当前位置:文档之家› 家蚕核型多角体病毒Bac-to-Bac 系统的构建

家蚕核型多角体病毒Bac-to-Bac 系统的构建

家蚕核型多角体病毒Bac-to-Bac 系统的构建
家蚕核型多角体病毒Bac-to-Bac 系统的构建

V IROLOGICA S INICA, June 2007, 22 (3):0218-225

Received: 2006-11-13, Accepted: 2007-01-30

* Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002)

** Corresponding author. Tel/Fax: 86-27-87197180, E-mail: huzh@https://www.doczj.com/doc/8910023317.html,

HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 219

(BmNPV), are most widely used to express foreign proteins. More than a thousand genes have been cloned and expressed through recombinant AcMNPV and BmNPV, ranging from the components of transcription machinery to pharmaceutical products (1). However, the traditional preparation of recombi- nant baculovirus to express foreign genes is very time consuming, because multiple rounds of purification and amplification of recombinant viruses are needed. Recently, the newly developed Bac-to-Bac TM system of AcMNPV has overcome this drawback. The AcMNPV bacmid can autonomously replicate in E. coli as a large plasmid at a low copy number, and the recombinant virus can be generated by the site specific transposition in Escherichia coli (E. coli)and used to infect insect cells. Since this system eliminates multiple rounds of purification and amplification of virus, recombinant viruses can be selected and purified within 7-10 days.

BmNPV, a member of the family Baculoviridae, is a natural pathogen of the mulberry silkworm Bombyx mori. Though the BmNPV genome is over 90% identical to the genome of AcMNPV (7), its host specificities is very narrow. Unlike AcMNPV which can infect more than 30 lepidopteran insects (2, 8), the BmNPV can only infect silkworm and its cell lines. Since it was first used to express α-interferon in 1985 (15), the BEVS of BmNPV has been used for the expression of many foreign proteins either in a cell culture system or in a insect larvae system (1).

B. mori BEVS are particularly suitable for the large-scale manufacture of foreign proteins, as the protein expression using silkworm or pupae is 10- to 100-fold higher than from B. mori cells. Silkworms are safe to the environment, and easy to breed with low cost. There is a long history of raising silkworms in China. All these make B. mori BEVS one of the most optimal systems for mass production of recombi- nant proteins. Several B. mori BEVS have been developed in past years (5, 10,11, 26, 27), however, the applications were limited due to the time con- suming process or low infectivity of the virus to silkworm.

In this report, we described the construction of a bacmid of BmNPV, BmBacJS13, using in vivo recom- bination. To study the infectivity of the bacmid, the polyhedrin gene was inserted into the bacmid generating recombinant virus BmBacJS13-ph. The infectivity of BmBacJS13-ph was demonstrated by growth curve analysis of budded viruses and bioassay in B. mori larvae. The results indicated that BmBac- JS13-ph is a functional virus with similar infectivity to that of wt BmNPV. The results also showed that infective recombinant viruses could be generated with BmBacJS13 by site specific transposition in E. coli, indicating a functional Bac-to-Bac system of BmNPV was constructed.

MATERIAL AND METHODS

Insect, virus and cell line

Larvae of Bombyx mori, were reared on an artificial diet at 27℃(4) and third or fifth instars larvae were used in the experiments. BmN cells were cultured in TC-100 (JRH) insect medium supplemented with 10% fetal bovine serum (GIBCO/BRL) at 28℃ using standard techniques (17).The wt BmNPV Shaanxi strain, collected in Shaanxi province, China, were propagated on silkworm larvae (3).

Construction of transfer vector

According to the sequence of the BmNPV T3 strain (GenBank accession number L33180), a 1.5 kb segment upstream of polyhedrin gene was amplified

220 V IROLOGICA S INICA V ol.22, No 3

by PCR from the wt BmNPV genome DNA using primers(5’-GGGCCGCGGGCGTAGAGATTCGAC GAAAGC-3’ and 5’-GCGCTGCAGATAATTACAA ATAGGATTGAGGCC-3’) and cloned into the Sac II and Pst I sites of pBluescriptKS II+ (Stratagene). A 1.7 kb segment downstream of the polyhedrin gene was PCR amplified using forward primer (5’-GGGG AATTCCCTGAGGTAAGCGTTAGATTCTGTGCG TTTG-3’) with Eco R I and Bsu 36I sites, and reverse primer (5’-GCGGGTACCTGACGAATCGTAAATA TGAATTCTGT -3’) with Kpn I site. The product was cloned into the plasmid containing the upstream segment to generate pKS-USR-DSR. The mini-F replicon, kanamycin resistance gene and the Tn7 target sites were cut out as an 8.6 kb Bsu 36I fragment from plasmid pBAC-Bsu 36I (18) and inserted into the Bsu 36I site of pKS-USR-DSR to generate transfer vector pBmTV (Fig. 1).

Recombination and identification of the bacmid in vivo

Newly molted fifth instar larvae were co-trans- fected with 20 μL DNA mixture per larva (including 0.45μg linearized plasmid pBmTV DNA, 0.15 μg wt BmNPV viral DNA and 3μL lipofectin (Invitrogen)) through subcutaneous injection (25). The haemolymph of the larvae were collected at 4 days post transfection and budded viruses (BVs) were retrieved from the supernatant of haemolymph after centrifuging. The

DNA of BVs was extracted and transformed into E. coli DH10B cells (GIBCO/BRL), and colonies were selected in the presence of kanamycin and X-Gal. The colonies were further analyzed by PCR and REN digestion. One of the positive clones, BmBacJS13 which had similar REN profiles to that wt BmNPV, was chosen for further analysis. Construction of BmBacJS13-ph

The Polyhedrin gene of BmNPV was amplified by forward primer (5’-GCGGGATCCTGTCGACAAGC TCTGTCCGTTT-3’) with Bam HI (underlined), and reverse primer (5’-GGGGAATTCTTAATACGCCG GACCAGTG-3’) with Eco R I (underlined). The Bam H I site of the fragment was blunted and the fragment was inserted into Bst 1107 I and Eco R I sites of pFast bac Dual (Invitrogen) to generate pFast- DUAL-ph . The pFast bac Dual-ph was then used to produce a recombinant BmBacJS13-ph via trans- position in E. coli according to the Bac-to-Bac TM system manual. The bacmid DNAs of the recombinant were extracted and were used to transfect the BmN cells. Transfection of BmN cells

Bacmid DNA of BmBacJS13-ph was isolated by methods developed for large plasmids (instruction manual of Bac-to-Bac TM system/Life Technologies). The DNA was used to transfect BmN cells with lipofectin, and genomic DNA of wt BmNPV was used

as a control. The supernatant was collected from the

Fig. 1. Schematic of transfer vector pBmTV . The 1.5kb upstream sequence and 1.7kb downstream sequence are homologous arms,

through recombination the polh was replaced with kanamycin cassette, lacZ: attTN7: lacZ and mini-F replicon.

HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 221

transfected BmN cells at 96 hrs post transfection (h.p.i.) and was used to infect BmN cells. The supernatants of the infected cells were collected at 96 h.p.i and TCID50 was determined using end-point dilution method.

Electron microscope

BmN cells (1×106 ) were infected with wt BmNPV or BmBacJS13-ph with a multiplicity of infection (MOI) of 5. The infected cells were harvested at 72 h.p.i. The samples were processed for electron microscopy examination as described by Van Lent et al. (22).

Comparison of the growth curves between wt BmNPV and BmBacJS 13-ph

BmN cells were infected with BV of Bm- BacJS13-ph or wt BmNPV at an MOI of 5. At the appropriate time points post infection, the supernatants were collected and the titers were detected using the end-point dilution method, Each virus infection was repeated five times and the data were statistically analyzed with one-way ANOV A (SPSS); polyhedral inclusion body (PIB) was used as the marker during the assay.

Bioassay

The third instars of B. mori larvae were used in oral infection assays to determine the infectivity of Bm- BacJS13-ph and wt BmNPV. The larvae (n=50 per viral dose) were fed with artificial diet which contain- ned different concentrations of viruses (3×107 PIB/ mL, 107 PIB/mL, 3×106 PIB/mL, 106 PIB/mL, 3×105 PIB/mL and 105 PIB/mL, respectively) for twenty- four hrs. Then the larvae were transferred to fresh diet in plates and reared at 27℃to investigate the mortality. The infectivity of BmBacJS13-ph and wt BmNPV was determined by probit analysis with SPSS10.0 and LC50 values of the viruses were further compared with a two side’s z-test (21).

RESULTS

Identification of the bacmid BmBacJS13

After the construction of transfer vector pBmTV (Fig. 1), the pBmTV DNA was co-transfected with BmNPV DNA into newly molted fifth instar larvae. The hemolymphs of the larvae were collected 4 days post transfection, and BV DNAs were retrieved to transform E. coli DH10B cells. Colonies were chosen randomly and bacmid DNAs were digested with Hin d III. By comparison with the wt BmNPV profiles, several variations were found in different colonies (data not shown). One of the colonies, BmBacJS13, which had similar REN profiles to that of wt BmNPV, was analyzed with additional restriction enzymes. As s h o wn i n F i g.2,c o m p a r i s o n w i t h t h e wt BmNPVindicates that the Xba I profile of BmBacJS13 lacked B (19.3 kb),D (15.8 kb),G (7.6 kb) and H (6.3 kb) bands, and contained five additional bands, D+H (22.2 kb), B’ (19.0kb), G’ (9.1 kb), 4.9 kb and 1.6 kb. Due to the deletion of the polyhedron gene, the B band in wt BmNPV became a shorter band B’ in BmBacJS13. The 4.9 kb and the 1.6 kb bands were from the inserted 8.6 kb Bsu36I fragment which contains three Xba I sites. The remaining Bsu36I fragment (2.1kb) was linked with the remainder of G the fragment (7.0 kb) to generate G’(9.1 kb). The D+H band in BmBacJS13, however, was a sub-molecular band of the D and H bands in the wt BmNPV. These were the expected changes for the bacmid. Therefore BmBacJS13 was constructed correctly and was used for further investigation Biological activity of BmBacJS13-ph

222 V IROLOGICA S INICA V ol.22, No 3

To test the oral infectivity of BmBacJS13, the poly-

hedrin gene was repaired into the bacmid, generating

BmBacJS13-ph. The BmBacJS13-ph was identified to

be correct by PCR and REN analysis (data not shown),

and transfected into BmN cells to generate BVs.

BmN cells were infected with BmBacJS13-ph at an

MOI of 5, occlusion bodies were observed in the

nucleus of cells by optical microscopy from 48 hrs p.i,

and the detachment of the cells were observed at the

same time. These cytopathic effect (CPE) were similar

to that of wt BmNPV infected cells. Electron

microscopy analysis showed that the occlusion bodies

were formed in the nuclei. The polyhedra and ODVs

of BmBacJS13-ph had a similar shape and size as

Fig. 2. Xba I digestion profiles and linearized physical maps of BmBacJS13 and wt BmNPV. A. Xba I digestion profile of BmBacJS13 and wt BmNPV. 1, λ DNA digested by Bam H I, Eco R I and Hin d III; 2, BmBacJS13; 3, wt BmNPV. B. Linearized Xba I physical maps of BmBacJS13 and wt BmNPV. The restriction sites are indicated in kb from the zero point. The genome size in kb is shown on a scale at the top. The location of polh and 8.6kb Bsu36I fragment are shown.

Fig. 3. EM pictures of BmN cells infected with wt BmNPV (A, B) and BmBacJS13-ph (C, D).

HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 225

those of wild type BmNPV (Fig. 3).

One-step growth curve analysis indicated that BmBacJS13-ph BV had similar replication dynamics to that of wt BmNPV (Fig. 4). The titers of the two viruses were very similar during the early infection, but the titers of BmBacJS13-ph were slightly lower than that of wt BmNPV during 24 to 96 h.p.i. Statistical analysis indicated that the differences were not significant except those for 72 h.p.i..

The bioassay result showed that LC50 of BmBac- JS13-ph against 3th larvae was 3.9x106 PIB/ml, which was not significantly different from of that of wt Bm- NPV (3.7x106 PIB/ml) (z=0.3276, P>0.05) (Table 1).

DISCUSSION

A functional Bac-to-Bac system should possess the following characteristics: first, the bacmid should be able to autonomously replicate in the bacteria; second, a foreign gene can be inserted into the bacmid via transposition, and lastly, the backbone virus must have similar biological properties as the wt virus, in both cells and insects. Our study showed that BmBacJS13 could autonomously replicate in the bacteria, and a foreign gene (ph) was introduced into the Tn7 site of

Fig. 4. Growth curves for BmBacJS13-ph and wt BmNPV. BmN cells were infected with BmBacJS13-ph or wt BmNPV at an MOI of 5. The supernatants were harvested at different times post infection and the BV titers were analyzed by EPDA. The average titer from five independent TCID50 assays were shown with the bars indicating standard errors. Table 1. LC50 of wt BmNPV and BmBacJS13-ph in early third instar B. mori larvae

95% confidence limits Virus

LC50

(PIB/mL)Lower Upper wt BmNPV 3669441a 654072 28459424 BmBacJS13-ph3876462a 1400386 25047426

a

No significant difference.

BmBacJS13 with the aid of the helper plasmid. The recombinant virus BmBacJS13-ph had similar replication dynamics to that of wt BmNPV and bioassay results showed that its in vivo infectivity was similar to that of wt BmNPV. Therefore a functional Bac-to-Bac system of BmNPV has been constructed, and BmBacJS13 can be used to construct BmNPV recombinants for expressing foreign proteins. During our experiments, a similar Bac-to-Bac system of BmNPV was reported by Motohashia et al(16). In their system, a bacmid of the BmNPV T3 strain was constructed, and it could express enhanced green fluorescence gene (egfp) in larvae and pupae. As we have used a local strain from China (Shaanxi strain), it would be interesting to compare the properties between BmBacJS13 and the T3 bacmid.

The Bac-to-Bac system can also be used for functional genomics studies of BmNPV. Bacmids have been widely used to delete genes by site-specific recombination in E. coli in AcMNPV and Helicoverpa armigera NPV (6, 9, 13, 12, 14, 19, 24, 23).. The target genes were deleted and subsequently repaired by transposition to determine the function of the genes

in viral life cycle. Currently we are studying the functions of several BmNPV genes using BmBacJS13 and the results will be reported in the future. Acknowledgments

We thank Prof. Just M. Vlak of Wageningen University for kindly providing pBAC-Bsu36I and

223

222 V IROLOGICA S INICA V ol.22, No 3

Prof. Chuanxi Zhang of Zhejiang University for BmN cell line. We thank Prof. Hanzhong Wang of Wuhan Institute of Virology for technical assistance. We thank the Animal Center of Wuhan Institute of Virology for providing B. mori larvae. We also thank the grants of 973 (2003CB114202), Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404), National Natural Fundation of China project (30630002) for financial support.

References

1.Acharya A, Sriram S, Saehrawat S. 200

2. Bombyx mori

nucleopolyhedrovirus: molecular biology and biotech- nological applications for large-scale synthesis of recombi- nant proteins. Curr. Sci,83: 455-465.

2.Adams J R, McClintock J T.1991. Baculoviridae.

Nuclearpolyhedrosis Viruses. Boca Raton, FL: CRC Press, p87-204.

3.Arakawa T.2002. Promotion of nucleopolyhedrovirus

infection in larvae of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) by flufenoxuron. Appl En- tomol Zool, 37: 7-11.

4.Choudary P V, Kamita S G, Maeda S. 199

5. Baculovirus

expression protocols. Totowa: Humana press, NJ. p243- 264.

5.Deng X Z, Zhu Y D, Zhen Y, et al. 2000. Construction of

a novel BmNPV Bac to Bac system. Acta Microbiologica

Sinica, 40:155-160.(in Chinese)

6.Dong C S, Li D, Long G,et al. 2005. Identification of

functional domains required for HearNPV P10 filament formation. Virology, 338: 112-120.

7.Gomi S, Majima K, Maeda S.1999. Sequence analysis

of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol, 80: 1323-1337.

8.Granados R R, Williams, K A. 1986. In vivo infection

and replication of baculoviruses. Boca Raton, FL: CRC Press. I: p89-108.

9.Hou S W, Chen X W, Wang H Z,et al. 2002. Efficient

method to generate homologous recombinant baculovirus genomes in E. coli. Biotechniques, 32: 783-789.

10.Je Y H, Chang J H, Kim M H, et al.2001. The use of

defective Bombyx mori nucleopolyhedrovirus genomes maintained in Escherichia coli for the rapid generation of

occlusion-positive and occlusion-negative expression vectors.

Biotechnol Lett,23:1809-1817.

11.Kondo A, Maeda S. 1991. Host range expansion by

recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica Nuclear Polyhedrosis Virus. J Virol,65: 3625-3632.

12.Lin G, Blissard G W. 2002. Analysis of an Autographa

californica nucleopolyhedrovirus lef-11 knockout: LEF-11 is essential for viral DNA replication.J Virol, 76: 2770- 2779. 13.Lin G, Blissard G W. 2002. Analysis of an Autographa

californica multicapsid nucleopolyhedrovirus lef-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol, 76: 5503-5514.

14.Lung O, Westenberg M, Vlak J M, et al. 2002.

Pseudotyping Autographa californica multicapsid nucleo- polyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol, 76: 5729-5736.

15.Maeda S, Kawai M, Obinata H, et al. 1985. Production

of human alpha-interferon in silkworm using a baculovirus.

Nature, 315:592-594.

16.Motohashia T, Shimojimab T, Fukagawac T, et al. 2005.

Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mor i nuclear polyhedrosisvirus bacmid system. Biochem Biophys Res Commun, 326: 564-569

17.O'Reilly D R, Miller L K, Luckov V A. 1992.

Baculovirus Expression Vectors. A Laboratory Manual.

New York: Oxford University Press, NY. p216-229.

18.Pijlman G P, Dortmans J F M, Vermeesch A M G,et al.

2002. Pivotal roal of the non-hr prigin of DNA replication in the genesis of defective interfering baculovirus. J Virol, 76: 5605-5611.

19.Smith G E, Fraser M J, Summers M D. 1983. Molecular

engineering of the Autographa californica nuclear polyhed- rosis virus genome: deletion mutations within the polyhe- drin gene. J Virol, 46: 584-593.

20.Smith G E, Summers M D, Fraser M J. 1983.

Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 3: 2156-2165.

21.Snedecor G W, Cochran, W G. 1989. Statistical methods.

8th Edition, Iowa: Iowa State University Press, p503.

22.van Lent J W M, Groenen J T M, Klingge-Roode E C,

et al. 1990. Localization of the 34 kDa polyhedron

224

HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 225

envelope protein in Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus.

Arch Virol, 111: 103-114.

23.Wang H Z, Deng F, Pijlman G P, et al.2003. Cloning of

biologically active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by using

a bacterial artificial chromosome. Virus Research, 97: 57-63.

24.Wu D, Deng F, Sun X L, et al. 2005. Functional analysis

of FP25K of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol, 86: 2439-2444.

25.Wu X F, Cao C P, Kumar V S, et al. 2004. An innovative

technique for inoculating recombinant baculovirus into the silkworm Bombyx mori using lipofectin. Research in Microbiology, 155: 462-466.

26.Wu X F, Cao C P, Xu Y X, et al. 2004. Construction of a

host range-expanded hybrid baculovirus of BmNPV and AcMNPV, and knockout of cysteinase gene for more efficient expression. Science in China Ser. C Life Science, 47: 406-415.

27.Wu X F, Yang G Z, Hu J X. 1998. A recombinant

rescue linearizable BmNPV baculovirus BmBacPAK [Patent]. China Patent: application No. 98110963.2.

棉铃虫的识别与综合防治

棉铃虫的识别与综合防治 棉铃虫,属鳞翅目、夜蛾科钻蛀性害虫,又名棉铃实夜蛾,可为害樱桃番茄、黄秋葵、结球莴苣、皱叶甘蓝、抱子甘蓝、甜瓜、扁豆、荷兰豆、甜豌豆、甜玉米、菜用大豆等多种蔬菜。 一、为害特点 以幼虫蛀食植株的花蕾、花器、幼果、种荚,也钻蛀茎秆、果穗、菜球等。早期食害嫩茎、嫩芽和嫩叶。花蕾和花器受害后,苞叶张开,变成黄绿色,2~3天后脱落。果实(图1)和种荚常被吃空或引起腐烂而脱落。成果虽然只被蛀食部分果肉,但因蛀孔在蒂部,便于雨水、病菌流入引起腐烂,所以果实大量被蛀会导致果实腐烂脱落,造成减产(图2)。 二、形态识别 成虫(图3)为灰褐色中型蛾,体长14~18毫米,翅展30~38毫米。雌蛾赤褐色至灰褐色,雄蛾青灰色,棉铃虫的前后翅,可作为夜蛾科成虫的模式,其前翅外横线外有深灰色宽带,肾纹,环纹暗褐色。后翅灰白,后翅前缘有1个月牙形褐色斑。 卵(图4)为半球形,约0.5毫米,乳白色,顶部微隆起。表面布满纵横纹。

幼虫(图5)共有6龄,有时5龄,老熟6龄虫长30~42毫米,头黄褐色、有不明显的斑纹,幼虫体色多变,由淡红至红褐乃至黑紫色,常见为绿色型及红褐色型。气门上方有一褐色纵带,是由尖锐微刺排列而成(烟青虫的微刺钝圆,不排成线)。幼虫腹部第1、2、5节各有2个毛突特别明显。 蛹长17~20毫米,纺锤形,赤褐至黑褐色,腹末有一对臀刺,刺的基部分开。气门较大,围孔片呈筒状突起较高,腹部第5~7节的点刻半圆形,较粗而稀(烟青虫气孔小,刺的基部合拢,围孔片不高,第5~7节点刻细密,有半圆,也有圆形的)。 三、发生规律 成虫白天隐伏,觅食、交尾、产卵多在黄昏和夜间进行,具强趋光性和趋化性,卵散产,喜产于生长茂密、花蕾多的棉花上,产卵部位选择嫩尖、嫩叶等幼嫩部分。初孵幼虫取食卵壳,第2天开始为害生长点和取食嫩叶。幼虫有转株为害习性。老熟幼虫在入土化蛹前数小时停止取食,滚落地面,多在落地处寻找疏松干燥的土壤钻入。 棉铃虫虫害全国各地均有发生。一般年份全年发生5~6代,长江以北地区4代,华南和长江以南地区5~6代,云南地区7代。以蛹在土中越冬,从4月初开始陆续羽化,5~10月是主要为害期,尤以6~9月为害番茄、辣椒等果实最为严重。一般从3龄开始蛀果,4~5龄转果为害频繁,棉铃

核型多角体病毒在害虫生物防治中的应用

核型多角体病毒在害虫生物防治中的应用 摘要: 随着化学农药问题的日益严重,昆虫病毒防治害虫是生物防治的一种有效方法。本文主要针对核型多角体病毒的形态特征、病毒的作用机理、后效作用以及重组昆虫病毒和能够感染并增效病毒的物质方面进行的浅显的阐述。 关键词:核型多角体病毒,生物防治,增效作用 化学农药的大量使用,引起农药残留、害虫产生抗性、再猖獗问题日益突出。随着社会对环保意识的高度重视,开发应用高效、低毒、与环境兼容、和谐的农药,减少或替代传统的广谱、高毒有机化学农药,是农药发展的必然趋势[1]。普遍认为21世纪的农药将成为一种“环境和谐农药”(environment acceptable/friendly pesticides)[2]。昆虫病毒作为生物防治的重要手段之一,其优点在于特异性强、毒力高、稳定性好、安全无害,用后能引起害虫群体病毒疾病的流行传播,在相当长时间内可自然控制害虫消长,导致相继世代害虫持续带毒,感染死亡。与其他化学农药和生物农药相比,昆虫病毒杀虫剂到目前未发现抗性问题,这为病毒杀虫剂的发展带来了良好的契机。 1 核型多角体病毒的形态特征 1.1形态 核型多角体病毒(NPV)含包涵体,为多角体病毒Polyhedra。核型多角体直径:0.5~15微米(μm=μ=10-6米)病毒粒子直径:26~70毫微米,长200~400毫微米(nm=mμm=10-9米)粒子杆状,核含双股RNA被壳螺旋状。 不同的昆虫形态有所不同,如黄地老虎核多角体病毒(AsNPV)多角体大多呈六边形。大小一般为l.7—2.6um,为多粒包埋类型,每个病毒束内有2—7个棱衣壳,以3—4个最多见。核衣壳为杆状,有的稍有弯曲,大小约为308nm ×52nm[3]。扁刺蛾核型多角体病毒(TsNPV) 在透射电镜下观察多角体平面观量不规则的四边形,五边形以及少量六边形。多角体大小不均一,为0.5~1.05um,平均直径为0.59u m±0.13um。多角体在弱戚中作用15分钟左右时,可看到多角体内的病毒粒子随机分布,大小均一,并包埋于多角体的空膜中。同时,还可见到囊状的多角体空膜[4]。 1.2理化性状 主要成份蛋白质不同多角体所含的氨基酸成份不同;不溶于水和多种有机溶剂,如乙醇、乙醚、笨、丙酮等;不能为细菌或细胞蛋白酶破坏;活体外用Na2CO3的稀溶液(0.08~0.05M)溶解获得病毒粒子被食感染虫体,能在中肠释放粒子,多角体不溶于血淋巴,耐低温,-135~150℃下冻融5次不失活。 2 核型多角体病毒的研究与应用 2.1 病毒研究利用的历史 第一个关于昆虫病毒病的记录文献是我国12世纪中叶的《农书》中有关于家蚕“高节”、“脚肿”病的记载。这就是我国养蚕农民俗称“脓病”的核型多角体病毒病[5]。迄今为止,已发现的昆虫病毒有很多种。到1995年,已知可从716种昆虫和迄今为止,已发现的昆虫病毒有很多种。利用昆虫病毒防治害虫的研究早在19世纪末就已开展了,Gehren(1892)在德国利用昆虫核型多角体病毒防治模毒蛾(Lymantria monacha)[6]。20世纪40年代,加拿大的松针黄叶蜂( Neodiprion Sertifer)危害较严重,应用人工防治效果不大。直到从欧洲随天敌把该害虫的核型多角体病毒( Neodiprion Sertifer nuclear polyhedrosis virus,NsNPV)引入,才使这个害虫的为害基本得到控制。1961年,美国应用棉铃虫核型多角体病毒(Helicoverpa armigera nuclear polyhedrosis virus,HaNPV)防治棉花、玉米、高粱、大豆、番茄等多种作物的害虫,取得较好的效果,并于1971年正式登记,是第一个工业生产的昆虫病毒商品。自20世纪70年代以来我国在这方面陆续有大量相关的研究报道。到20世纪90年代,国内已

2020北京市东城区高三一模生物1卷含答案

2020北京东城高三一模 生物 2020.5 本试卷共10页,共100分。考试时长90分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将答题卡交回。 第一部分(选择题共30分) 本部分共15小题,每小题2分,共30分。在每小题列出的四个选项中,选出最符合题目要求的一项。 1. 蛋白质和核酸是细胞内重要的大分子物质,下列关于真核细胞中蛋白质和核酸的叙述正确的是 A. 二者主要在细胞核内合成,都能通过核孔出入细胞核 B. 二者都是线粒体、高尔基体和染色体的重要组成成分 C. 合成蛋白质需要核酸参与,合成核酸不需要蛋白质参与 D. 蛋白质和核酸的基本组成单位分别为氨基酸和核苷酸 2. 下图为细胞中某些结构的示意图,下列有关这些结构的叙述与事实相符的是 A. 甲——膜上可附着核糖体 B. 乙——基质中分布着大量的色素和酶 C. 丙——在内膜上可合成水和大量的ATP D. 丁——高等植物细胞分裂中发出星射线形成纺锤体 3. 下列生理过程需要膜蛋白参与的是 A. 葡萄糖氧化分解为酒精和CO2 B. 叶肉细胞从细胞间隙吸收CO2 C. [H]还原C3形成糖类化合物 D. 胰岛素促进组织细胞摄取葡萄糖

4. 为研究环境变化对森林生态系统中碳含量的影响,研究人员分别调查了CO2浓度增加、升温、N添加、P输入、 降雨量增加和干旱条件下,植物中碳含量(图1)以及土壤中碳含量(图2)的变化,结果如下图所示。下列选项中不正确的是 A. 植物中的碳含量即植物通过光合作用固定的CO2的量 B. 升温导致土壤中碳含量下降的原因可能是微生物代谢加快 C. CO2浓度增加提高了光合作用效率,故植物中碳含量比土壤中增加的更多 D. 综合分析,环境条件改变对植物中碳含量变化的影响比土壤中的更大 5. 研究发现,当细胞中缺乏氨基酸时,负载tRNA(携带氨基酸的tRNA)会转化为空载tRNA(没有携带氨基酸的 tRNA)调控基因表达的相关过程,其过程如图所示。下列相关叙述不正确的是 A. tRNA、rRNA、mRNA三种RNA均通过转录过程产生 B. 过程②中终止密码子与a距离最近,d结合过的tRNA 最多 C. 细胞缺乏氨基酸时,空载tRNA 既抑制转录也抑制翻译过程 D. 此种调控机制有利于细胞中物质与能量的合理分配和利用 6. 肾上腺—脑白质营养不良(ALD)是伴X染色体隐性遗传病(致病基因用a表示),患者发病程度差异较大, 表现在同一家系可又不同表现型。此现象与女性细胞中所含的两条X染色体中的一条总是保持固缩状态而失活

核型多角体病毒的杀虫作用及其田间应用方法

核型多角体病毒的杀虫作用及其田间应用方法 核型多角体病毒杀虫剂具有特异性强、不易产生抗药性、安全、无害、后效作用明显等优点,然而,在田间实际应用中也存在杀虫谱窄、杀虫速度慢、受自然因素影响较大等限制因素。结合国内、外已开展的核型多角体病毒生物特性和田间应用研究情况,对核型多角体病毒杀虫剂的杀虫特点和应用技术进行了总结与阐述,并提出了田间应用技术措施。 核型多角体病毒(NPV,下称)属杆状病毒科的一类病毒。其作为杀虫剂,目前已广泛用于以鳞翅目害虫为主的农林害虫生物防治。与传统化学药剂相比,其具有特异性强、不易产生抗药性、安全、无害等特点,同时还可以对整个害虫种群起到一定的致弱作用,从而实现对害虫的可持续控制。然而,NPV杀虫剂在田间实际应用中也存在杀虫谱窄、杀虫速度慢和受自然因素影响较大等问题。因此,如何根据NPV杀虫剂自身特点在田间合理使用,成为该项技术进一步推广应用所面临的紧迫课题之一。为此,笔者结合国内、外已开展的NPV 生物特性和田间应用的研究情况,对NPV杀虫剂的特点和应用进行了总结与阐述,并提出了田间应用技术建议。 1 NPV种类 NPV是一类能在昆虫细胞核内增殖的,具有蛋白质包涵体的杆状病毒。它的数量在已知的昆虫病毒中居首位。在我国已报道的超过290种昆虫病毒中,有212种为NPV。目前,国际上已有多种NPV杀虫剂应用于农林害虫的防治(表1)。其中我国正式登记的有8种(表2)。表1国外核型多角体病毒杀虫剂使用情况 病毒名称防治对象应用作物使用国家 美洲棉铃虫核型多角体病毒(Helicoverpazea NPV) 美洲棉铃虫棉花、烟草、 大豆、蔬菜 美国 甘蓝夜蛾核型多角体病毒(Mamestrabrassicae NPV)多种鳞翅目 昆虫(主治 甘蓝夜蛾) 蔬菜法国 甜菜夜蛾核型多角体病毒(Spodopteraexigua NPV)甜菜夜蛾蔬菜荷兰、美国、 泰国 苜蓿银纹夜蛾核型多角体病毒(Autographacalifornica NPV)多种鳞翅目 昆虫 蔬菜危地马拉、美 国 茶小卷叶蛾核型多角体病毒 (Adoxophyesorana NPV) 茶小卷叶蛾蔬菜德国粉纹夜蛾核型多角体病毒(Trichoplusiani NPV) 粉纹夜蛾蔬菜美国 芹菜夜蛾核型多角体病毒(Anagraphafalcifera NPV) 棉铃虫、甜 菜夜蛾、芹 菜夜蛾 棉花、蔬菜美国 灰翅夜蛾核型多角体病毒 (Spodopteralittoralis NPV) 灰翅夜蛾棉花法国 大豆夜蛾核型多角体病毒 (Anticarsiagemmatalis NPV) 大豆夜蛾大豆巴西 黄杉毒蛾核型多角体病毒(Orgyiapseudotsugata NPV)黄杉、冷杉 毒蛾 森林美国、加拿大 舞毒蛾核型多角体病毒舞毒蛾森林美国、加拿大、

家蚕核型多角体病毒Bac-to-Bac 系统的构建

V IROLOGICA S INICA, June 2007, 22 (3):0218-225 Received: 2006-11-13, Accepted: 2007-01-30 * Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002) ** Corresponding author. Tel/Fax: 86-27-87197180, E-mail: huzh@https://www.doczj.com/doc/8910023317.html,

HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 219 (BmNPV), are most widely used to express foreign proteins. More than a thousand genes have been cloned and expressed through recombinant AcMNPV and BmNPV, ranging from the components of transcription machinery to pharmaceutical products (1). However, the traditional preparation of recombi- nant baculovirus to express foreign genes is very time consuming, because multiple rounds of purification and amplification of recombinant viruses are needed. Recently, the newly developed Bac-to-Bac TM system of AcMNPV has overcome this drawback. The AcMNPV bacmid can autonomously replicate in E. coli as a large plasmid at a low copy number, and the recombinant virus can be generated by the site specific transposition in Escherichia coli (E. coli)and used to infect insect cells. Since this system eliminates multiple rounds of purification and amplification of virus, recombinant viruses can be selected and purified within 7-10 days. BmNPV, a member of the family Baculoviridae, is a natural pathogen of the mulberry silkworm Bombyx mori. Though the BmNPV genome is over 90% identical to the genome of AcMNPV (7), its host specificities is very narrow. Unlike AcMNPV which can infect more than 30 lepidopteran insects (2, 8), the BmNPV can only infect silkworm and its cell lines. Since it was first used to express α-interferon in 1985 (15), the BEVS of BmNPV has been used for the expression of many foreign proteins either in a cell culture system or in a insect larvae system (1). B. mori BEVS are particularly suitable for the large-scale manufacture of foreign proteins, as the protein expression using silkworm or pupae is 10- to 100-fold higher than from B. mori cells. Silkworms are safe to the environment, and easy to breed with low cost. There is a long history of raising silkworms in China. All these make B. mori BEVS one of the most optimal systems for mass production of recombi- nant proteins. Several B. mori BEVS have been developed in past years (5, 10,11, 26, 27), however, the applications were limited due to the time con- suming process or low infectivity of the virus to silkworm. In this report, we described the construction of a bacmid of BmNPV, BmBacJS13, using in vivo recom- bination. To study the infectivity of the bacmid, the polyhedrin gene was inserted into the bacmid generating recombinant virus BmBacJS13-ph. The infectivity of BmBacJS13-ph was demonstrated by growth curve analysis of budded viruses and bioassay in B. mori larvae. The results indicated that BmBac- JS13-ph is a functional virus with similar infectivity to that of wt BmNPV. The results also showed that infective recombinant viruses could be generated with BmBacJS13 by site specific transposition in E. coli, indicating a functional Bac-to-Bac system of BmNPV was constructed. MATERIAL AND METHODS Insect, virus and cell line Larvae of Bombyx mori, were reared on an artificial diet at 27℃(4) and third or fifth instars larvae were used in the experiments. BmN cells were cultured in TC-100 (JRH) insect medium supplemented with 10% fetal bovine serum (GIBCO/BRL) at 28℃ using standard techniques (17).The wt BmNPV Shaanxi strain, collected in Shaanxi province, China, were propagated on silkworm larvae (3). Construction of transfer vector According to the sequence of the BmNPV T3 strain (GenBank accession number L33180), a 1.5 kb segment upstream of polyhedrin gene was amplified

甘蓝夜蛾核型多角体病毒悬浮剂防治茶尺蠖药效试验方案

甘蓝夜蛾核型多角体病毒悬浮剂防治 茶尺蠖田间药效试验报告 1 试验目的 甘蓝夜蛾核型多角体病毒是一种由江西省新龙生物科技有限公司 生产的生物农药,通过试验评价生物农药甘蓝夜蛾核型多角体病毒悬浮剂对茶叶害虫茶尺蠖的防治效果和经济效益,防治时期及适宜的使用剂量,对生物与环境安全性的影响等,为茶叶绿色防控技术产品提供科学的依据,确保茶叶生产安全和质量安全。 2 试验地点 贵州省松桃苗族自治县正大高效茶叶产业园 3 防治对象和作物、品种的选择 防治对象:茶尺蠖;试验品种:福鼎小白 4.试验地选择 贵州省松桃苗族自治县正大高效茶叶产业园6号茶园,树高约 85cm,茶蓬覆盖度约85%,刚抽新芽2—4叶且长势均匀的老茶园。 6试验设计及安排 5.1药剂 5.1.1 试验药剂:甘蓝夜蛾核型多角体病毒悬浮剂(江西新龙生物科技股份有限公司)。 5.1.2 对照药剂:2.5%联苯菊酯(苏州富美实植物保护有限公司)。 5.2 小区安排 5.2.1 处理小区:3个处理小区。(1)甘蓝夜蛾核型多角体病毒悬浮剂;(2);对照药剂;(3)空白对照(清水)。每个处理重复3次,共9个小区。 5.2.2 小区面积和排列:每个小区面积20平方米,采用随机区组排

列。 5.3 施药方法 5.3.1 使用方法:按照药剂标签上注明的方法或要求进行。按试验设计浓度配制好药液,对茶树进行蓬面均匀喷雾。喷药时注意对芽梢的正、反两面喷透及丛侧面喷雾,喷至药液欲滴为止。 5.3.2 使用器械:静电喷雾器。 5.3.3 使用剂量和容量:按照标签注明的剂量施用。通常药剂中有效成分含量表示为g/hm2(克/公顷)。用于喷雾时,同时记录用药倍数和每公顷的药液用量L/ hm2(升/公顷)。20亿PIB/升甘蓝夜蛾核型多角体病毒悬浮剂亩用50毫升。对照药剂2.5%联苯菊酯亩用10毫升。 7 调查、记录和计算方法 6.1 气象和土壤资料 6.1.1 试验时间及天气 试验时间2015 年8月14日—28日,施药时天气晴,施药后24 h内无降雨,试验期间平均气温17.5 ℃,平均湿度82.46%(见表1)。 日期平均气温(℃)最高温度(℃)最低温度(℃) 天气情况降水量(mm) 2015-8-14 19.8 26.4 13.2 晴 2015-8-15 18.9 25.3 12.4 阴 2015-8-16 18.2 24.6 11.8 阴转小雨 2.3 2015-8-17 18.2 24.1 12.3 阴 2015-8-18 18.7 24.5 12.8 多云 2015-8-19 17.6 23.4 11.7 多云 2015-8-20 17.5 23.1 11.9 阴转小雨 3.2 2015-8-21 18.5 24.8 12.1 阴 2015-8-22 15 20.4 9.6 阵雨36.7

微生物农药复习资料

一、名词解释(大概念、大类概念、构成、特殊结构、作用方式等) 1.微生物农药 2. 农用抗生素 3. VIP蛋白 4. 包涵体 5. 重寄生作用 二、单项选择题(最、第一等字眼;防治对象、专性、来源、毒素、机理、不同分类、可开发为。。。,已应用等字眼;有效活性成分,测定方法、指标,特殊结构、致病过程、实际生产方法、等) 1. 以下哪一种微生物为专性寄生昆虫病原菌()。 A. 绿僵菌 B. 金龟子芽孢杆菌 C. 枯草芽孢杆菌 D. 苏云金芽孢杆菌 2. ()具有抗植物根结线虫作用,是一种很有应用前景的生防因子。 A. 穿刺巴斯德氏柄菌 B. 肉毒梭菌 C. 嗜酸乳杆菌 D. 荧光假单胞菌 3. 绿僵菌的主要防治对象为()。 A. 蚜虫 B. 蜡蚧 C. 鳞翅目幼虫 D. 线虫 4. 鲁保一号是用于防治()的微生物源药剂。 A. 害虫 B. 病原菌 C. 杂草 D. 鼠害 5. ()是诺尔斯链霉菌变种产生的抗生素,对多种植物病毒病具有特效。 A. 井冈霉素 B. 农抗120 C. 中生霉素 D. 宁南霉素 6. ()可以产生剧烈的细菌外毒素,此毒素是目前草原农田广泛应用的生物杀鼠剂。 A. 肉毒梭菌 B. 穿刺巴氏柄菌 C. 恶臭假单胞菌 D. 荧光假单胞菌 7. 以下农用抗生素可用于杀螨剂的是()。 A. 莫西菌素 B. 华光霉素 C. 武夷霉素 D. 波拉霉素 8. 除了()以外,以下均为DNA杀虫病毒。 A. 核型多角体病毒 B. 颗粒体病毒 C. 昆虫痘病毒 D. 质型多角体病毒 9. 可以开发为杀虫剂的病毒主要集中在()。 A. 杆状病毒科 B. 长尾噬菌体科 C. 丝状病毒科 D. 壬酸 10. 双丙氨膦属于灭生性除草剂,其有效杀草成分为()。 A. L-草铵膦 B. 芦竹碱 C. 纤精酮 D. 拮抗关系 11. 病毒制剂毒力生物测定方法有活体生物测定、离体生物测定和空斑测定法,其中活体生物测定法检测病毒毒力常用指标为()。 A. LD50 B. TCID50

微生物 病毒习题

病毒 一、名词解释 1、病毒 2、一步生长曲线 3、隐晦期 4、胞内累积期 5、自外裂解 6、噬菌体效价 7、成斑率 8、细胞病变效应 9、病毒多角体 10、类病毒 11、拟病毒 12、朊病毒 13、卫星病毒 14、卫星RNA 15、致癌基因 16、原癌基因 二、填空题 1、病毒可分为真病毒与亚病毒两大类。从组成的化学本质来划分,真病毒至少含有和两种成分;亚病毒中的只含,只含或,而则只

含。 2、最大的病毒为,直径为;最小的病毒为,直径为。 3、单个病毒粒子称为,它由和构成,有些复杂病毒还有一层,其上长有等附属物。 4、病毒的对称体制有三种、和。 5、1935年,美国学者斯坦莱首次提纯并结晶的植物病毒是,它属于对称;核酸类型是。 6、烟草花叶病毒简称,外形状,外层衣壳粒以时针方向螺旋状排列成,具有功能;核心为链。 7、腺病毒的形状为,呈对称;它有个角、个面和条棱;存在两种衣壳粒,分别称为和;其核心部分为线状链。8、大肠杆菌T4噬菌体属于对称体制,、和是构成其个体的三部分,、、、和是构成尾部的五部分。 9、一般地说,动物病毒的核酸类型以和为主,植物病毒的核酸以为主,噬菌体的核酸以居多,真菌病毒的核酸都是。 10、不同病毒在不同的宿主细胞上可形成不同特征的聚集体,如在动物细胞内的,细菌菌苔上的,植物叶片上

的,昆虫细胞内的,动物单层细胞上的等。 11、病毒的命名和分类的权威机构是。 12、病毒分类单元中,是ICTV使用的最高分类单元,有同样的基因组和宿主关系。 13、、、、和是烈性噬菌体生活史可分为的五个阶段。 14、病毒的一步生长曲线有三个重要的特征参数,即期(包括期和期)和期的长短以及的大小。 15、法是测定噬菌体效价的最常用方法,其底层平板含,上层平板中的三种成分分别是、和。 16、温和噬菌体有三种存在方式,即、和。 17、、和是用于病毒培养的最重要的三种细胞培养物类型。 18、昆虫病毒主要有三类,即、和。 19、、和是植物病毒一般可引起宿主植物的三类明显症状。 20、类病毒是一种只含一种成份的分子病原体,第一个被发现的类病毒是类病毒。 21、朊病毒是一类只含一种成份的分子病原体。 22、马铃薯纺锤型块茎病的病原体是;苜蓿暂时性条斑病的病原体是;疯牛病的病原体是;SARS的病

2020北京市东城区高三一模生物1卷含答案

2020北京东城高三一模 生物2020.5 本试卷共10页,共100分。考试时长90分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将答题卡交回。 第一部分(选择题共30分) 本部分共15小题,每小题2分,共30分。在每小题列出的四个选项中,选出最符合题目要求的一项。 1.蛋白质和核酸是细胞内重要的大分子物质,下列关于真核细胞中蛋白质和核酸的叙述正确的是 A.二者主要在细胞核内合成,都能通过核孔出入细胞核 B.二者都是线粒体、高尔基体和染色体的重要组成成分 C.合成蛋白质需要核酸参与,合成核酸不需要蛋白质参与 D.蛋白质和核酸的基本组成单位分别为氨基酸和核苷酸 2.下图为细胞中某些结构的示意图,下列有关这些结构的叙述与事实相符的是 A.甲——膜上可附着核糖体 B.乙——基质中分布着大量的色素和酶 C.丙——在内膜上可合成水和大量的ATP D.丁——高等植物细胞分裂中发出星射线形成纺锤体 3.下列生理过程需要膜蛋白参与的是 A.葡萄糖氧化分解为酒精和CO2 B.叶肉细胞从细胞间隙吸收CO2 C.[H]还原C3形成糖类化合物 D.胰岛素促进组织细胞摄取葡萄糖

4.为研究环境变化对森林生态系统中碳含量的影响,研究人员分别调查了CO2浓度增加、升温、N添加、P输入、 降雨量增加和干旱条件下,植物中碳含量(图1)以及土壤中碳含量(图2)的变化,结果如下图所示。下列选项中不正确的是 A.植物中的碳含量即植物通过光合作用固定的CO2的量 B.升温导致土壤中碳含量下降的原因可能是微生物代谢加快 C.CO2浓度增加提高了光合作用效率,故植物中碳含量比土壤中增加的更多 D.综合分析,环境条件改变对植物中碳含量变化的影响比土壤中的更大 5.研究发现,当细胞中缺乏氨基酸时,负载tRNA(携带氨基酸的tRNA)会转化为空载tRNA(没有携带氨基酸的 tRNA)调控基因表达的相关过程,其过程如图所示。下列相关叙述不正确的是 A.tRNA、rRNA、mRNA三种RNA均通过转录过程产生 B.过程②中终止密码子与a距离最近,d结合过的tRNA最多 C.细胞缺乏氨基酸时,空载tRNA既抑制转录也抑制翻译过程 D.此种调控机制有利于细胞中物质与能量的合理分配和利用

我国棉铃虫生物防治研究进展

我国棉铃虫生物防治研究进展 XXX (XXXX大学,XXXX院XX系,XX,XXXXXX) 摘要:生物防治是利用生物本身或其代谢产物,达到控制害虫的目的。本文从自然天敌、微生 物、性信息素、转基因技术、植物性杀虫剂和生化农药六个方面,论述我国针对棉铃虫的生物 防治进展。 关键词:生物防治;棉铃虫;天敌;转基因;生化农药 The research progress of Biological control about Heliothis armigera(Hubner) in our country WANG Run-Zheng (Department of Entomology, College of Plant protection , Henan Agricultural University , Zhengzhou 450000 , China) Abstract:Biological control uses orgranisms themselves or their metabolites to achieve a intention of pest control . This article from six aspects to introduce the biological control progress about Heliothis armigera Hubner in our country--natural enemies , microorganism , sex pheromone , GM technology , botanical pesticides andbiochemical pesticides. Key words: biological control; Heliothis armigera(Hubner); natural enemy; transgenosis; Biochemical pesticide 棉铃虫Heliothis armigera(Hubner)属于鳞翅目、夜蛾科,俗称棉桃虫、钻心虫。棉铃虫是棉花蕾铃期重要钻蛀性害虫,主要蛀食蕾、花、铃,也取食嫩叶。棉铃虫属于杂食性害虫,除了危害棉花,也危害玉米、番茄、豆类(鹰嘴豆、绿豆、大豆)、南瓜、烟草等,寄主植物有20多科200余种。棉铃虫广泛分布在中国及世界各地,中国棉区和蔬菜种植区均有发生,其中黄河流域棉区、长江流域棉区、华南棉区每年可发生4-6代危害较为严重(Brown et al., 2002;巨换梅,2004; Inbar et al., 2008)。 棉铃虫的天敌防治技术的研究和实践引起人们关注,开始于上世纪七十年代初,最早是为了解决化学农药杀伤天敌、污染环境、人畜中毒等问题;进入九十年代,随着棉铃虫抗药性逐渐增强,且连年发生、历期长,于是我国在对于棉铃虫的生物防治技术方面越来越得到重视(Brown et al., 2002)。除了原本的天敌防治外,对于棉铃虫的生物防治技术越来越丰富,微生物防治、性信息素防治、转基因技术、植物性杀虫剂和生化农药,都对于棉铃虫的防治起着巨大的作用。 1. 利用天敌控制棉铃虫 根据记载,棉铃虫的天敌有260多种,其中捕食性天敌140种,寄生性天敌120种。发生数量较大,对棉铃虫有明显控制作用的天敌主要有瓢虫类、蜘蛛类、草蛉类、食虫蝽类和寄生蜂类(Williams,1996)。在棉田棉铃虫发生期,控制棉铃虫卵和幼虫的天敌集团作用大小依次为:瓢虫草蛉类>食虫蝽类>蜘蛛类。而天敌对棉铃虫的控制作用也存在于棉铃虫发生的不同时期:二代主要为龟纹瓢虫、捕食性蝽;三代主要为龟纹瓢虫、异须盲蝽;四代主要为异须盲蝽、蜘蛛、龟纹瓢虫(Hoddle et al.,1998)。 1.1龟纹瓢虫 龟纹瓢虫Propylaea japonica(Thunberg)属鞘翅目,瓢虫科,广泛分布于中国、日本、印度等地,是我国农业生产中一种重要的捕食性天敌昆虫。通常在棉田中拥有较大的数量,对棉田的主要害虫具有一定的控制能力。通常认为龟纹瓢虫是棉蚜Aphis gossypii(Glover)的重要捕食性天敌,同时,龟纹瓢虫也捕食棉铃虫低龄幼虫和卵。龟纹瓢虫是田间二代棉铃虫发生盛期最重要的优势天敌种群,是瓢虫科中对棉铃虫防治效果最好的捕食性昆虫(田毓起

危害棉花的害虫

危害棉花的害虫 棉铃虫 corn earworm 亦作cotton bollworm,亦称玉米果穗螟蛉或番茄螟蛉(tomato fruitworm)。 夜蛾科(Noctuidae)昆虫玉蜀黍果穗夜蛾(Heliothis zea或H. armigera)的幼虫。体光滑,绿或褐色,是严重的作物害虫。玉蜀黍果穗夜蛾(Heliothis zea)入土化蛹,成虫灰褐色(翅展3.5公分),一年发生4∼5代。较早世代的幼虫主 要取食玉蜀黍,尤其是穗尖的小籽粒;以后各代幼虫为害番茄、棉花和其他季节性作物。 棉铃虫,夜蛾科昆虫的一种,是棉花蕾铃期的大害虫。 广泛分布在中国及世界各地,中国棉区和蔬菜种植区均有发生。黄河流域棉区、长江流域棉区受害较重。近年来,新疆棉区也时有发生。寄主植物有20多科200余种。棉铃虫是棉花蕾铃期重要钻蛀性害虫,主要蛀食蕾、花、铃,也取食嫩叶。 该虫是中国棉区蕾铃期害虫的优势种,近年为害十分猖獗。[编辑本段]物种信息 中文学名:棉铃虫 中文俗名:棉铃实夜蛾

拉丁名:Helicoverpa armigera Hubner 英文名:Cotton bollworm 所属科目:鳞翅目夜蛾科 [编辑本段]外形特征 成虫体长15~17毫米。翅展30~38毫米。前翅青灰色、灰褐色或赤褐色,线、纹均黑褐色,不甚清晰;肾纹前方有黑褐纹;后翅灰白色,端区有一黑褐色宽带,其外缘有二相连的白斑。幼虫体色变化较多,有绿、黄、淡红等,体表有褐色和灰色的尖刺;腹面有黑色或黑褐色小刺;蛹自绿变褐。卵呈半球形,顶部稍隆起,纵棱间或有分支。 [编辑本段]生物学特征 发生的代数因年份因地区而异。在山东省莱州市每年发生4代,九月下旬成长幼虫陆续下树入土,在苗木附近或杂草下5cm—10cm深的土中化蛹越冬。翌春气温回升15℃以上时开始羽化,4月下旬至5月上旬为羽化盛期,成虫出现第一代在6月中下旬,第二代在7月中下旬,第三代在8月中下旬至9月上旬至10月上旬尚有棉铃虫出现。成虫有趋光性,羽化后即在夜间闪配产卵,卵散产,较分散。一头雌蛾一生可产卵500粒~1000粒,最高可达2700粒。卵多产在叶背面,也有产在正面、顶芯、叶柄、嫩茎上或农作的、杂草等其它植物上。 幼虫孵化后有取食卵壳习性,初孵幼虫有群集限食习性,

2019年1月大兴区高三期末试题及答案

大兴区2018~2019学年度第一学期期末检测试卷 高三生物 第Ⅰ卷选择题(共40分) (共25小题,1~10题,每题1分;11~25题,每题2分。每题只有一个选项最符合题意) 1.松露是和松科植物根系共生的一种地下真菌。下列关于松露和松科植物的叙述,不正确 ...的是 A. 遗传物质都是DNA,均可发生基因突变 B.都含有叶绿素,能把光能转变成化学能 C.都有线粒体,能通过有氧呼吸获得能量 D.都有核糖体,核糖体形成均与核仁有关 2.某同学制作了如图1所示的渗透作用装置,S1和S2分别为漏斗内外不同浓度的蔗糖溶液。实验开始后,长颈漏斗内液面的变化如图2所示,渗透平衡时漏斗内外液面差为m,下列说 法不正确 ...的是 图1 图2 A.长颈漏斗内部液面的升高说明膀胱膜是半透膜 B.渗透平衡时,S1溶液的液面高于S2溶液的液面 C.将S1和S2溶液换成不同浓度的KNO3溶液,渗透平衡时m值为0 D.图2结果说明,小分子物质都能通过生物膜,而大分子物质则不能 3.细胞有氧呼吸产生的[H]与氧结合形成水,2,4-二硝基苯酚(DNP)对该过程没有影响,但能抑制ATP合成。据此推测DNP作用正确的是 A.有氧呼吸第一阶段不会产生ATP,该过程不受DNP影响 B. DNP主要在线粒体基质中发挥作用,因为其形成ATP最多 C. DNP作用于组织细胞时,线粒体内膜上散失的热能将增加 D.DNP抑制葡萄糖进入红细胞,进而抑制细胞有氧呼吸过程 4.实验原理是实验设计的依据,利用相关实验原理,判断下列说法正确的是 A. 盐酸和酒精混合能使细胞相互分离,可以用于根尖的解离 B. 健那绿能使线粒体呈蓝绿色,可将死亡的细胞染色后观察 C. 无水乙醇能溶解叶绿体中的色素,可以将色素溶解后分离 D. 人的红细胞在生理盐水中易涨破,可以制备纯净的细胞膜

2021届高三复习生物名校联考质检精编卷(8)生物进化

2021届高三复习生物名校联考质检精编卷(8) 生物进化 1.假设某果蝇种群中雌雄个体数目相等,且对于A和a这对等位基因来说只有Aa一种基因型,下列叙述错误的是( ) A.若不考虑基因突变和染色体变异,则该果蝇种群中A基因频率:a基因频率是相等的 B.理论上,该果蝇种群随机交配产生的第一代中AA、Aa和aa的数量比为1:2:1 C.该种群随机交配不改变基因型频率,所以种群没有进化 D.没有其他因素的影响自由交配的子二代和子三代,显性个体所占的比例是相同的 2.人类在生产和生活中大量使用抗生素是引起细菌抗药性增强的重要原因。如图是细菌抗药性形成示意图,有关叙述不正确的是( ) A.易感菌群中出现具有一定抗药性的细菌可能是基因突变的结果 B.抗药性基因传递给其他细菌产生的变异属于基因重组 C.长期使用某种抗生素,就会使易感细菌产生抗药性变异,从而产生耐该抗生素的菌群 D.抗生素的不合理使用,会导致耐药菌群的出现或造成体内菌群失调 3.蔗蟾蜍曾被某国引入用来控制甘蔗园中害虫,由于蔗蟾蜍本身有毒,在当地鲜有天敌,且繁殖速度快,变异频率高,几十年来迅速扩散,成为入侵物种,造成生态灾难。研究发现,它们的进化速度惊人,进化出长而有力的后腿,生存能力剧增。对上述材料分析错误的是( ) A.自然选择决定蔗蟾蜍进化的方向 B.蔗蟾蜍的变异主要来自于基因重组,是随机的、不定向的 C.自然选择导致蔗蟾蜍种群长腿基因型频率增加,标志着蔗蟾蜍种群的进化 D.任何一个物种都不是单独进化的,蔗蟾蜍与害虫共同进化 4.苇草主要生长于瑞士阿尔卑斯山的高山盛夏牧场,是一种依赖风力传粉的植物。不同种群的苇草对铜耐受力不同,有耐受性基因的个体在无铜污染地区生长很缓慢。调查废弃铜矿区

一种新型病毒杀虫剂-甘蓝夜蛾核型多角体病毒

02/746 科技与产品 一种新型病毒杀虫剂 ——甘蓝夜蛾核型多角体病毒 溴嘧氯草醚中试合成工艺研制成功 近期,中国科学院上海有机化学研究所有机氟化学重点实验室研制成功溴嘧氯草醚中试合成工艺。 研究人员以2-氟-6-氯苯甲醛为起始原料,通过水解、缩合、还原和亲核取代反应,在公斤级规模上合成了溴嘧氯草醚,用高效液相色谱外标法测定了原药含量,通过三维高效液相色谱-质谱联用(HPLC-DAD-MS)技术对原药中的杂质结构进行了鉴定。结果表明,反应总收率高于80%,原药含量大于98%,主要杂质为未反应完全的中间体2-[(4-溴苯氨基)甲基]-3-氯苯酚和溴嘧氯草醚Smiles 重排产物。该工艺反应条件温和,反应收率高,原药含量高,“三废”排放较少,比较适合工业化放大生产。 据介绍,溴嘧氯草醚(开发代号:SIOC0426,化学名称为N-[2-氯-6-(4,6-二甲氧基-2-嘧啶氧基)苄基]-4-溴苯胺),是我国以2-嘧啶氧基-N-芳基苄胺类化合物为先导自行创制的第一个以棉花田为作用对象实施开发的高活性化合物,具有除草活性高、杀草谱较广、对棉花和棉田主要杂草具有良好的选择性等特点,作为棉田除草剂候选品种具有良好的市场开发前景。 (刘刚) 一种新型病毒杀虫剂——甘蓝夜蛾核型多角体病毒,自2013年7月获准取得农药登记以来,仅一年时间,该产品就在全国多个地区获得肯定,表现出良好的市场前景,目前已列入全国农业技术推广中心的重点推广产品。 甘蓝夜蛾分布于我国及北美、欧洲等地。幼虫严重为害油菜、甘蓝、洋葱、白菜、甜菜等蔬菜和经济作物。甘蓝夜 蛾核型多角体病毒对甘蓝夜蛾幼虫致病力强,自然感染率高,又能在自然界造成流行病,是甘蓝夜蛾的主要病原性天敌,作为微生物杀虫剂有较大潜力,在法国、德国等早有成功的防治实践。 甘蓝夜蛾核型多角体病毒由中国科学院病毒研究所研制成功,江西省新龙生物科技有限公司取得农药登记并生产。 据悉,20亿PIB/毫升甘蓝夜蛾核型多角体病毒悬浮剂是一种广谱性昆虫病毒微生物杀虫剂,能杀灭32种鳞翅目害虫,用于防治几乎对所有化学农药均产生抗性的小菜蛾,效果很好,且不易产生抗性。该产品作用机理独特,施药后病毒能大量吞噬害虫细胞,最后有效杀灭害虫。同时,产品中含有18种氨基酸和蛋白质,可以在杀虫的同时起到补充营养的作用,与化学农药混用有增效作用,可大大减少农药 用量。 据河北省张家口市植保站的示范试验表明,近两年,该市在蔬菜上进行了近3500亩面积的药效示范试验,不仅防效显著,还能解决农药残留问题,提高蔬菜品质。特别是在低温情况使用该产品,没有出现药害,且防治效果好、持效期长、无公害,具有广阔的推广应用前景。 专家介绍,甘蓝夜蛾核型多角体病毒杀虫剂以其对靶标害虫杀虫效果好、对环境友好、不伤天敌、有害生物不易产生抗药性等优点,渐成农业有害生物防治的热门产品,将来会成为防治小菜蛾和生产无公害蔬菜的主要农药品种。目前仅在防治甘蓝小菜蛾、棉花棉铃虫上取得登记,建议在水稻、玉米等多种作物上试验,并取得相应的登记。 据了解,甘蓝夜蛾核型多角体病毒杀虫剂近年推广面积增长迅猛,在蔬菜、棉花等作物上全国累计应用超过500万亩次。 另外据悉,甘蓝夜蛾核型多角体病毒已获得欧盟2008/ 889标准有机认证,这是国内病毒杀虫剂的首家欧盟有机认证,为甘蓝夜蛾核型多角体病毒制剂进入欧盟市场奠定了基础。 (汪建沃)

相关主题
文本预览
相关文档 最新文档