GEVStableGarch
- 格式:pdf
- 大小:215.11 KB
- 文档页数:23
2024年04版小学六年级上册英语第4单元真题[含答案]考试时间:80分钟(总分:140)A卷考试人:_________题号一二三四五总分得分一、综合题(共计100题共100分)1. 填空题:I think it’s important to ________ (学习新事物).2. 听力题:She has a ________ for her birthday.3. 填空题:I think it’s important to ________ (关注健康).4. 听力题:A flammable substance can easily catch _______.5. 选择题:What is the opposite of sad?A. HappyB. JoyfulC. CheerfulD. All of the above答案:D6. 听力题:A saturated solution can reach its limit when no more solute can be ______.7. 填空题:I enjoy playing ________ (棋类) with my friends.8. 填空题:The hawk's talons are sharp and designed for capturing ________________ (猎物).9. 选择题:How many wheels does a bicycle have?A. 2B. 3C. 4D. 510. 听力题:A substance that conducts electricity in solution is called an ______.11. 听力题:The __________ is a large area of untouched nature.12. 选择题:What do you call the vehicle that travels on tracks?A. CarB. TrainC. PlaneD. Boat答案: B13. 听力题:Reactivity is the ability of a substance to undergo a _____.14. 填空题:The pigeon is often found in _______ (城市).15. 选择题:What is the color of a typical cantaloupe?A. OrangeB. GreenC. YellowD. Red答案:A16. 听力题:I enjoy ______ (baking) cookies with my mom.17. 填空题:The __________ (历史的动态) highlight change over time.18. 填空题:A ______ (蜥蜴) can change colors to hide from predators.19. 填空题:I can explore different cultures with my ________ (玩具).He is a _____ (评论员) on a popular podcast.21. 选择题:What is the opposite of hot?A. WarmB. ColdC. CoolD. Freezing答案:B22. 填空题:My friend has a great sense of __________ (风趣).23. 填空题:My ________ (玩具名称) is a fun way to learn about animals.24. 听力题:A light-year is a measure of ______.25. 填空题:The rain is ________ (太大了).26. 填空题:__________ (物质循环) describes how elements move through the ecosystem.27. 填空题:我的朋友喜欢 _______ (活动). 她觉得这很 _______ (形容词)28. 填空题:The _______ (老虎) is a fierce predator.29. 听力题:Iron reacts with oxygen to form _______.30. 填空题:My favorite snack is _______ and crunchy.31. 听力题:Many _______ are edible and delicious.32. 填空题:We need to _______ (保持) a healthy lifestyle.What do you wear on your hands in winter?A. SocksB. MittensC. BootsD. Hat答案:B34. 填空题:The ______ (植物的生态影响) can be studied through various means.35. 填空题:My mom enjoys __________ (锻炼) and keeping fit.36. 填空题:The sunset is _______ (美丽的).37. 填空题:Did you see the _____ (兔子) hopping around?38. 听力题:The _____ (car/bike) is red.39. 听力题:I like to _____ (swim) in the pool.40. 填空题:A __________ day is great for going to the park. (晴朗的)41. 填空题:A ____(biophilia) is an innate affinity for nature.42. 听力题:A wheel makes it easier to _______ things.43. 听力题:The chemical symbol for zinc is ______.44. 选择题:What is the capital of Spain?A. MadridB. BarcelonaC. ValenciaD. Seville答案:A45. (15) is famous for its pyramids. 填空题:The ____46. 选择题:Which day comes after Monday?A. SundayB. TuesdayC. WednesdayD. Thursday47. 填空题:The __________ (冷战) led to the space race between the USA and USSR.48. 填空题:The __________ is a famous city known for its modern architecture. (迪拜)49. 选择题:How many months are there in a year?A. TenB. TwelveC. ElevenD. Nine50. 选择题:What is the capital of Norway?A. OsloB. BergenC. TrondheimD. Stavanger答案:A51. 选择题:What do we call the study of living organisms?A. BiologyB. ChemistryC. PhysicsD. Geology答案:A52. 听力题:I have a ___ of stickers. (sheet)53. 选择题:What do you call the time when the sun is highest in the sky?A. DawnB. NoonC. DuskD. Midnight答案:B54. 选择题:What do you call a person who repairs cars?A. MechanicB. EngineerC. TechnicianD. Designer答案:A55. 填空题:A _____ (章鱼) can change its shape to fit through tight spaces.56. 听力题:The chemical formula for manganese dioxide is _______.57. 填空题:The __________ is a famous mountain range in Europe. (阿尔卑斯山)58. 听力题:A meteor shower occurs when Earth passes through ______.59. 选择题:What is the term for a person who studies rocks?A. GeologistB. BiologistC. ArcheologistD. Chemist答案:A60. 听力题:Chlorine is a type of _______ that can be harmful.61. 选择题:What is the main purpose of a compass?A. Measure temperatureB. Find directionC. Tell timeD. Check altitude62. 填空题:A cow gives us _________ (牛奶).I like to collect ________ (邮票) from different places.64. 填空题:I saw a ______ (青蛙) jumping in the pond.65. 填空题:I hear the sound of ______ (雷声) in the distance.66. 听力题:A chemical change may involve a change in _____ (color, temperature, or odor).67. 填空题:The ________ was a landmark event in the quest for equality.68. 选择题:What is the name of the famous landmark in Brazil?A. Christ the RedeemerB. Statues of Easter IslandC. Great WallD. Eiffel Tower答案: A69. 选择题:What is the capital of Serbia?A. BelgradeB. Novi SadC. NišD. Kragujevac答案: A70. 填空题:My sister is passionate about __________ (科学).71. 填空题:The __________ (历史的交融) creates understanding.72. 听力题:__________ are used in the cleaning industry for stain removal.73. 听力题:Deltas are often home to diverse ______ species.I like to write ______ (科技) articles to share knowledge with others. It’s a great way to inform people.75. 听力题:The chemical formula for manganese sulfate is _______.76. 听力题:The molecule responsible for carrying oxygen in the blood is ______.77. 选择题:What do we call the science of studying insects?A. EntomologyB. ZoologyC. BotanyD. Ecology答案:A78. 填空题:The __________ (历史的见证) offers insight into human behavior.79. 听力题:The process of making vinegar involves fermentation of _______.80. 填空题:This boy, ______ (这个男孩), loves to play basketball after school.81. 填空题:The _____ (植物) can grow in various climates.82. 听力题:She has a ___ (big/small) smile.83. 听力题:The _______ of light can be reflected off surfaces.84. 听力题:A __________ is an area of land that is very dry.85. 选择题:What is the name of the fairy tale character who had long hair?A. CinderellaB. RapunzelC. BelleD. Ariel答案:BWhat is the term for a baby cow?A. CalfB. FoalC. LambD. Kid答案:A87. 填空题:The city of Venice is known for its ________ (运河).88. 听力题:The ______ is where we live on Earth.89. 选择题:What do we call the first meal of the day?A. LunchB. DinnerC. BreakfastD. Snack90. 填空题:I like to draw pictures of ______ (天气).91. 选择题:How many sides does an octagon have?A. 6B. 7C. 8D. 9答案:C92. 听力题:The door is ___. (open)93. 听力题:A force can change an object’s ______.94. 听力题:The study of Earth's geological history is crucial for understanding ______ changes.95. 选择题:What is the name of the plant that grows in deserts?A. CactusB. FernC. RoseD. Oak96. 听力题:The capital city of Bhutan is __________.97. 填空题:The weather can change very ______ (快).98. 选择题:What is the name of the famous ancient city in Egypt?A. CairoB. AlexandriaC. ThebesD. All of the above99. 填空题:The pelican has a big _________ (嘴巴).100. 填空题:I enjoy _______ (参加) sports competitions.。
garch波动率模型GARCH波动率模型是金融领域中常用的一种波动率预测模型,它基于过去的波动率信息来预测未来的波动率。
本文将介绍GARCH 模型的原理、应用和局限性。
一、GARCH模型的原理GARCH模型是由Engle于1982年提出的,它的全称是Generalized Autoregressive Conditional Heteroskedasticity model,翻译过来就是广义自回归条件异方差模型。
GARCH模型的基本思想是通过对过去一段时间的波动率进行建模,来预测未来的波动率。
GARCH模型的核心是通过对过去的波动率进行建模,来捕捉波动率的自相关性和异方差性。
在GARCH模型中,波动率是一个时间序列,它的波动会受到过去一段时间内的波动率的影响。
GARCH 模型通过引入自回归项和移动平均项,来捕捉波动率的自相关性和异方差性。
二、GARCH模型的应用GARCH模型在金融领域有着广泛的应用,特别是在风险管理和衍生品定价中。
通过对未来波动率的预测,可以帮助投资者和交易员更好地管理风险和制定交易策略。
1. 风险管理:GARCH模型可以用来估计金融资产的风险价值,即在给定的置信水平下,资产可能的最大损失。
通过对不同资产的风险价值进行估计,可以帮助投资者更好地分散风险,保护资产。
2. 衍生品定价:GARCH模型可以用来估计衍生品的隐含波动率,从而为衍生品的定价提供基础。
隐含波动率是指市场上衍生品的价格中所隐含的未来波动率,通过GARCH模型的预测,可以帮助交易员判断衍生品的市场价格是否合理。
三、GARCH模型的局限性尽管GARCH模型在金融领域有着广泛的应用,但它也存在一些局限性。
1. 假设限制:GARCH模型假设波动率是一个时间序列,它的波动受到过去波动率的影响。
然而,在实际应用中,市场的波动率可能受到其他因素的影响,如宏观经济变量、政治事件等,这些因素无法被GARCH模型捕捉到。
2. 参数估计:GARCH模型的参数估计比较复杂,需要通过最大似然估计等方法来求解。
garch原理范文
GARCH模型又称EGARCH(指数加权GARCH),是改进型的GARCH模型,是一种时间序列分析方法,旨在模拟金融时间序列数据的平稳性,并且可
以用于捕获金融市场的不确定性和波动。
是一种应用在金融市场的模型,
用于描述市场风险的变化和收益率之间的关系。
GARCH模型,是一种以金融收益率模型,它不仅考虑收益率数据的短
期行为,而且能够捕捉数据中的非线性行为。
它是在时间序列分析中使用
的重要模型,用于模拟金融时间序列数据的平稳性,以及捕获金融市场的
不确定性和波动。
GARCH模型和ARIMA模型更相近,它们都用于描述收益率数据的变化,但GARCH模型更加关注收益率的变化以及不确定性和波动的捕捉。
ARIMA
模型是一种建立分析收益率行为的线性模型,而GARCH模型像传统的ARIMA模型一样,也要考虑收益率序列的行为。
但是GARCH模型不仅考虑
收益率序列的行为,而且还考虑收益率序列的非线性行为,以及不确定性
和波动。
GARCH模型从市场上诞生,其假设存在收益率序列上的非线性行为,
以及收益率序列本身的不确定性和波动。
主要目的是在模拟数据可靠性的
同时捕获不确定性和波动。
GARCH模型内部包含了一个参数,可以捕获市
场价格的波动和不确定性。
garch模型建模步骤和方法以GARCH模型建模步骤和方法为标题,本文将介绍GARCH模型的基本原理、建模步骤和常用方法。
GARCH模型(Generalized Autoregressive Conditional Heteroskedasticity)是用于建模金融时间序列波动性的一种常用方法。
它是ARCH模型的扩展,能够更好地捕捉金融市场中存在的波动聚集现象。
GARCH模型的核心思想是通过引入滞后期的波动性,可以更好地描述金融时间序列的波动性特征。
下面是GARCH模型的建模步骤和方法:1. 数据准备:首先,需要收集所需的金融时间序列数据,例如股票价格、汇率等。
确保数据是平稳的,即均值和方差不随时间变化而发生显著变化。
2. 模型选择:根据所研究的时间序列数据的特点和需求,选择适合的GARCH模型。
常见的GARCH模型包括GARCH(1,1)、GARCH-M、EGARCH等,其中GARCH(1,1)是最基本的模型。
3. 参数估计:使用最大似然估计法(Maximum Likelihood Estimation)来估计模型的参数。
通过最大化似然函数,得到使得观测数据出现的概率最大的参数值。
4. 模型拟合:根据估计得到的参数值,利用所选的GARCH模型进行模型拟合。
将模型应用于数据,得到模型对观测值的波动性的预测。
5. 模型检验:对拟合好的GARCH模型进行检验,以评估模型的拟合效果。
常用的检验方法包括残差平方序列的白噪声检验、残差的自相关和偏自相关检验等。
6. 模型应用:根据所建立的GARCH模型,可以进行进一步的分析和预测。
例如,可以利用模型对未来的波动性进行预测,帮助投资者制定风险管理策略。
在实际建模过程中,还可以考虑一些改进和扩展的方法。
例如,可以引入ARCH模型的滞后项或其他变量作为GARCH模型的扩展,以更好地捕捉时间序列的特征。
此外,还可以使用异方差性检验方法来判断是否需要使用GARCH模型。
GARCH模型介绍GARCH模型(Generalized Autoregressive Conditional Heteroscedasticity model)是一种用于计量经济学和金融学中时间序列数据建模的方法,特别用于描述与时间相关的异方差性(heteroscedasticity)。
它是将ARCH模型(Autoregressive Conditional Heteroscedasticity model)与GARCH模型相结合而得到的。
GARCH模型的主要思想是将时间序列的条件方差模型化为随时间变化的加权平均。
GARCH模型的核心是建立条件方差的动态变化模型。
它假设高阶的条件方差可以由之前的方差和误差项的平方序列来预测,因此具有时间相关性。
GARCH模型广泛应用于金融领域,特别是用于研究股票收益率、汇率波动等金融时间序列的波动性。
\]其中,\(\sigma_t^2\)表示时间t的方差,\(\omega\)表示ARCH效应常数项,\(\alpha_i\)表示ARCH效应参数,\(\varepsilon_{t-i}^2\)表示时间t-i的误差项的平方,p表示ARCH阶数;\(\beta_j\)表示GARCH效应参数,\(\sigma_{t-j}^2\)表示时间t-j的方差,q表示GARCH阶数。
GARCH模型中的参数可以通过极大似然估计来估计。
GARCH模型将条件方差拆解为两个部分,即ARCH效应和GARCH效应。
ARCH效应表示过去的误差对当前的方差有影响,即方差会随着误差项的平方而增加。
GARCH效应表示过去方差对当前方差的影响,即方差会随着过去方差的增加而增加。
GARCH模型的优点在于能够很好地捕捉时间序列数据的波动性,特别是在金融领域中。
GARCH模型考虑了条件方差的异方差性,能够对极端事件和波动性集群进行建模。
它可以用于预测风险价值(Value at Risk),即在给定概率水平下的最大可能损失。
GARCH模型应用教程
GARCH模型是一种非常强大且方便使用的金融风险模型,它可以被用于测量股票、债券和其他金融品种的风险水平。
它主要由两个模型组成:AR(自回归)和GARCH(梯度高斯自回归条件异方差)。
GARCH模型也被称为梯度张量空间条件异方差(TGARCH)模型。
使用Garch模型可以帮助管理者估计金融品种未来的波动性,这有助于他们在核算资本和开展对冲等策略上做出正确的决策。
此外,GArch模型还可以用于股票期权定价,实现各种金融投资组合的正确估计,以及估计市值不对称风险。
GArch模型的基本过程如下:
(1)首先分析和检查资产收益率数据,并检查它们的偏度,长尾系数,正态性检验,相关性等;
(2)拟合AR和GARCH模型,并估计参数;
(3)检查拟合后模型的表现,相关指标可以结合整体拟合和局部拟合的数据进行检验;
(4)如果模型表现较好,则可以采用;
(5)利用模型预测未来资产收益率的波动性。
garch函数-概述说明以及解释1.引言1.1 概述GARCH函数,全称为广义自回归条件异方差函数(Generalized Autoregressive Conditional Heteroskedasticity),是一种用于建模和预测金融时间序列数据波动性的重要方法。
它是传统的ARCH模型的扩展,能够更准确地捕捉到时间序列数据中存在的波动性变化。
在金融领域,波动性是指资产价格或投资回报在一段时间内的变动幅度。
波动性的准确度对于金融市场参与者来说至关重要,因为它直接影响着风险的评估、资产定价以及投资组合的构建和管理。
GARCH函数的主要目的就是能够对未来的波动性进行准确预测,为金融决策提供重要参考。
GARCH函数的应用非常广泛,包括但不限于股票价格波动、汇率变动、利率波动等金融市场中的重要波动性时间序列。
通过对历史数据的分析,GARCH函数可以估计模型中的参数,并根据最新的信息对未来的波动性进行预测。
这一功能使得GARCH函数在风险管理、期权定价以及衍生品交易等金融领域得到了广泛应用。
当然,GARCH函数也存在一些局限性。
首先,该方法假设波动性的变化是对过去的观测值的线性回归,可能无法捕捉到一些非线性关系。
其次,GARCH函数需要对模型的参数进行估计,这一过程可能会受到数据样本量的限制而产生较大偏差。
此外,GARCH模型也对所选取的误差分布作了某些假设,但实际情况中的数据往往并不完全符合这些假设。
尽管GARCH函数存在一些缺陷,但它仍然是金融领域中一种重要且有效的方法,被广泛用于预测和控制波动性。
随着金融市场的发展和数据分析技术的不断改进,我们对于GARCH函数的理解和应用也将得到不断深化。
未来,我们可以进一步研究和改进GARCH函数,以更好地适应金融市场的需要,并提供更准确的预测和决策支持。
综上所述,本篇文章将重点介绍GARCH函数的定义、应用以及其优缺点,并对其重要性进行总结和展望。
通过对GARCH函数的深入理解,我们能够更好地把握金融市场的波动性特征,为风险管理和金融决策提供更准确的参考。
garch方法一、什么是GARCH方法。
1.1 GARCH的基本概念。
GARCH啊,就是广义自回归条件异方差模型(Generalized AutoRegressive Conditional Heteroskedasticity),这名字听起来挺唬人的,其实没那么复杂。
简单来讲呢,它就是一种在金融时间序列分析里特别有用的工具。
你想啊,在金融市场里,那数据就像调皮的孩子,波动得很厉害,有时候平静如水,有时候又像暴风雨来临一样。
GARCH就能很好地捕捉这种波动的特性。
1.2 它的重要性。
这GARCH方法的重要性可不容小觑。
就好比在大海里航行,你得知道海浪啥时候大啥时候小,这样才能保证船的安全。
在金融投资里也是一样,投资者得知道风险啥时候高啥时候低。
GARCH就像是一个敏锐的探测器,能帮我们察觉到市场波动的变化,这对风险管理、资产定价啥的都有着至关重要的意义。
要是没有它,就像盲人摸象,只能摸到一部分,对整个市场的风险把握可就不准确喽。
二、GARCH方法的原理。
2.1 自回归条件异方差。
这GARCH模型的核心就是自回归条件异方差。
啥叫自回归呢?就像一个人走路,下一步的方向和步伐大小可能跟之前走过的路有关系。
在数据里呢,就是当前的方差可能和过去的方差有关系。
而异方差呢,就是方差不是固定不变的,是随着时间变化的。
这就像天气一样,有时候晴天,有时候阴天,天气的变化无常就类似数据的异方差性。
GARCH把这两个特点结合起来,就像把两块拼图拼在一起,让我们能更好地理解数据的波动规律。
2.2 模型的结构。
GARCH模型的结构就像一个精心构建的大厦。
它有不同的参数,这些参数就像是大厦的柱子和梁。
比如说,它有一个均值方程,这个方程就像是大厦的地基,描述了数据的平均水平。
还有方差方程,这就是大厦的框架,用来描述方差的动态变化。
这些参数的估计可不像小菜一碟那么简单,需要一些专门的统计方法,不过一旦估计好了,就能很好地对数据进行拟合和预测。
garch模型原理GARCH模型是一种用来描述时间序列波动性的经济计量模型。
波动性是指某一现象或指标在一段时间内所表现出的波动大小。
例如,股票价格的波动性就反映了市场情绪的变化和购买卖方力量的变化。
GARCH模型最初是由Robert F. Engle在1982年提出的,是ARCH模型的扩展。
GARCH模型的名称来源于英文词组“Generalized Autoregressive Conditional Heteroskedasticity”。
GARCH模型的原理是基于以下两个假设的:首先,波动性在时间序列中是存在的;其次,波动性是与时间有关的,并且可以被过去的观测值所预测。
GARCH模型被用来描述波动性的一个主要原理是,波动性自回归(autoregressive)。
这意味着波动性的大小取决于之前的波动性,就像时间序列中其他变量的自回归一样。
GARCH模型本身和ARCH模型非常相似,但是GARCH模型增加了对过去波动性值的依赖,可以预测将来的波动性。
GARCH模型通常分为两个部分:均值方程和波动性方程。
均值方程用来描述变量的平均值变化,波动性方程用来描述波动性的变化。
通过这种分解,可以更准确地预测未来的值和波动性。
GARCH模型通常用于金融领域,如预测股票价格和市场波动性等。
例如,在股票市场中,股票价格的波动性是非常重要的,因为投资者需要知道将来市场的波动性,以便控制风险和提高收益。
在这种情况下,GARCH模型可以用来预测市场波动性,帮助投资者更好地管理风险。
除了在金融领域中的应用,GARCH模型也可以用于其他领域,如气象学中的气候变化和统计学中的预测等。
在这些领域中,GARCH模型可以被用来预测未来的波动性,并为决策制定提供重要的信息。
总之, GARCH模型是一种经济计量模型,用于描述时间序列波动性。
它被广泛应用于金融领域以及其他领域,可以帮助预测未来的波动性,提高决策制定的准确性和可靠性。
40. 时间序列分析Ⅲ—GARCH模型(一)GRACH模型即自回归条件异方差模型,是金融市场中广泛应用的一种特殊非线性模型。
1982年,R.Engle在研究英国通货膨胀率序列规律时提出ARCH模型,其核心思想是残差项的条件方差依赖于它的前期值的大小。
1986年,Bollerslev在ARCH模型基础上对方差的表现形式进行了线性扩展,并形成了更为广泛的GARCH模型。
一、金融时间序列的异方差性特征金融时间序列,无恒定均值(非平稳性),呈现出阶段性的相对平稳的同时,往往伴随着出现剧烈的波动性;具有明显的异方差(方差随时间变化而变化)特征:尖峰厚尾:金融资产收益呈现厚尾和在均值处呈现过度波峰;波动丛聚性:金融市场波动往往呈现簇状倾向,即波动的当期水平往往与它最近的前些时期水平存在正相关关系。
杠杆效应:指价格大幅度下降后往往会出现同样幅度价格上升的倾向。
因此,传统线性结构模型(以及时间序列模型)并不能很好地解释金融时间序列数据。
二、ARCH(p)模型考虑k 变量的回归模型011t t k kt t y x x γγγε=++++若残差项t ε的均值为0,对y t 取基于t -1时刻信息的期望:1011()t t t k kt E y x x γγγ-=+++该模型中,y t 的无条件方差是固定的。
但考虑y t 的条件方差:22110111var(|)()t t t t t k kt t t y Y E y x x E γγγε---=----=其中,1var(|)t t y Y -表示基于t -1时刻信息集合Y t -1的y t 的条件方差,若残差项t ε存在自回归结构,则y t 的条件方差不固定。
假设在前p 期所有信息的条件下,残差项平方2t ε服从AR(p )模型:22211t t p t p t εωαεαεν--=++++ (*)其中t ν为0均值、2νσ方差的白噪声序列。
则残差项t ε服从条件正态分布:()2211~0,t t p t p N εωαεαε--+++残差项t ε的条件方差: 22211var()t t t p t p εσωαεαε--==+++由两部分组成:(1)常数项ω; (2)ARCH 项——变动信息,前p 期的残差平方和21pi t i i αε-=∑注:未知参数01,,,p ααα和01,,,k γγγ利用极大似然估计法估计。
投资者情绪的garch 模型
GARCH模型是一种广泛用于股票市场和金融市场的时间序列模型,用于估计在某个时间点市场波动性或风险的方差。
投资者情绪的GARCH模型是建立在市场波动性和投资者情绪之间的关系上的。
在这个模型中,投资者情绪可以用一些指标来衡量,比如心理学指标、市场交易量、新闻报道等。
这些指标反映了投资者对市场的态度和预期。
而GARCH模型则可以用来估计这些指标所对应的波动性和风险。
一般来说,投资者情绪的GARCH模型可以表示为:
r(t) = μ+ ε(t)
ε(t) = σ(t) * z(t)
σ2 (t) = α0 + α1ε2 (t-1) + βσ2 (t-1)
其中,r(t)表示时间t的市场收益率,μ是平均收益率,ε(t)是收益率的随机波动,z(t)是一个白噪声序列,代表了短期的无规律波动。
σ2 (t)代表风险的方差,α0、α1、β是GARCH模型的参数,代表了投资者情绪对市场风险的影响。
通过这个模型,我们可以估计出不同的投资者情绪指标对市场波动性的影响。
GARCH模型与应用简介目录0. 前言(随机序列的条件均值与条件方差简介) (2)1. ARCH与GARCH模型 (4)1.1. 概述 (4)1.2 ARCH(p)模型. (5)1.3. GARCH(Generalized ARCH) 模型: (6)2. GARCH模型的参数估计 (8)2.1. 概述 (8)2.2. ARCH模型的参数估计 (8)2.2.1. 最小二乘法估计 (8)2.2.2. 极大似然估计 (10)2.3. GARCH模型的参数估计 (12)2.3.1. 极大似然估计 (12)2.3.2. 最小二乘估计 (13)3 模型检验 (13)3.1. 条件异方差性检验 (13)3.2. ARCH模型检验 (14)3.3. GARCH模型阶数检验 (15)4. GARCH模型的应用 (15)4.1. 在(自)回归分析中的应用 (15)4.2. 在区间预报中的应用 (16)4.3. 在风险预测中的应用 (18)4.4. 在风险分位值中的应用 (19)5. 实例 (20)6 某些新进展 (21)6.1 某些改进模型 (21)6.1.1. -GARCH模型 (21)6.1.2 指数GARCH模型: (22)6.1.3. 多元GARCH模型: (22)6.2. GARCH模型的重尾概率特性 (22)6.3. 对VaR的改进 (23)参考文献 (23)附录(SAS): (24)0. 前言(随机序列的条件均值与条件方差简介)考察严平稳随机序列{y t},且E|y t|<∞. 记其均值Ey t=μ,协方差函数γk=E{(y t-μ)(y t+k-μ)}. 其条件期望(或条件均值):E(y t∣y t-1,y t-2,…)≡ϕ(y t-1,y t-2,…), (0.1)依条件期望的性质有Eϕ(y t-1,y t-2,…)=E{E(y t∣y t-1,y t-2,…)}= Ey t =μ.(0.2)记误差(或残差):e t≡ y t -ϕ(y t-1,y t-2,…).(0.3)由(0.1)(0.2)式必有:Ee t=Ey t-Eϕ(y t-1,y t-2,…)=Ey t-Ey t=0, (0-均值性) (0.4)及Ee t2=E[y t -ϕ(y t-1,y t-2,…)]2=E{(y t-μ)-[ϕ(y t-1,y t-2,…)-μ]}2 (中心化)=E(y t-μ)2+E[ϕ(y t-1,y t-2,…)-μ]2-2E(y t-μ)[ϕ(y t-1,y t-2,…)-μ]=γ0+Var{ϕ(y t-1,y t-2,…)}-2EE{(y t-μ)[ϕ(y t-1,y t-2,…)-μ]∣y t-1,y t-2,…}( 根据Ex=E{E[x∣y t-1,y t-2,…]} )=γ0+Var{ϕ(y t-1,y t-2,…)}-2E{[ϕ(y t-1,y t-2,…)-μ]E[(y t-μ)∣y t-1,y t-2,…]}( 再用E[x⨯ψ( y t-1,y t-2,…)∣y t-1,y t-2,…]=ψ( y t-1,y t-2,…) E[x∣y t-1,y t-2,…];并取x= (y t-μ), ψ( y t-1,y t-2,…)=[ϕ(y t-1,y t-2,…)-μ];由(0.1)(0.2)可得)=γ0+Var{ϕ(y t-1,y t-2,…)}-2E[ϕ(y t-1,y t-2,…)-μ]2=γ0-Var{ϕ(y t-1,y t-2,…)}. (0.5)即有:γ0=Var(y t)=Var(ϕ(y t-1,y t-2,…))+Var(e t). (0.6)此式表明, y t的方差(=γ0)可表示为: 回归函数的方差(Var(ϕ(y t-1,y t-2,…)), 与残差的方差(Var(e t))之和.下边讨论e t的条件均值与条件方差.为了符号简便, 以下记F t-1={y t-1,y t-2,…}.首先考虑e t的条件均值:E(e t∣F t-1)=E{y t-ϕ( y t-1,y t-2,…) ∣ F t-1}=E(y t∣ F t-1)- E{ϕ( y t-1,y t-2,…) ∣ F t-1}= ϕ( y t-1,y t-2,…)- ϕ( y t-1,y t-2,…)=0.(0.7)再看条件方差:Var(e t∣F t-1)=E{[e t- E(e t∣F t-1)]2∣ F t-1}= E{e t2∣ F t-1} (用(0.7)式)≡S2(y t-1,y t-2,…). (0.8)此处S2(y t-1,y t-2,…)为条件方差函数. 注意, e t的条件均值是零, 条件方差是非负的函数S2(y t-1,y t-2,…), 它不一定是常数!依(0.3)式, 平稳随机序列{y t}总有如下表达式:y t = ϕ( y t-1,y t-2,…)+e t, (0.9)其中ϕ(y t-1,y t-2,…)被称为自回归函数, 不一定是线性的. {e t}可称为新息序列, 与线性模型的新息序列不同, 除非{y t}是正态序列. 顺便指出, 满足(0.4)式的{e t}为鞅差序列, 因为对它的求和是离散的鞅序列. 由于{y t}是严平稳随机序列, 且E|y t|<∞,上述推演是严格的, 从而{e t}是严平稳的鞅差序列. 当{y t}有遍历性时, 它也是遍历的.此处所涉及的抽象概念可不必深究.现在将e t标准化, 即令εt≡ e t/S(y t-1,y t-2,…).则有,E(εt∣F t-1)=E[e t/S(y t-1,y t-2,…)∣F t-1]={1/S(y t-1,y t-2,…)}E[e t∣F t-1]=0. (依(0.7)式) (0.10)以及E(εt2∣F t-1)=E[e t2/S2(y t-1,y t-2,…)∣F t-1]={1/S2(y t-1,y t-2,…)}E[e t2∣F t-1] (用(0.8))={S2(y t-1,y t-2,…)}/{S2(y t-1,y t-2,…)}=1. (a.s.) (0.11)由此可见, {εt}也是平稳鞅差序列, 与{e t}相比, {εt}的条件方差为常数1. 于是(0.9)式可写为: y t=ϕ( y t-1,y t-2,…) + S(y t-1,y t-2,…)εt,(0.12)此式可称为条件异方差自回归模型(ARCH),所谓条件异方差就是指: 条件方差S2(y t-1,y t-2,…)不为常数.请注意, 条件异方差自回归模型与下文中的自回归条件异方差模型是不同的概念!* 还有一点很重要, 如果(0.9)模型具有可逆性, 那么,Var(e t∣F t-1)=Var(e t∣y t-1,y t-2,…)=Var(e t∣e t-1,e t-2,…)≡h(e t-1,e t-2,…).(0.13)因此, 模型(0.12)式又可些成y t=ϕ( y t-1,y t-2,…) + h1/2(e t-1,e t-2,…)εt. (0.14)请注意, 模型(0.12)(0.14)式是普遍适用(或称万用)的模型!但是, 为便于研究建模理论, 在(0.12)式中还附加假定: εt与{y t-1,y t-2,…}相互独立!此假定是实质性的, 人为的.它对{y t}的概率分布有实质性的限制.还须指出: 若在(0.9)式中直接假定e t与{y t-1,y t-2,…}独立, 此假定除了上述的人为性含义外, 还增多了如下假定:Var(e t2∣y t-1,y t-2,…) =Var(e t2)=常数. (0.15)这里用了条件期望的一条性质, 即当X与Y独立时,E(X∣Y)= EX.大家要问, 为什么加这些人为的假定呢? 让我们回顾一下这些假定演变的历程吧.在文献中(0.9)式e t先后被假定为:“i.i.d. 且N(0,σ2)”,(1943--)“i.i.d. 且0-均值-方差有穷”,(1960--)“鞅差序列,且条件方差S2(...)=常数”,(1970--)“e t=S(y t-1, y t-2, … )εt,但{εt}为i.i.d. N(0,σ2)序列,而且S(y t-1, y t-2, … )为有限参模型”,(1982--)“e t=S(y t-1, y t-2, … )εt , 但{εt}为i.i.d.序列而且S(y t-1, y t-2, … )为有限参模型”。
garch模型公式及系数含义GARCH(指GeneralizedAutoregressiveConditionalHeteroscedasticity)模型是由RobertEngle于1982年提出的,它是一种多阶滞后自回归条件异方差模型。
GARCH模型由两个关键部分组成:滞后作用和条件异方差。
GARCH模型表达式GARCH模型的表达式如下:均方误差模型:σ2t = +1r2t1 +2σ2t1 ++αJσ2tJGARCH模型:σ2t = +1σ2t1 +1r2t1 +2σ2t2 ++αJσ2tJ其中:ω:噪声项;α1:前一次错误信息的强度;α2:以及更早次序错误信息的强度;β1:前一次异方差的残差;α3,α4...αJ:额外的强度;σ2t:当前观测残差的方差;σ2t-1:先前观测残差的方差;σ2t-2,σ2t-3...σ2t-J:更早次序观测残差的方差;r2t-1:前一次观察到的残差。
GARCH模型系数含义GARCH模型有许多不同的系数,这些系数各有不同的含义:ω是GARCH模型中的噪声项,它表示模型中不可预见分量的含量。
α1是GARCH模型中的自回归系数,它反映了上一步残差方差对当前步残差方差的影响程度。
α2~αJ为GARCH模型中的过去残差方差的影响系数,它们表示过去几步残差方差对当前步残差方差的影响程度,另外,α1 +2 ++αJ必须小于1。
β1是GARCH模型中的自异方差系数,它表示上一步残差方差对当前步残差方差的影响程度,同时,β1 +1 +2 ++αJ必须大于1,相反如果小于1,则恒等于1。
应用GARCH模型被广泛应用于金融市场,用于预测市场数据的波动性和风险分析,以及进行价格及风险市场时间序列分析等,因此,它可以被用于投资决策,投资组合管理,借贷决策,以及期权定价等领域。
结论GARCH模型可以用来预测金融市场的波动性和风险,帮助投资者更好的进行投资决策和风险管理。
GARCH模型由两个关键部分组成:滞后作用和条件异方差;而它的表达式是均方误差模型与GARCH模型的结合,有许多不同的系数,各有不同的含义。
王吉培,张哲(西南财经大学统计学院,四川成都610074)摘要:本文对不同分布假定的ARCH族模型进行了比较,发现基于GED的GARCH类模型较好地解释了收益率分布的尖峰性和厚尾性,并在此基础上选取我国基金市场的日收益率观测数据进行实证分析,对收益率的波动性进行研究,试图找出我国基金市场价格分布的合理解释。
关键词: 波动性;GED ;GARCH;杠杆效应Abstract: This paper compares the assumption that the distribution of different ethnic ARCH models and finds that the GARCH model based on the distribution of GDE can be used to explain better the peak and thick tail feature of the yield series distribution . On the basis ,it analyses the daily yield series of China's fund market,and does some research on the volatility of the yield series,trying to present a reasonable explanation on the distribution of the fund market price.Key words: Volatility;GED;GARCH;Leverage中图分类号F064.1 文献标识码A一、引言关于收益率尾部的刻画一般假设一种理想情况,即服从正态分布,但这种完美的情况一般是不成立的,为了更好的去描述日收益率的厚尾性,一些学者提出了另外一些分布的模型。
Bollerslev提出了一个未知自由度的t分布的GARCH模型,自由度可以从数据中估计。
Garch模型Garch⼩声逼逼⼀句,学长有毒吧~~让我进⾦融的东东,我懂个锤⼦⾦融时间序列⾦融资产的波动是⼀个⾮常重要的概念,它与资产的风险直接相关,因此对资产的波动模式进⾏建模是量化投资中的⼀个重要课题。
⼀般来讲,波动建模有以下量化投资⽅向的应⽤:期权定价:波动率是影响期权价值的重要因素;风险度量和管理:在VaR的计算中波动率是主要影响因素,根据波动率决定交易策略的杠杆;资产价格预测和模拟:通过Garch簇模型对资产价格的时间序列进⾏预测和模拟;调仓:盯住波动率的调仓策略,如⼀个tracing指数的策略;作为交易标的:在VIX、ETF以及远期中波动率作为标的可以直接交易。
上⾯的⼏⾏确实没明⽩,正确性有待考证许良:股票收益率中的⽅差⼀般就是表⽰风险嗯,这个check了⼀下,债券/股票等的收益率的波动性(volatility)就是风险,就是滚动风险。
⾦融时间序列分析的核⼼是找到资产收益率序列的⾃相关性,并利⽤它。
同⽅差&&异⽅差在讲Garch模型之前,我们必须对同⽅差和异⽅差的概念进⾏回顾。
在时间序列的弱平稳条件中⼆阶矩是⼀个不变的、与时间⽆关的常数。
在理想条件下,如果这个假设是成⽴的,那么⾦融时间序列的预测将会变得⾮常简单,采⽤ARIMA等线性模型就能做不错的预测。
然⽽采⽤Ariam等模型对⾦融事件序列建模效果是⾮常差的,原因就在于⾦融事件序列的异⽅差性。
这种⾮平稳性⽆法⽤简单的差分去消除,其根本原因在于其⼆阶矩随时间t变化⽽变化。
这⾥说的⽅差是回报率(收益率)简单的理解就是说对于普通的时间序列,⼀般采⽤取n差分或者取对数或者滞后,就可以使时间序列平稳,这个的前提是⽅差不随时间变化也就是同⽅差(此时⽅差是个常数,因为是不随时间变化的),这个时候可以使⽤ARIMA进⾏预测了。
但是⾦融时间序列的⽅差是随着时间变化⽽变化的,⽅差不在是⼀个常数了。
异⽅差描述的是⾦融时间序列⼤的趋势,时间跨度相对较长。
Package‘GEVStableGarch’August20,2015Type PackageTitle ARMA-GARCH/APARCH Models with GEV and Stable DistributionsVersion1.1Date2015-08-19Description Package for simulation and estimation of ARMA-GARCH/APARCH models with GEV and stable distributions.License GPL(>=2)Depends R(>=2.15.0),Rsolnp,methods,skewtImports fGarch,fExtremes,stabledist,timeDate,timeSeriesEnhances stableNote Package stable is available at LazyData yesNeedsCompilation noAuthor Thiago Sousa[aut,cre],Cira Otiniano[ctb],Silvia Lopes[ctb],Diethelm Wuertz[ctb,cph]Maintainer Thiago Sousa<thiagoestatistico@>Repository CRANDate/Publication2015-08-2010:39:40R topics documented:GEVStableGarch-package (2)Datasets (3)gat (4)GEVSTABLEGARCH-class (6)GEVSTABLEGARCHSPEC-class (7)gsFit (8)gsMomentAparch (13)gsSelect (15)12GEVStableGarch-package gsSim (17)gsSpec (18)show-methods (20)skstd (20)Index23 GEVStableGarch-packageARMA-GARCH/APARCH modelling with GEV and stable distribu-tionsDescriptionThis package is designed to perform maximum likelihood estimation of ARMA-GARCH/APARCH models with generalized extreme distribution(GEV),stable,generalized asymmetric t(GAt)and skew Student’s t from Fernandez and Steel(1998).The package also allows the researcher to restrict the search within the stationarity region(see the gsFit function).Other common conditional distribution(normal,Student’s t and generalized error distribution(GED))are also allowed since they are very important for testing purposes.DetailsPackage:GEVStableGarchType:PackageVersion: 1.1Date:2015-07-19License:GPL(>=2)Depends:R(>=2.15.0),fGarch,fExtremes,stabledist,skewt,Rsolnp GARCH models have proven to be highly effective for analyzingfinancial data over the past decades.In particular,the combination of ARMA-GARCH models with stable and GEV distri-butions was successfully applied for forecasting volatility and for the measurement of Value at Risk (V AR).Choosing the normal distribution as probability distribution for the innovations was a common choice in the beginning of the development of ARCH-type models.But recent research Nolan (1999),Mittnik et al.(2002),Mittnik and Paolella(2003),Curto et al.(2006),Frain(2009),Zhao et al.(2011)has shown that other distributions should be considered,specially because normal distribution can not account for fat tails and asymmetry found in real data.This package contains functions for simulating and estimating ARMA-GARCH or ARMA-APARCH models using the maximum likelihood technique(MLE)under different assumptions:GEV,stable, GAt(also known as t3-distribution)and skew Student’s t(Fernandez and Steel(1998)).The current version of package GEVStableGarch has a new algorithm that allows the user to enforce stationarity during estimation.Aditionally,it contains functions for selecting the best model according to a predetermined goodness-of-fit criteria(see gsSelect).Datasets3Time Series SimulationContains functions to simulate ARMA-GARCH/APARCH processes with conditional GEV or sta-ble distributions.Note:These routines were adapted from functions garchSpec and garchSim available in fGarch package to make the interfaces more similar.Functions:gsSpec Specifies an univariate ARMA-GARCH/APARCH model,gsSim Simulates an ARMA-GARCH/APARCH process.Parameter EstimationContains functions tofit the parameters of ARMA-GARCH/APARCH time series processes.Functions:gsFit Fits the parameters of an ARMA-GARCH/APARCH process.This function also provides an algorithm to enforce stationarity during estimation,gsSelect Selects the best model according to a goodness-of-fit criteria.Other Conditional Distribution FunctionsContains functions to compute density,distribution,quantiles and generate random values using important conditional distributions used in the garch literature.Functions:[dpqr]skstd Skew Student’s t distribution function from Fernandez and Steel(1998),[dpqr]gat Generalized Asymmetric t distribution(GAt).The GAt distribution was also refered in the literature as t3-distribution.gsMomentAparch Computes APARCH Moments of the form E(|Z|−γZ)δfor several distributions using analytical expressions(except for the GEV case).Author(s)Thiago do Rego Sousa,Cira Etheowalda Guevara Otiniano and Silvia Regina Costa Lopes.Maintainer:Thiago do Rego Sousa<thiagoestatistico@>Datasets Time Series Data SetsDescriptionData sets used in the examples of the fGarch package.4gat dem2gbpThe vector dem2gbp contains daily observations of the Deutschmark vs British Pound foreign ex-change rate log-returns.This data set has been promoted as an informal benchmark for GARCH time-series software validation.See McCullough and Renfro(1999),and Brooks,Burke,and Per-sand(2001)for details.The nominal returns are expressed in percent as in Bollerslev and Ghysels (1996).The sample period is from January3,1984,to December31,1991,for a total of1974 observations.sp500dgeThe vector sp500dge contains daily returns from the SP500index as used in the paper of Ding, Granger and Engle(1993).The sample period is from January3,1928to August30,1991for a total of17055observations.ReferencesBollerslev T.,Ghysels,E.(1996)Journal of Business and Economic Statistics.Periodic Autore-gressive Conditional Heteroscedasticity,14(2),139–151Brooks C.,Burke S.P.,Persand G.(2001)International Journal of Forecasting.Benchmarks and the Accuracy of GARCH Model Estimation,17(1),45–57Ding,Z.,Granger,C.,Engle,R.F.(1993).A Long Memory Property of Stock Market Returns and a New Model.Journal of Empirical Finance,1,83–106.McCullough B.D.,Renfro C.G.(1999)Journal of Economic and Social Measurement Benchmarks and Software Standards:A Case Study of GARCH Procedures,25(2),59–71gat Generalized Asymmetric t DistributionDescriptionFunctions to compute density,distribution function,quantile function and to generate random vari-ates for the generalized asymmetric t distribution(GAt).Notice that this is the same t3-distribution mentioned in the literature and defined by Paolella(1997)and Mittnik and Paolella(2000).The GAt distribution includes the Student’s t,Laplace,Cauchy and the normal distribution when the shape parameter(ν→∞)(see Mittnik and Paolella(2000)).Usagedgat(x,mean=0,sd=1,nu=2,d=3,xi=1,log=FALSE)pgat(q,mean=0,sd=1,nu=2,d=3,xi=1)qgat(p,mean=0,sd=1,nu=2,d=3,xi=1)rgat(n,mean=0,sd=1,nu=2,d=3,xi=1)gat5Argumentsmean,sd,d,nu,xilocation parameter mean,scale parameter sd,shape1parameter nu,shape2parameter d,asymmetry parameter xi.n the number of observations.p a numeric vector of probabilities.x,q a numeric vector of quantiles.log a logical;if TRUE,densities are given as log densities.Valued*returns the density,p*returns the distribution function,q*returns the quantile function,and r* generates random deviates,all values are numeric vectors.Author(s)Thiago do Rego SousaReferencesMittnik,S.,Paolella,M.S.(2000).Prediction of Financial Downside-Risk with Heavy-Tailed Con-ditional Distributions Available at SSRN391261.Paolella,M.(1997).Tail Estimation and Conditional Modeling of Heteroskedstic Time-Series.Ph.D Thesis,Institute of Statistics and Econometrics,Christian Albrechts University of Kiel.Examples#Simulate Random Values and compare with#the empirical density and probability functions#Note:This example was addapted from"sstd{fGarch}R Documentation"#Configure plot and generate random valuespar(mfrow=c(2,2))set.seed(1000)r=rgat(n=1000)plot(r,type="l",main="GAt Random Values",col="steelblue")#Plot empirical density and compare with true density:hist(r,n=25,probability=TRUE,border="white",col="steelblue")box()x=seq(min(r),max(r),length=201)lines(x,dgat(x),lwd=2)#Plot density function and compare with true df:plot(sort(r),(1:1000/1000),main="Probability",col="steelblue",ylab="Probability")lines(x,pgat(x),lwd=2)#Compute quantiles:#Here we compute the quantiles corresponding to the probability points from#-10to10and expect to obtain the same input sequenceround(qgat(pgat(q=seq(-10,10,by=0.5))),digits=6)GEVSTABLEGARCH-class Class"GEVSTABLEGARCH"DescriptionThe class GEVSTABLEGARCH represents an ARMA-GARCH/APARCH model estimated wih function gsFitObjects from the ClassObjects can be created by calling function gsFit.This object contain the estimated parameters ofa time series process.Slotscall:Object of class"call":the call of the gsFit function.formula:Object of class"formula":a formula object specifying mean and variance equation.method:Object of class"character":a string describing the optimization method used to search for the optimum valueconvergence:Object of class"numeric":an integer code.0indicates successful convergence of of the estimation method used to perform the optimization of the log-likelihood function.A value different from zero indicates a failure in achieving convergence.Notice that sometimes the optimization algorithm will return a"true"convergence,even when the optimized negative log-likelihood equals to1e99.In this case,we set the variable convergence to1to indicate that convergence was not achieved.In the general case,the variable convergence assumes the same value reported by the internal solver used inside function gsFit.Hence,aditional interpretation of the convergence codes can be made by using the R help of the corresponding optimization routine:solnp("sqp"and"sqp.restriction"algorithms)ornlminb("nlminb"and"nlminb+nm"algorithms).messages:Object of class"list":a character string giving additional informations collected dur-ing estimation.data:Object of class"numeric":a numeric vector containing the data of the time series to be estimated.fit:Object of class"list":a list with the results from the parameter estimation.residuals:Object of class"numeric":a numeric vector with the residual values.h.t:Object of class"numeric":a numeric vector with the conditional variances.sigma.t:Object of class"numeric":a numeric vector with the conditional standard deviations.title:Object of class"character":a string with the title.description:Object of class"character":a string with a description.Methodsshow signature(object="GEVSTABLEGARCH"):prints an object of class’GEVSTABLEGARCH’. Author(s)Thiago do Rego Sousa for the latest modificationsDiethelm Wuertz for the original implementation of the fGARCH-class from package fGarch ReferencesBrockwell,P.J.,Davis,R.A.(1996).Introduction to Time Series and Forecasting.Springer,New York.Wuertz,D.,Chalabi,Y.,with contribution from Miklovic,M.,Boudt,C.,Chausse,P.,and oth-ers(2013).fGarch:Rmetrics-Autoregressive Conditional Heteroskedastic Modelling,R package version3010.82,/package=fGarch. GEVSTABLEGARCHSPEC-classClass"GEVSTABLEGARCHSPEC"DescriptionThis class represents an ARMA-GARCH/APARCH model with innovations following an univariate distribution with zero location and unit scale.Objects from the ClassObjects can be created by calls of the function gsSpec.This object specifies an univariate ARMA-GARCH/APARCH model with GEV or stable conditional distribution.Note that we only allow the user to create an object that do not violate the model specifications.For more details about the definition of those models see:see Mittnik and Paolella(2000)(GAt innovations),Mittnik et al.(2002)(stable innovations),Zhao et al.(2011)(GEV innovations)Wuertz et al.(2009)(finite variance innovations).Slotscall:Object of class"call":the call of the gsSpec function.formula:Object of class"formula":a list with two formula entries for the mean and variance equation of the combined ARMA-GARCH/APARCH model.model:Object of class"list":a list with the model parameters specifying the model parameters (see the model definition described in function gsFit.presample:Object of class"matrix":a numeric matrix with presample values.distribution:Object of class"character":a character string with the name of the conditional distribution.rseed:Object of class"numeric":an integer with the random number generator seed.Methodsshow signature(object="GEVSTABLEGARCHSPEC"):prints an object of class’GEVSTABLE-GARCH’Author(s)Thiago do Rego Sousa for the latest modificationsDiethelm Wuertz for the original implementation of the fGARCHSPEC-class from package fGarch ReferencesMittnik,S.,Paolella,M.S.(2000).Prediction of Financial Downside-Risk with Heavy-Tailed Con-ditional Distributions Available at SSRN391261.Wuertz,D.,Chalabi,Y.,with contribution from Miklovic,M.,Boudt,C.,Chausse,P.,and oth-ers(2013).fGarch:Rmetrics-Autoregressive Conditional Heteroskedastic Modelling,R package version3010.82,/package=fGarch.Wuertz,D.,Chalabi,Y.,Luksan,L.(2009).Parameter Estimation of ARMA Models with GARCH/ APARCH Errors:An R and SPlus SoftwareImplementation.Journal of Statistical Software,forth-coming,/~steele/...WurtzEtAlGarch.pdf.gsFit Estimation of ARMA-GARCH/APARCH modelsDescriptionThis function uses Maximum Likelihood technique to estimate the parameters of ARMA-GARCH or ARMA-APARCH model with several conditional distributions.The user can also enforce sta-tionarity during estimationUsagegsFit(formula=~garch(1,1),data,cond.dist=c("stableS0","stableS1","stableS2","gev","gat","norm","std","sstd","skstd","ged"),include.mean=TRUE,algorithm=c("sqp","sqp.restriction","nlminb","nlminb+nm"),control=NULL,tolerance=NULL,title=NULL,description=NULL)Argumentsformula a formula object specifying mean and variance equation.The mean equation should be specified using the names:"arma"","garch""or"aparch".For exam-ple:~arma(1,0)-garch(1,0)for AR(1)-ARCH(1),or~arma(0,1)-garch(2,2)forMA(1)-GARCH(2,2).data a numeric vector containing the data of the time series to be estimated.cond.dist a character string naming the conditional distribution of innovations.The pack-age was created to accept the following distributions:"stableS0"(stable in S0-parameterization),"stableS1"(stable in S1-parameterization),"stableS2"(sta-ble in S2-parameterization),"gev","gat"and"skstd"(skew Student’s t fromFernandez and Steel(1998)).Other common conditional distribution(normal,Student’s t,"sstd"(skew Student’s t from fGarch package)and GED)are alsoallowed since they are very important for testing purposes.include.mean This is a boolean variable.It intercept is TRUE than we estimate the model with intercept.algorithm The algorithm to be used to search for the optimum value.The current version of the GEVStableGarch package implements four different optimization proce-dures,namely the"sqp","sqp.restriction"(enforce stationarity),"nlminb"and"nlminb+nm".See the details section for more information about the esti-mation algorithms.control Control parameters passed to the optimization routine.For the"sqp"and"sqp.restriction"algorithms the control parameters are passed to the solnpfunction from Rsolnp package.For the other algorithms("nlminb"and"nlminb+nm")the control parameters are passed to the nlminb function fromstats package.tolerance Tolerance for parameter estimation.When specified,the tolerance parameter should be passed as a list in the following formatlist(TOLG=1e-8,TOLSTABLE=1e-2,TOLSTATIONARITY=1e-3),where TOLG is the tolerance used to set the boundary region of the model param-eters,TOLSTABLE is the boundary of parameters for stable distribution andTOLSTATIONARITY is the tolerance parameter used by the"sqp.restriction"algorithm when searching for the stationary solution(see the details).title a string with the title.description a string with a description.DetailsThe starting values of the model parameters are key in getting any possible convergence and they were chosen to reflect this.For example,the GEV shape starting value was chosen to be0since in this case the support of the distribution with zero location and unit scale will encompasses both positive and negative parts of the real line(the support is at(-∞,+∞)).The parameters will be interpreted according to the following equations(see Wurtz et al.,2009)X t=µ+mi=1a i X t−i+nj=1b jεt−j+εtεt=σt z t,z t iid∼D(0,1),σδt=ω+pi=1αi(εt−i−γi|εt−i|)δ+qj=1βjσδt−jwhere Dϑ(0,1)is the density of the innovations with zero location and unit scale andϑare addi-tional distributional parameters that describe the skew and the shape of the distribution.Etimation Algorithms:Most software packages implement the estimation of GARCH models without imposing station-arity,but restricting the parameter set by appropriate bounds.This last approach was imple-mented in the GEVStableGarch package through the following algorithms:"sqp","nlminb" and"nlminb+nm".Thefirst two algorithms search for the optimum value by restricting the pa-rameter set to appropriate lower and upper bounds.The last implements a two step optimization procedure,which consists in starting the search by using the constrained routine nlminb and then performing another search using an unconstrained method(in our case the Nelder-Mead method implemented in the R base function optim).This approach was suggested by Wuertz et al.(2009) since in many cases it leads to an improved solution(in terms of the likelihood function of the data).Finally,the"sqp.restriction"algorithm performs a constrained search to maximize the log-likelihood function in order to obtain an stationary model.It can be used to estimate models with the following conditional distributions:"stableS1","gev","gat","skstd","norm","std"and "ged".Stationarity Solutions:Since we want to estimate the parameters that better adjust real data to ARMA-APARCH models, the notion of stationarity is ually,even when the data set is non-stationary in appear-ance,we still are able to apply transformation techniques so that the resulting time series can be reasonably modeled as a stationary process(see Brockwell and Davis(1996)).The APARCH(p,q)model withfinite variance innovations has a uniqueδ-order stationary solution if and only if(see Ling and McAller(2002))pi=1E(|Z|−γi Z)δαi+qj=1βj<1,The case of infinite variance has a somewhat different historical background.Thefirst assumption made on stable distributions is that the index of stabilityαmust be greater than one,because in this case the innovations havefinitefirst moment.The second assumption is that they must have aδ-momentfinite,which means that we must restrict our model to1<δ<α.Diongue et al.(2008)showed that the APARCH(p,q)(all coefficientsγi=0)model has a strictly stationary solution if and only ifpi=1E(|Z|−γi Z)δαi+qj=1βj<1,where Z has distribution S(α,β;1)(stable in1-parameterization).The estimation of stationary models is mainly dependent on the time taken to evaluate the expression for the asymmetric stable distribution E(|Z|−γi Z)δ.The moment expression used to verify the stationarity condition is given byE(|Z|−γZ)δ=(1−γ)δ˜σδ+1Γ(δ+1)Γ(−δα)α˜σΓ12+˜βk(α)2α(−δ)Γ12−˜βk(α)2α+12+˜βk(α)2α(δ+1)+(1+γ)δ˜σδ+1Γ(δ+1)Γ(−δα)α˜σΓ12−˜βk(α)2α(−δ)Γ12+˜βk(α)2α+12−˜βk(α)2α(δ+1),where˜σ=1+β2tan2(απ2)12α,k(α)=α,α<1,α−2,α>1,and˜β=2παarctan(βtan(απ2)),0<α<1, 2π(α−2)arctan(βtan(π(α−2)2)),1<α<2.Notice that this expression is only valid for the stable distribution in1-parameterization,and thus cannot be used to the estimate models with stable distribution in0or2parameterizations.The stationarity restriction implemented inside GEVStableGarch package imposes the follow restrictionpi=1E(|Z|−γi Z)δαi+qj=1βj<1−TOL.STATIONARITY,where the variable TOL.STATIONARITY is set to0.001by default.For numerical reasons,the value of this variable cannot be greater than0.05.ValuegsFitreturns a S4object of class"GEVSTABLEGARCH"with the following slots:@call the call of the gsFit function.@formula a list with two formula entries,one for the mean and the other one for the vari-ance equation.@method a string denoting the optimization method.@data a numeric vector containing the data of the estimated time sereis.@fit a list with the results from the parameter estimation:par-the estimated parameters;llh-the estimated negative log-likelihood function;hessian-the hessian matrix returned by the optimization algorithm;ics-the value of the goodness-of-fit measures(AIC,AICc and BIC)(SeeBrockwell and Davis,2002for more details);order-a list with the ARMA and GARCH/APARCH orders;cond.dis-the conditional distribution;se.coef-standard errors of the estimated parameters;tValue-tValue of the estimated parameters;matcoef-an organized matrix with the estimated parameters.@residuals a numeric vector with the residual values(εt).@h.t a numeric vector with the conditional variance(h t=σδt).@sigma.t a numeric vector with the conditional standard deviation(σt).@title a string with the title.@description a string with a description.The entries of the@fit slot show the results from the optimization.EnhancesThe estimation of ARMA-GARCH/APARCH models with conditional stable distribution is mainly dependent on the time taken during the calculation of density points.Although the package can be used with the R stabledist package,the estimation of such models is only feasible if we use the fast implementation of stable densities using the R stable package designed by J.P.Nolan(see /~jpnolan/stable/stable.html).The stable package implements a faster computation of stable densities that are accurately enough to perform numerical optimization and is available at . Author(s)Thiago do Rego Sousa,Cira Etheowalda Guevara Otiniano and Silvia Regina Costa Lopes ReferencesBrockwell,P.J.,Davis,R.A.(1996).Introduction to Time Series and Forecasting.Springer,New York.Fernandez,C.,Steel,M.F.(1998).On Bayesian Modeling of Fat Tails and Skewness.Journal of the American Statistical Association,Taylor&Francis Group,93(441),359–371.Ling,S.,McAller,M.(2002).Necessary and Suficient Moment Conditions for the GARCH(r,s)and Asymmetric Power GARCH(r,s)Models.Econometric Theory,18(03),722–729.Mittnik,S.,Paolella,M.S.,Rachev,S.T.(2002).Stationarity of stable power-GARCH processes.Journal of Econometrics106,97–107.Nolan,J.P.(1997).Numerical calculations of stable densities and distribution mu-nications in Statistics-Stochastic Models13,759–774.Nolan,J.P.(1997).Maximum likelihood estimation and diagnostics for stable distribution.In O.E.Barndorff-Nielsen,T.Mikosch,e S.I.Resnick(Eds.),Levy Processes:Theory andApplications,Boston,Birkhauser,379–400.Wuertz,D.,Chalabi,Y.,with contribution from Miklovic,M.,Boudt,C.,Chausse,P.,and oth-ers(2013).fGarch:Rmetrics-Autoregressive Conditional Heteroskedastic Modelling,R package version3010.82,/package=fGarch.Wuertz,D.,Chalabi,Y.,Luksan,L.(2009).Parameter Estimation of ARMA Models with GARCH/ APARCH Errors:An R and SPlus SoftwareImplementation.Journal of Statistical Software,forth-coming,/~steele/...WurtzEtAlGarch.pdf.Zhao,X.,Scarrott,C.J.,Oxley,L.,Reale,M.(2011).GARCH dependence in extreme value models with Bayesian inference.Mathematics an Computers in Simulation,81,Issue7,1430–1440.Yinyu,Ye.(1987).Interior Algorithms for Linear,Quadratic,and Linearly Constrained Non-Linear Programming.Ph.D.Thesis,Department of EES,Stanford University.See AlsogsSelectExamples#This examples uses the dem2gbp dataset to estimate#an ARMA(1,1)-GARCH(1,1)with GEV conditional distribution.data(dem2gbp)x=dem2gbp[,1]gev.model=gsFit(data=x,formula=~garch(1,1),cond.dist="gev") gsMomentAparch Computation of moments for several conditional distributionDescriptionComputation of the moments expression E(|Z|−γZ)δwhere Dϑ(0,1)is the density of the inno-vations with zero location and unit scale andϑare additional distributional parameters that describe the skew and the shape of the distribution.UsagegsMomentAparch(cond.dist=c("stableS1","gev","gat","norm","std","sstd","skstd","ged"),shape=1.5,skew=0,delta=1,gm=0)Argumentscond.dist a character string naming conditional distribution of innovations.The package was created to accept the following distributions:"stableS0","stableS1","stableS2","gev"and"gat".Other common distributions are also possiblesuch as the"norm","std","sstd","skstd","ged".shape,skew The shape and skew parameter for the conditional distribution.For the stable distribution the shape and skew are the index of stability(α)and the asymmetryparameter(β).For the Generalized Asymmetric t distribution there are twoshape parameters(νand d)and one asymmetry parameter calledξ.For theskew Student’s t distribution the shape is the degrees of freedom(ν)andξis theasymmetry parameter.Finally,for the GEV distribution the shape parameter iscalledξ.delta,gm Theδandγparameteres of the ARMA-GARCH/APARCH model.See the R documentation of function gsFit for more details.DetailsFor each conditional distribution,the evaluation of the moment expression E(|Z|−γZ)δis crucial ifone is interested infinding a stationary solution.Analytical expressions to compute these momentsare available throughout the GARCH literature for many conditional distributions and we havederived an efficient formula for the asymmetric stable case.It is true that we can use numericalintegration to compute those moments but there are several drawbacks that represent limitations.Thefirst one is that numerical integration is always slower than using a closed expression to computethose formulas.The second is that this technique fails when the distribution becomes very pick orvery concentrated on a small portion of the real line.For example,if we use the R base function integrate to calculate the area total probability on the interval(−∞,∞)for the standard gat distribution with parametersν=2,d=0.05andξ=1we get3.690067e−07,which is nottrue since the total probability must be1.Therefore,it is very important for us to have the exactexpression for all those moments in order to evaluate correctly the stationarity restrictions.The gsMomentAparch function can be used to compute those expressions for the following distri-butions:Normal,Student’s t,skewed Student’s t from Fernandez and Steel(1998),GED,stable inits1-parameterization and the GAt distribution.Only for the GEV distribution we use numericalintegration.Note:The GEVStableGarch package implements a slighty different version of the Student’s skewdistribution that is different from the one implemented inside the fGarch package.Therefore,theAPARCH moment formula is only valid for the GEVStableGarch implementation(skstd)and notfor the fGarch implementation sstd.ValueReturns the following expression for several conditional distributions E(|Z|−γZ)δ.If any of theinput parameters are outside the parameter space,this function returns∞.Author(s)Thiago do Rego Sousa.ReferencesDing,Z.,Granger,C.,Engle,R.F.(1993).A Long Memory Property of Stock Market Returns and aNew Model.Journal of Empirical Finance,1,83–106.Diongue,A.K.(2008).An investigation of Stable-Paretian Asymmetric Power GARCH Model.Journal des Sciences,8(4),15–26.Lambert,P.,Laurent,S.(2001).Modelling Financial Time Series Using GARCH-type Models witha Skewed Student Distribution for the Innovations.Institut de Statistique,Universite Catholique deLouvain,Discussion Paper0125.Mittnik,S.,Paolella,M.S.(2000).Conditional Density and Value-At-Risk Prediction of AsianCurrency Exchange Rates.Journal of Forecasting,19(4),313–333.Mittnik,S.,Paolella,M.S.,Rachev,S.T.(2002).Stationarity of stable power-GARCH processes.Journal of Econometrics106,97–107.。