面积正比于身高的平方,则S ? h 2 再体重正比于身高的三次方,则w ? h 3 (6分) ( 12分) 14分) 某学校规定,运筹学专业的学生毕业时必须至少学

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模-猎狗追兔子问题

数学建模论文

《数学建模》(2014春)课程期末论文 摘要 (一)对于问题一:自然科学中存在许多变量,也有许多常量,而我们要善于通过建立合适的模型找到这些变量之中的不变量。 猎狗追赶兔子的问题是我们在生活中常见的实例,而题目把我们生活中的普通的例子抽象成为高等数学中微分方程的例子,通过对高阶微分方程的分析,建立微分方程模型,并用数学软件编写程序求解,得出结论,解决生活中常见的实际问题。 (二)对于问题二:学习使用matlab进行数学模型的求解,掌握常用计算机软件的使用方法。 关键词 微分方程导数的几何意义猎狗追兔子数学建模数学软件

一、问题重述 如图1所示,有一只猎狗在B 点位置,发现了一只兔子在正东北方距离它250m 的地方O 处,此时兔子开始以8m/s 的速度正向正西北方向,距离为150m 的洞口A 全速跑去. 假设猎狗在追赶兔子的时候,始终朝着兔子的方向全速奔跑。 请回答下面的问题: ⑴ 猎狗能追上兔子的最小速度是多少? ⑵ 在猎狗能追上兔子的情况下,猎狗跑过的路程 是少? ⑶ 假设猎狗在追赶过程中,当猎狗与兔子之间的 距离为30m 时,兔子由于害怕导致奔跑速度每秒减半, 而狗却由于兴奋奔跑速度每秒增加0.1倍,在这种情 况下回答前面两个问题。 二、问题分析与假设 在猎狗追赶兔子的时候猎狗一直朝着兔子的方向追赶,所以可以建立平面直角坐标 系,通过导数联立起猎狗运动位移,速度和兔子的运动状态。 1.假设兔子的运动是匀速的。 2.假设猎狗的运动轨迹是一条光滑并且一阶导数存在的曲线。 3.猎狗的运动时匀速或者匀变速的。 4.猎狗运动时总是朝向兔子。 三、模型的建立及求解 3.1 符号规定 1.(x ,y ):猎狗或者兔子所在位置的坐标。 2. t :从开始到问题结束经过的时间。 3. a:猎狗奔跑的路程。 4. v:猎狗的奔跑速度。 3.2 模型一的建立与求解 猎狗能够抓到兔子的必要条件:猎狗的运动轨迹在OA 要有交点 以OA 为y 轴,以OB 为x 轴建立坐标系,则由图有 O(0,0),A(0,150),B(250,0),兔子的初始位置0点,而猎狗初始位置是B 点,t (s )后猎狗到达了C (x ,y ),而兔子到达了D (0,8t ),则有CD 的连线是猎狗运动轨迹的一条切线,由导数的几何意义有 : N W

狼兔问题的数学建模

狼追兔子的问题 摘要: 数学建模可以使抽象的问题用数学符号和语言清楚的表达出来。针对此题是高阶常微分方程问题。此例问题虽然问法多样,但解法基本一致,这道题狼和兔子在运动过程中属微分方程模型与一阶常微分方程。 狼追兔子问题来源很久,早在几百年前就有人在研究他,由于数学的发展水平不是很高和软件的局限,所以没有研究透彻。如今随着数学学科的发展和应用软件的飞速发展,对于这个的研究已进入新阶段。 由于狼要盯着兔子追,所以狼行走的是一条曲线,且在同一时刻,曲线上狼的位置与兔子的位置的连线为曲线上该点处的切线。建立二者的运动微分方程,计算它们的运动轨迹,用软件MATLAB求解微分方程模型。计算出兔子是否安全回到自己的巢穴。 1.1.1 问题的来源及意义: (一) 问题重述与分析: 现有一只兔子,一只狼,兔子位于狼的正西100米处。 假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度是兔子的两倍。问题是兔子能否安全回到巢穴 (二)题起源于导弹跟踪问题,与狼追兔子问题在解决方法上是大致一样的。 导弹跟踪的研究对于再军事上有很重要的意义。将导弹跟踪问题能简化为狼追兔子问题,都是高阶常微分方程模型,要涉及常微分方程,学会在实际问题中运用数学方法建模和求解。 1.1.2问题的分析: 饿狼追兔问题一阶微分方程初值问题数值解。 兔子它的洞在距离它现在吃草处正北方的60米处,在兔子的正东面100米处有一头饿狼正潜伏着观察兔子多时了兔子发现了狼的存在.兔子拼命的沿直线向洞逃跑,兔子知道不赶快进洞命休已,狼和兔子同时启动并且死死盯着兔子扑去.兔子跑的虽然快,但狼的速度是兔子速度的2倍.假如兔子和狼都匀速运动. 为了研究狼是否能够追上兔

数学建模模最短路

基于最短路问题的研究及应用 : Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题 Dijkstra算法水渠修建。

目录 第一章.研究背景 (1) 第二章.理论基础 (2) 2.1 定义 (2) 2.2 单源最短路问题Dijkstra求解: (2) 2.2.1 局限性 (2) 2.2.2 Dijkstra算法求解步骤 (2) 2.2.3 时间复杂度 (2) 2.3 简单样例 (3) 第三章.应用实例 (4) 3.1 题目描述 (4) 3.2 问题分析 (4) 3.3符号说明 (5) 3.4 模型假设 (5) 3.5模型建立与求解 (5) 3.5.1模型选用 (5) 3.5.2模型应用及求解 (5) 3.6模型评价 (5) 第四章. 参考文献 (6) 第五章.附录 (7)

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

行程问题(题)

一、 相遇与追及 1路程和路程差公式 【例11如下图,某城市东西路与南北路交会于路口 A .甲在路口 A 南边560米的 B 点, 乙在路口 A ?甲向北,乙向东同时匀速行走. 4分钟后二人距 A 的距离相等?再继续行 走24分钟后,二人距 A 的距离恰又相等?问:甲、乙二人的速度各是多少? 【题型】解答 【考点】行程问题 【难度】3星 【关键词】2003年,明心奥数挑战赛 【解析】 本题总共有两次距离 A 相等,第一次:甲到 A 的距离正好就是乙从 A 出发走的路 程.那么甲、乙两人共走了 560米,走了 4分钟,两人的速度和为: 560 4 140 (米/分)。第二次:两人距 A 的距离又相等,只能是甲、乙走过了 以北走的路程 乙走的总路程.那么,从第二次甲比乙共多走了 20(米份),甲速 20 ,解这个和 60(米/分). A 点,且在A 点 米,共走了 140 ,显然 题,甲速 560 4 24 28(分钟),两人的速度差: 甲速要比乙速要快;甲速 (140 20) 2 80(米 / 分),乙速 【答案】甲速80米/分,乙速60米/分 2、多人相遇 【例21有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现 在甲从 东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇 6分钟后,甲 又与丙相遇.那么,东、西两村之间的距离是多少米 ? 行程问题 【难度】2星 甲、丙6分钟相遇的路程: 560 28 140 80 乙速 【考点】 【解析】 100 75 甲、乙相遇的时间为: 1050 80 75 东、西两村之间的距离为: 100 80 【题型】解 答 6 1050 (米); 210(分钟); 210 37800 (米). 【答案】 3、多次相遇 【例31甲、乙两车分别同时从 A 、B 两地相对开出,第一次在离 A 地95千米处相遇.相 遇后继续 前进到达目的地后又立刻返回,第二次在离 B 地25千米处相遇.求 A 、B 两 地间的距离是多少千米? 【考点】行程问题 37800米 【难度】2星 【题型】解答 【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线 ) : B ■车 处2次制遇

《数学建模实验》

《数学建模》上机作业 信科05-3 韩亚 0511010305

实验1 线性规划模型 一、实验名称:线性规划模型—设备的最优配备问题。 二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。 三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。 四、实验要求: 1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。 2、利用相应的数值方法求解此问题的数学模型。 3、谈一谈你对这类线性规划问题的理解。 4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。 5、用软件lindo 或lingo 求解上述问题。(选做题) 6、编写单纯形算法的MATLAB 程序。(选做题) 五、实验内容: 解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为: 12 11109871211109711109871211109875.232427252628252528262729) 2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-= 整理后得: 900 24255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z 由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件

数学建模习题集及标准答案

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学 生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

猎狗追兔问题巧解

猎狗追兔问题是行程问题中比较典型的一类题,该类问题除考察追及问题的基本公式外,还要综合运用比例、份数等手段解决。解题思想是将两种动物单位化为统一,然后用路程差除以速度差得到追及时间,或者由速度比得出路程比,再引入份数思想,进而解决问题。以下题为例: 【例1】一猎狗正在追赶前方20米远兔子,已知狗一跳前进3米,而兔子一跳前进2.1米,但狗跳3次的时间兔子可以跳4次,问猎狗跑多少米能追上兔子? 【李老师分析】狗跳3次的时间兔子可以跳4次,设都等于一秒 则狗速度为9米/秒,兔速度为8.4米/秒,狗和兔子的速度都得以确定,接下来将是一个非常简单的追及问题,路程差为20米,可列式子20(9-8.4)=100/3(秒)能够追上兔子。用时20/(9-8.4)秒时间追上,即狗跑了9100/3=300米 从以上例题我们可以看出,解决此类问题的关键在于:根据时间相同,将其设为单位时间(1秒),问题简单解决。 我们再看下一道题: 【例2】猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少米? 【李老师分析】兔8步的时间狗跑5步,设都为1秒(一次设数) 再根据兔跑9步的距离等于狗跑4步的距离 设兔子一步4米,狗一步9米(二次设数) 从而得出狗速度为45米/秒,兔速度为32米/秒 进而狗兔相距269=234米,追及时间为234(45-32)=18(秒) 兔子一秒跑8步,总共跑了918=144步 狗一秒跑45米,总共跑了4518=810米 此题不同于第一道题的地方在于并未直接告诉我们狗与兔的步长,而给出两者步长的关系,解决问题时可再一次设数,将狗与兔的数据调换,作为其步长,问题转化同例1. 根据以上两道例题,李老师做以下总结,称之为两次设数法: 猎狗追兔问题两次设数法: ①设单位时间,得出每秒几步; ②设步长,从而得出各自速度; 之后运用追及基本公式解决。但要注意开始时的距离是步长还是米,以及最终所问的是米还是狗步或兔步。 记住以上方法,猎狗追兔问题轻松解决。 【练习】猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子?

数学建模期末考试2018A试的题目与答案

华南农业大学期末考试试卷(A卷) 2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s = (x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分) . .

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

行程问题之猎狗追兔

猎狗追兔问题 教学目标 1.通过本讲学习要学生学会对行程问题中单位进行统一; 2.追及问题在分数应用题的理解与应用; 3.能够理解比例及相关知识的初步引入; 4.解题中追及问题公式、比例(或份数)等知识点的结合; 5.统一及转化思想的应用。 知识精讲 一、猎狗追兔的出题背景 猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。 解题关键:行程单位要统一是猎狗追兔的解题关键。 通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的! 二、猎狗追兔问题 问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。 单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。 例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步) 进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步) 关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。若路程差为米或千米,则统一成狗步或兔步都行。 【例1】猎狗前面26步远有一只野兔,猎狗追之. 兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步? 【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。因为题目中出现“兔跑8步的时间……” 和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—32=13(步)的路程,这个13步是猎狗的13步. 由此推知,要追上26(狗)步,兔跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步). 方法二:设狗跑一步为1个长度单位,则兔跑一步为4 9 个长度单位;在相同时间内,狗的速度为 515 ?=,兔的速度为 432 8 99 ?=,根据题意有 32 26(5)18 9 ÷-=(个单位时间).猎狗追上兔时跑了 51890 ?=(个单位长度),所以狗跑了90190 ÷=(步),此时兔跑了32 1864 9 ?=(个单位长度),故兔 跑了 4 64144 9 ÷=(步). 方法三:统一为“兔跑72步”的情况:兔跑72步的时间里狗比兔多跑了594813 ?-?=(步)的路程,这里的步是狗步.由此推知,要追上26狗步,兔跑了72(2613)144 ?÷=(步),此时猎狗跑了5(1448)90 ?÷=(步).

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标 根据数据,试给出鉴别胃病的方法。

论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了提高医学上诊断的准确性,也为了减少因误诊而造成的病人死亡率,必须要找出一种最准确最有效的诊断方法。为诊断疾病,必须从人体中提取4项生化指标进行化验,即血

猎狗追兔问题常见易错题

1.猎犬发现在离它9米远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子? 思路一:狗5步=兔子9步步幅之比=9:5 狗2步时间=兔子3步时间步频之比=2:3 则速度之比是92:53=6:5 这个9米应该是9步单位好像错了 是指狗的9步距离 69/(6-5)=54步 思路二: 速度=步频步幅 猎犬:兔子=29:35=18:15,18-15=3, 93=3 183=54 2.猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子? 答案:设狗的步进为L1,兔子为L2,狗的跑步频率为f1,兔子为f2,显然有:L1/L2=9/5,f1/f2=2/3又设狗的速度为v1,兔子为v2,则v1/v2=(L1*f1)/(L2*f2)=6/5设狗跑了x米追上兔子,则因为时间相等,有:x/v1=110/(v1-v2)所以:x=110*v1/(v1-v2)=110/(1-v2/v1)=660狗要跑660米设:猎狗跑1步的距离x米,兔子跑1步的距离y米,猎狗跑a米远才能追上兔子∵猎狗跑5步的距离兔子要跑9步5x=9y∵猎狗跑2步的时间兔子要跑3步,而猎狗与兔子跑的时间相等a/2x=a-110/3y解┌5x=9y└a/2x=a-110/3y得(步骤略)a=660答:猎狗跑660米远才能追上兔子。 3.猎狗前面26步远的地方有一野兔,猎狗追之。兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。问兔跑几步后,被狗抓获? 答案: 解法一:设兔的步长为1,则狗的步长为9/4,兔跑一步的时间为1,则狗跑一步的时间为8/5。269/4(9/48/5-1)=144(步) 解法二:设狗的步长为1,则兔的步长为4/9,设兔跑一步的时间为1,则狗跑一步的时间为8/5。26(18/5-4/9)=144(步) 4.猎犬发现在离它10米的前方有一只奔跑的兔,马上追.猎犬的步子大,它跑5步等于兔跑9步,兔子动作快,猎犬2步时它能跑3步,猎犬至少跑多少米才能追上兔子? 答案: 解法1:由猎犬跑5步的路程,兔子要跑9步可知当猎犬每步a米,则兔子每步5/9米。由猎犬跑2步的时间,兔子却能跑3步可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a 米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完。 解法2:在相同的时间里,狗跑的路程与兔子跑的路程的比是:92∶53=6:5狗跑6份可以追上兔子1份把10米看成1份,狗要跑106=60米 5.猎人带狗去打猎。发现兔子跑出去70米时,猎狗立即去追兔子。猎狗跑2步的时间兔子跑3步,猎狗跑7步的距离兔子跑13步。那么猎狗跑多少米才能追上兔子? 答案: 解法1:设猎狗要跑x米才能追上兔子兔与狗所用时间比为:13/3(7/2)=26/21速度比为21/26(x-70):x=21:26x=364猎狗要跑364米才能追上兔子

追赶曲线的计算机模拟

追赶曲线的计算机模拟 问题描述:欧洲文艺复兴时期的著名人物达·芬奇曾经提出一个有趣的“狼追兔子”问题,当一只兔子正在它的洞穴南面60码处觅食时,一只饿狼出现在兔子正东的100码处。兔子急忙奔向自己的洞穴,狼立即以快于兔子一倍的速度紧追兔子不放。兔子一旦回到洞穴便逃脱厄,问狼是否会追赶上兔子? 这一问题的研究方法可以推广到如鱼雷追击潜艇、地对空导弹击飞机等问题上去。 在对真实系统做实验时,可能时间太长、费用太高、危险太大、甚至很难进行。计算机模拟是用计算机模仿实物系统,对系统的结构和行为进行动态演示,以评价或预测系统的行为效果。根据模拟对象的不同特点,分为确定性模拟和随机性模拟两大类。模拟通常所用的是时间步长法,即按照时间流逝的顺序一步一步对所研究的系统进行动态演示,以提取所需要的数据。 问题分析:首先计算狼的初始位置到兔子洞穴的直线距离: 116.6190D =≈ 由于狼奔跑的速度是兔子速度的两倍,兔子跑60码的时间狼可以跑120码。如果狼沿直线奔向兔窝,应该是可以追上兔子的。但是,有人推导出狼在追赶兔子过程中的运动曲线为 31221200()10303 y x x x =-+ 根据曲线方程,当0x =时,200/3y =。也就是说,在没有兔窝的情况下兔子一直往北跑,在跑到大约66码处将被狼追上。由此可知,在有兔窝时狼是追赶不上兔子的。 用计算机模拟的方法也可以得到同样的结论。取时间步长为1s ,随时间步长的增加,考虑这一系统中的各个元素(狼和兔子)所处的位置变化规律,用计算机作出模拟。最后,根据第60s 时狼所在的位置的坐标,判断狼是否能追上兔子。 问题思考与实验: (1)设兔子奔跑的速度为01m/s υ=,则狼运动的速度为102υυ=。建立平面直角坐标系,若当k t t =时刻,兔子位于点0(0,)k k Q t υ处,狼位于点(,)k k k P x y 处。试根据k P ,k Q 的坐标确定一个单位向量k e 描述狼在1[,]k k t t +时段内的运动方向。 (2)根据狼的运动方向和速度推导(,)k k k P x y 到111(,)k k k P x y +++的坐标的具体表达式; (3)用计算机绘制追赶曲线的图形(包括静态和动态的图形)。

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

狼兔问题的数学建模

狼追兔子的问题 1.1 摘要: 数学建模可以使抽象的问题用数学符号和语言清楚的表达出来。针对此题是高阶常微分方程问题。此例问题虽然问法多样,但解法基本一致,这道题狼和兔子在运动过程中属微分方程模型与一阶常微分方程。 狼追兔子问题来源很久,早在几百年前就有人在研究他,由于数学的发展水平不是很高和软件的局限,所以没有研究透彻。如今随着数学学科的发展和应用软件的飞速发展,对于这个的研究已进入新阶段。 由于狼要盯着兔子追,所以狼行走的是一条曲线,且在同一时刻,曲线上狼的位置与兔子的位置的连线为曲线上该点处的切线。建立二者的运动微分方程,计算它们的运动轨迹,用软件MATLAB求解微分方程模型。计算出兔子是否安全回到自己的巢穴。 1.1.1 问题的来源及意义: (一) 问题重述与分析: 现有一只兔子,一只狼,兔子位于狼的正西100米处。 假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度是兔子的两倍。问题是兔子能否安全回到巢穴? (二)题起源于导弹跟踪问题,与狼追兔子问题在解决方法上是大致一样的。 导弹跟踪的研究对于再军事上有很重要的意义。将导弹跟踪问题能简化为狼追兔子问题,都是高阶常微分方程模型,要涉及常微分方程,学会在实际问题中运用数学方法建模和求解。 1.1.2问题的分析: 饿狼追兔问题一阶微分方程初值问题数值解。 兔子它的洞在距离它现在吃草处正北方的60米处,在兔子的正东面100米处有一头饿狼正潜伏着观察兔子多时了兔子发现了狼的存在.兔子拼命的沿直线向洞逃跑,兔子知道不赶快进洞命休已,狼和兔子同时启动并且死死盯着兔子扑去.兔子跑的虽然快,但狼的速度是兔子速度的2倍.假如兔子和狼都匀速运动. 为了研究狼是否能够追上兔

数学建模拟合与差分习题答案

第一题 解:由题意可设 2 123()s t a t a t a =++ 中的A=(1a ,2a ,3a )使得: 2 6 1 [()]i i i s t s =-∑最小 用多项式拟合的命令 输入以下命令: 输出结果:A = 2.2488 11.0814 -0.5834 2() 2.2488t 11.0814t 0.5834f x =+- 第二题 输入以下命令: >> x=[19 25 31 38 44]; >> y=[19.0 32.3 49.0 73.3 97.8]; >> A=polyfit(x,y,2)

>> z=polyval(A,x); >> plot(x,y,'k+',x,z,'r') 输出结果:A = 0.0497 0.0193 0.6882 =x x (2+ f ) x + .0 6882 .0 0193 .0 0497 因为2 6882 .0 ) = .0 f+ x (x f+ ) b 0497 (x a =,所以2 x 草图 >> x=1200:400:4000; >> y=1200:400:3600; >> height=[1130 1250 1280 1230 1040 900 500 700; 1320 1450 1420 1400 1300 700 900 850; 1390 1500 1500 1400 900 1100 1060 950; 1500 1200 1100 1350 1450 1200 1150 1010; 1500 1200 1100 1550 1600 1550 1380 1070; 1500 1550 1600 1550 1600 1600 1600 1550; 1480 1500 1550 1510 1430 1300 1200 980]; >> mesh(x,y,height) >>

相关主题
文本预览
相关文档 最新文档