当前位置:文档之家› 四旋翼无人机的姿态解算及实现

四旋翼无人机的姿态解算及实现

四旋翼无人机的姿态解算及实现
四旋翼无人机的姿态解算及实现

最高效的四旋翼无人机数据采集建模

最高效的四旋翼无人机 数据采集建模 CKBOOD was revised in the early morning of December 17, 2020.

最高效的四旋翼无人机数据采集建模 一、简介 近年来,微小型四翼无人机已经成为了无人飞行器研究领域的一个热点。它结构简单、机动性强、便于维护,能够在空中悬停、垂直起飞和降落。在军用和民用方面具有较大的潜在应用价值,国内外许多研究单位纷纷致力于四旋翼无人机飞行控制的架构设计与飞行控制研究,以实现四旋翼无人机的自主飞行。机载传感器系统是四旋翼无人机飞行控制系统的重要组成部分,它为机载控制系统提供可靠的飞行状态信息,是实现四旋翼无人机自主飞行的重要设备。 现在无人机应用最广的是倾斜摄影技术优势或者说最吸引用户的,就是利用倾斜摄影技术可以全自动、高效率、高精度、高精细的构建地表全要素三维模型。 二、四旋翼无人机特点 1、机动性能灵活,低空性能出色。能在城市、森林等复杂环境下完成各种任务。可完成空中悬停监视侦查。实现对动力要地低,能在狭小空间穿行,能垂直起降,对起降环境要求低。 2、对动力要求较小,产生的噪音低,隐蔽性能高,安全性能出色。四旋翼无人机采用四个马达提供动力,可使飞行更加稳定和精确。 3、结构简单,运行、控制原理相对容易掌握。 4、成本较低,零件容易更换,维护方便。

三、飞行软件 目前无人机种类繁多,针对无人机开发的飞控软件也有很多,目前比较好用的是DJI GS Pro、DJI GO4、Litchi Vue、Pix4d等。 四、数据采集,使用DJI GS pro 1、打开DJI GS pro软件,点击新建任务 2、点击测绘航拍区域模式 3、点击地图选点(飞行定点比较耗飞机电量,无特殊情况建议不使用) 4、点击屏幕就会出现一个航测区域,手动拖拽四个定点可以改变航测的面积和形状,同时也可以手动增加拐点,让航测面积更加的灵活多样。并且在右边的菜单栏里选择好对应的云台相机;设置好任务的高度,任务的高度和拍摄的清晰度,成图的分辨率有很大的关系;大面积的时候尽量选择等时间拍照,因为能上传的航点是有限的。 5、点击进入右侧菜单的高级选项之中,重新设置一下航测的重叠了,一般航向和旁向重叠率是700%和70%(最好不要低于70%);设置好云台俯仰角,正射影像图一般为-90°,拍摄3D立体时一般为-45°;设置好返航高度,确保返航时不会碰撞到障碍物。 6、点击右上角飞机左边更多选项,点击高级设置(地图优化限中国大陆地区使用打开);这点也是最关键的一点,这时候一定要点开中国大陆这个选项,不然飞行器的位置是偏移的。会导致航测任务区域整体偏移,有一部分任务没有拍摄到。

四旋翼无人机前沿报告

四旋翼无人机前沿报告 近些年来,各国的许多研究机构都对小型四旋翼无人机进行了一系列的研究,下面列出来一些比较有代表性的四旋翼无人机研究成果。 一、国内外技术发展现状 1.“蜻蜓”无人机 近期,约翰-霍普金斯大学的应用物理实验室的一个研究小组就开发出了一个叫做“蜻蜓(Dragonfly)”的概念无人机任务。该任务提出了一款利用放射性同位素驱动的双四旋翼飞行器,它将可以在土星最大的卫星Titan上执行太空任务。蜻蜓项目首席研究员Elizabeth Turtle指出,这种实验是他们在实验室无法进行的,因为涉及到时间尺度问题,而Titan富含有有机分子和液态水的表面却能维持很长一段时间的时间尺度。该项目就是为了研究Titan生命前化学而设计的。由于Titan表层厚重的云层使得那里的太阳能效率并不高,为此,研究人员改用了多任务放射性同位素热电机(MMRTG)为飞行器提供能源。据了解,MMRTG能让这架双四旋翼无人机在白天持续飞行一个小时的时间,夜晚它将接受充电。蜻蜓无人机的空气流动可以让它收集样本和测量的种类获得增加。在时长1个小时的飞行中,飞行器大概能飞10到20公里。这意味着蜻蜓可以在为期两年的任务中探测到的范围非常广。 2.“OS4”四旋翼无人机 OS4是EPFL自动化系统实验室开发的一种小型四旋翼飞行器,研究的重点是自主飞行控制算法和机构设计方法,目标是要实现室内和室外环境中的完全自主飞行。目前,该项目以及进行了两个阶段。OS4I最大长度约为73CM,质量为235g,它使用了Draganflyer3的十字框架和旋翼,电机型号为Faulhaber1724,微惯性测量单元为Xsens的MT9-B。研究

四旋翼无人机毕业设计

渤海大学本科毕业论文(设计)四旋翼无人机设计与制作 The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle 学院(系): 专业: 学号: 学生姓名: 入学年度: 指导教师: 完成日期:

摘要 四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。 关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PID

The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle Abstract Quad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft. Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID

MD4四旋翼无人机

md4-1000型四旋翼无人机系统介绍 一、系统组成 “md4”系列四旋翼无人机系统由五个主要部分组成:飞行器、数字遥控器、地面站系统、机载任务设备和附属设备。 飞行器是无人机系统的主体,根据指令完成飞行任务。 数字遥控器用于对飞行器的实时操作,可以实时监控飞行器的各项状态指标。 地面站系统主要由笔记本电脑和微波信号传输系统构成,可以通过微波,实时接收飞行器上机载设备拍摄的实时影像,以及实时监控飞行的各项状态指标。 机载任务设备根据客户需要,可选配不同类型的酬载设备,如数码相机、高清摄像机、微光摄像机、红外摄像机等,完成不同的拍摄任务。 附属设备包括电池、充电箱、数据线等系统配件。 飞行器

数字遥控器 一体化地面站

机载任务设备 附属设备

二、系统技术参数

三、系统特性 1、可以定点悬停,稳定地拍摄感兴趣区域地物; 2、可以根据GPS信号,按照线路规划自主航行;没有GPS信号时也可以进行飞行,甚 至在室内飞行; 3、具有高性能平衡云台,可以在大风中依然保证酬载设备得到稳定的目标影像; 4、可以搭载高清摄影机、高画质的相机等设备,并可以进行自由调焦,以得到目标部 位最清晰的影像; 5、数传系统抗干扰性强,可以在距离电力线设备最近3m位置拍摄而信号不受干扰; 6、工业性能好,可以在强风、大雨的情况下正常起飞、作业,在紧急情况下也可以完 成任务; 7、操作简单,熟练的话,一个人即可进行操作;新手的话,两个人配合即可进行操作; 8、具备电量安全提示,当电量低于额定值时报警,当电量低于最低电压时即便人不在 现场也可以自动执行降落操作,保证无人机系统的安全; 9、采用微波作为数传系统,地面端可以实时得到高清影像; 10、具有电子围栏功能,具备位置记忆功能,可以在无操作的情况下,自动回到原来 的位置悬停拍摄; 11、对起飞场地没有要求,3×3m的场地即可实现垂直起降; 12、电机具有优良的散热性能,可以在每次飞行结束后更换电池进行再次飞行,达到 全天作业的目的;

四旋翼无人机术语

术语: 无人机UAV (Unmanned Aerial Vehicle), drone UAS (Unmanned Aerial Systems) 地面控制站Ground Control Station, GCS 固定翼fixed-wing 旋翼rotary-wing Rover 陆路,水路 多旋翼multirotors, multicopters 四旋翼4-rotor helicopters, quadcopter 加速计accelerometer 陀螺仪gyroscope 磁力计magnetometer 压力计barometer 射频控制R/C 遥测telemetry altitude GPS WAAS: Wide Area Augmentation System Thermopile: infrared detector, tilt, pitch, earth, sky, pan & tilt 侧视,俯视 roll pitch yaw autopilot 自主导航 takeoff & landing 起飞/着陆 MAV

MAVLink APM AI 意念控制Mind Control BCI 涡流,湍流Turbulence Navier-Stokes equations 定点waypoints DCM (Direction Cosine Matrix) COA (Certificate of Authorization) 2.4 Ghz, 72 Mhz, Kalman Filter: INS: Inertial Navigation System Inner loop / Outer loop FPV (First-Person View) 第一视角 FHSS (Frequency-Hopping Spread Spectrum) DSSS (Direct-Sequence Spread Spectrum) ROI POI PID WAAS ILS LAAS (Next-Gen GPS algorithm standard) PIC (Pilot In Command) LOS (Line of Sight) RTL (Return to Launch) 返航, Return to Home

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

四旋翼无人机技术原理解读(通讯方式)

四旋翼无人机技术原理解读(通讯方式) 目前发现国内正儿八经机器人、无人机并且还能活跃地上网关注行业前沿动向、热爱写科普文章的研究人员原来越少。因此所有的研究回答里都没有人真正说明白无人机到底是什么,而理解无人机到底是什么才是回答这个问题的先决条件。 什么是无人机 首先,无人机就是不载人的飞行器,而说到飞行器,通常我们又可以把飞行器分为三类。 1、固定翼(fixed wing)。平时坐的波音747空客A380,还有F-16歼-15之类的都是固定翼飞机。顾名思义就是翅膀形状固定,靠流过机翼的风提供升力。动力系统包括桨和助推发动机。固定翼根据机翼尺寸的不同还有很多小的分类,在此不细说。固定翼飞行器的优点是在三类飞行器里续航时间最长、飞行效率最高、载荷最大,缺点是起飞的时候必须要助跑,降落的时候必须要滑行。 2、直升机(helicopter)。特点是靠一个或者两个主旋翼提供升力。如果只有一个主旋翼的话,还必须要有一个小的尾翼抵消主旋翼产生的自旋力。为了能往前后左右飞,主旋翼有极其复杂的机械结构,通过控制旋翼桨面的变化来调整升力的方向。动力系统包括发动机、整套复杂的桨调节系统、桨。直升机的优点是可以垂直起降,续航时间比较中庸,载荷也比较中庸。缺点是极其复杂的机械结构导致了比较高的维护成本。 3、多旋翼(multi-rotor)。四个或者更多个旋翼的直升机,也能垂直起降,但是通常只有直升机叫直升机,多旋翼就叫多旋翼,而不叫多旋翼直升机。四旋翼特别叫做quadrotor。多旋翼机械结构非常简单,动力系统只需要电机直接连桨就行。下图是直升机的动力系统结构,再下图是多旋翼的动力系统结构。不懂机械的人也能看出多旋翼简单得多。多旋翼的优点是机械简单,能垂直起降,缺点是续航时间最短,载荷也最小。 今天来给大家介绍下四旋翼无人机,看看怎么是真正的技术,吼吼吼...... 1.i2c通信方式; 因为我不是学电类专业,最开始对i2c这些是没有一点概念,最后通过Google了解了一些

无人机活动方案

《无人机》课程纲要 一、课程理念: (一)知识的再概念化。 “无人机”是一种实践性很强的实用技术,学生在运用已有学习经验的同时,通过亲自操作与理论联合实际,认识事物间的联系和物体的结构关系,了解一些简单的机械结构原理,掌握一些工具的使用方法等。 (二)以学生为中心。 “无人机”是一项非常吸引人的娱乐玩具,引起学生浓厚的兴趣。学生在科技制作中的地位不仅体现在主动参与和探索、主动在实践中学习和运用知识,而且还表现为学生可以是制作活动的组织者,参与从制作到评价的全过程。 二、开发背景: (一)时代科技创新的需要。世界各国的综合实力越来越体现在科技和教育水平的不断发展,取决于国民科技文化素质的迅速提高。青少年是祖国建设事业的接班人,因此,加强科技普及教育,提高全民族,尤其是青少年的科技素质,已成为持续增强国家创造能力和竞争能力的基础性工程。本课程的开发,旨在培养学生的创新精神和创新能力,提高学生的科技素养,增进学生热爱科学技术的感情。

(二)学生成长的需要。开展“无人机”校本课程可以培养学生的观察力、思考力、动手操作能力,从而不断促进学生形成技术素养、科学素养,乃至科技创新的素养。同时培养他们具有尊重科学、实事求是的科学精神和最基本的科学探究方法,为终身学习与不断创造打下基础。 (三)学校科技特色发展的需要:在基础教育改革的背景下,开发实现普及教育,使学生学到许多科学知识,养成善于动脑,实现学生个性化、创新意识和实践能力的发展。 三、课程目标: (一)总体目标 1、培养学生对科学技术的兴趣和爱好。 2、引导学生掌握必要的知识和技能。 3、增强学生的创新精神和实践能力。 4、引导学生树立科学思想和科学态度 (二)具体目标 1、知识技能目标:培养学生模型制作的基础知识、实际操作能力,提高学生识图、制作能力;培养学生在原有技术原理、结构原理的基础上进行重新组合、大胆创新的能力。 2、方法情感目标:采取自主操作与合作探究相结合的活动方式,培养学生合作创新意识;培养学生的观察力、思考力、动手操作能力,不断促进学生形成技术素养、科学素养,乃至科技创新的素养。同时培养他们具有尊重科学、实事求是的科学精神和最基本的科学探究方

四旋翼无人机小论文介绍

四旋翼无人机自适应导航控制 通过在课堂上老师讲解的关于导航和制导的一些基本知识,我对导航这门学问产生了极其浓厚的兴趣。在课下,我通过自己查找一些相关的文献和资料对于导航的知识进行了进一步的学习,下面我将针对“四旋翼无人机自适应导航控制”这篇论文,对我学习到的一些基础知识进行一下简要的介绍。但由于时间以及知识储备有限,所以并没有作深入的研究。 首先,本篇论文主要研究的内容是四旋翼(Quadrotor)无人机的导航问题。解决了传统导航方法的目标定位误差和实时性差等问题。主要采取的控制方法是基于CLOS技术的导航控制方法。下面我将针对论文中的每个部分进行简要的介绍,并阐述一下我所学习到的一些基本知识。 1. 引言 在第一部分“引言”中,作者主要针对现阶段四旋翼无人机在国内外的一些基本发展现状进行了简要的介绍,并说明了本篇论文所解决的问题所具有的一些实际的意义,最后概括的介绍了基于CLOS技术的导航控制方法的一些基本情况。 通过查阅相关资料,我主要有以下两个方面的收获: 第一,是关于四旋翼无人机的基本发展情况的了解。 从国内情况来看,国内四旋翼无人机的研究水平相对滞后,同一些科技相对发达的国家尚有一定差距;其次,国内的无人机研究近些年来主要集中在北航,南航等一些知名的院校,主要研究的课题包括无人机的自主导航试飞等方面。从总体情况来看,国内的四旋翼无人机领域开发不深,有许多可以深入探究的地方。 与国内相比,国外的四旋翼无人机研究水平则相对较高,国外无人机的发展在一定程度上是和一些科研竞赛是息息相关的。比较知名的如“国际空中机器人大

赛(IARC)”,该项赛事在一定程度上反映了国际上对无人机研究的程度,是一项国际公认的比赛。 此外,我还了解到了无人机的发展历史,下面做简要的阐述: 1.1907年,法国Breguet兄弟制造了第一架四旋翼式直升机Breguet -Richet “旋翼机 1 号”,这次飞行中没有用到任何的控制,所以飞行稳定性是很差。 2.1921年,George De Bothezat 在美国俄亥俄州西南部城市代顿的美国空军部建造了另一架大型的四旋翼直升机,先后进行了100多次的飞行试验,但是仍然无法很好的控制其飞行,并且没有达到美国空军标准 3.1924年,出现了一种叫做Oemichen的四旋翼直升机,直升机首次实现了1km的垂直飞行。 4.1956年,Convertawing造了一架四旋翼直升机,该飞行器的螺旋桨在直径上超过了19英尺。 5.近十几年来,随着微系统、传感器以及控制理论等技术的发展,四旋翼垂直起降机又引起人们极大的兴趣。研究集中在小型或微型四旋翼飞行器的结构、飞行控制以及能源动力等方面。 第二,是关于CLOS技术的简要了解。 CLOS技术是以CLOS网络为基础的。为了降低多级交换网络的成本,长期以来人们一直在寻找一种交叉点数随入、出现数增长较慢的交换网络,其基本思想都是采用多个较小规模的交换单元按照某种连接方式连接起来形成多级交换网络。CLOS首次构造了如图所示的N X N的无阻塞交换网络。采用足够多的技术,对于较大的N,能设计出一种无阻碍网络,其交叉点数增长的速度小于公式1。也就是说,使用CLOS网络,既可以减少交叉点数,又可以做到无阻塞。

天鹰四旋翼无人机

天鹰四旋翼无人机 当前,空地一体化现场侦察系统集成了天鹰-1000和天鹰-200两个型号的四旋翼无人机,主要是适应武警部队近距、低空侦察需要,以德国md-1000和md-200飞行器为平台,通过适应性技术改造而初步定型的无人侦察机。两种机型均具备垂直起降、定点悬停、手控飞行和自动驾驶等多种功能,适用于城市处突空中监视或其它大区域空中航拍监视、野外搜索空中监视、重要目标定点侦察、夜间侦察搜索、现场图像实时传输、摄制大幅航拍拼图及环景照片等任务。在运用方式上,既能与空地一体化现场侦察系统配套使用,实现系统的空中侦察功能,也可独立于系统之外,单独完成各类空中侦察及图像传输任务。 一、天鹰四旋翼无人机主要构成及特点 天鹰四旋翼无人机主要由四旋翼无人飞行器、地面站、遥控遥测及图像传输链路和任务载荷四部分组成。四旋翼无人飞行器。包括天鹰-1000型装备机及训练机、天鹰-200型装备机及训练机。 天鹰-1000型装备机续航时间50分钟,最大任务载荷1000克,飞行半径3000m,飞行高度1000m,工作海拔4000m。 天鹰-200型装备机续航时间25分钟,最大任务载荷200克,飞行半径1000m ,飞行高度400m,工作海拔3000m。 天鹰-1000型和200型训练机,除没有任务载荷和图像传输设备外,其它配置与装备机相同,可模拟装备机飞行特性进行操作训练。 2.地面站。包括便携式地面站和车载式地面站。通过便携式地面站,可对无人机进行遥控,规划无人机航线,查看侦察数据和影像,同步显示和录制航拍视频图像。车载式地面站将便携式地面站所有功能“复制”到了侦察车上,根据现场情况,在不便下车侦察时,操作人员完全可以在车内操控无人机侦察。 3.遥控遥测和微波图像传输链路。无人机和地面站中分别集成了跳频数传电台、移动数字微波发射机和接收机,可稳定遥控无人机并传输各种飞行参数及航拍图像。 4.任务载荷。四旋翼无人机可加载标清摄像机、高清数码相机、微光摄像机、红外热成像摄像机等任务载荷,完成昼夜航拍照片、实时空中监视等侦察任务。 二、天鹰四旋翼无人机特点 1. 组装比较简便,起降比较灵活。该机材质较轻,可拆装折叠,方便运输和携带。组装和拆卸快捷,飞行准备及撤收均不超过10分钟。起降不需跑道,受场地限制小,利用3-5平方米的场地便可垂直起降,在密集楼区、复杂山区均可灵活起降,较其它机型优势明显。〖播放无人机展开和撤收录像〗 2.性能比较可靠,适应性较强。该机飞控系统性能稳定,抗风能力较强,可在小到中雨条件下飞行。夜间可开启夜航灯,完成夜航飞行。在遇到无线电干扰时,超过30秒无遥控信号,该机就会利用“回家自保”功能按原路自动返回。 3.操作比较简单,相对容易掌握。由于该机具有智能化较高的飞行控制系统,操控人员只需控制无人机“到哪儿”,而不必关心飞行器姿态。通过地面站设定航线后,操作人员只需遥控飞行器升空,即可切

四旋翼无人机

微小型四旋翼无人机实时嵌入式控制系统设计与实现 来源:《电子技术应用》作者:发表时间:2010-07-16 21:54:55 摘要:在四旋翼无人机飞行模式分析基础上,提出了一种四旋翼无人机的稳定姿态导航控制系统,改进了无刷电机控制驱动器,并应用多任务编程方案实现软件设计。实验表明,该机载嵌入式系统具有可靠 性高、功耗低、重量轻、成本低等优点。 关键词:四旋翼;无人航空器;嵌入式系统;无刷电机驱动器 随着微机电系统技术在国防、军工、民用等各方面的广泛应用,飞行器的小型化和信息化的进程不断 加速,这使得具有广泛用途的无人航空器UAV(Unmanned Aerial Vehicles)研制成为许多国家的研究热点。微小型旋翼无人机具有使用灵活、体积小、成本低等特点,是无人机发展的主要类型之一,它可以完成超 低空侦察、干扰、监视等各种复杂的任务。无人机的核心部分是导航控制系统,要求具有高可靠性和高抗 干扰能力。按照项目要求,本文设计的导航控制系统具有飞行姿态测量、控制、增稳、视频监控等各种功能。 1 四旋翼无人机飞行模式分析 由于微型无人机飞行姿态多变,为了增大无人直升机的带载能力,该无人机采用了四旋翼的机械结构,通过机载导航系统控制使其各旋翼之间协调运动,实现四旋翼无人机的飞行姿态自动调整,可按要求完成 垂直起落控制、空中悬停控制、偏航控制、滚转控制、俯仰控制等多种动作及任务。四旋翼无人机在各种 结构特征参数确定的情况下,通过改变旋翼转速来改变拉力。四旋翼飞行器结构简图及受力分析如图1所示。 四旋翼无人机是在改变旋翼拉力与自身重力间关系的基础上实现各种飞行姿态的变化。每个旋翼的空 气动力学拉力f dragi(i=1,2,3,4)的数学表达式为: 式(1)中:ρ为空气密度,C T为拉力系数,A i为第i个旋翼桨盘面积,W i为第i个旋翼电机旋转速度,R i为第i个旋翼桨叶片长。在四旋翼无人机设计中,四旋翼采用相同的电机与相同材质及相同大小的桨叶片,可近似把A i、C T、R i看作一常量,则式(1)可简化为: 其中:k dragi>0为依赖于空气密度的常数,ωi为第i个电机旋转角速度。由式(2)可见,通过给定PWM信号 控制电机驱动器控制四翼电机的转速,从而实现对四旋翼电机拉力的控制,完成整个飞行器的动作。 在地球惯性坐标系R W=(E x,E y,E z)与机载坐标系ξ=(x,y,z)下,以电机M1方向为前方,旋翼电机 M1与M3逆时钟方向旋转,旋翼电机M2与M4顺时钟方向旋转;Ψ为飞行器偏航角,θ为飞行器滚动角,

相关主题
文本预览
相关文档 最新文档