当前位置:文档之家› 线性代数1_2章精选练习题

线性代数1_2章精选练习题

线性代数1_2章精选练习题
线性代数1_2章精选练习题

第一章 行列式

一、单项选择题

1.下列排列是5阶偶排列的是 ( ).

(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C)

k n 2

! (D)k n n 2)1(

3. n 阶行列式的展开式中含1122a a 的项共有( )项.

(A) 0 (B)2 n (C) )!2( n (D) )!1( n

4.

001001001001

000( ).

(A) 0 (B)1 (C) 1 (D) 2

5.

001100000100

100( ).

(A) 0 (B)1 (C) 1 (D) 2

6.在函数10

3

23211112)(x x x x

x f 中3x 项的系数是( ).

(A) 0 (B)1 (C) 1 (D) 2

7. 若2

1

33

32

31

232221

131211

a a a a a a a a a D ,则 32

3133

31

2221232112

111311

122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2

8.若

a a a a a 22

2112

11,则

21

11

2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2

9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为

x ,1,5,2 , 则 x ( ).

(A) 0 (B)3 (C) 3 (D) 2

10. 若5

7

3

4

111113263478

D ,则D 中第一行元的代数余子式的和为( ).

(A)1 (B)2 (C)3 (D)0

11. 若2

23

5

1

011110403

D ,则D 中第四行元的余子式的和为( ).

(A)1 (B)2 (C)3 (D)0

12. k 等于下列选项中哪个值时,齐次线性方程组

00321

321321x x kx x kx x kx x x 有非零解.

( )

(A)1 (B)2 (C)3 (D)0

二、填空题

1. n 2阶排列)12(13)2(24 n n 的逆序数是.

2.在六阶行列式中项261365415432a a a a a a 所带的符号是.

3.四阶行列式中包含4322a a 且带正号的项是

. 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于

.

5. 行列式

100111010100

111.

6.行列式

10000200

0010

n

n .

7.行列式

01)1(2211)1(111

n n n n a a a a a a .

8.如果M a a a a a a a a a D 3332

31232221

13

1211

,则 32

32

3331

2222232112121311

133333 3a a a a a a a a a a a a D .

9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为

.

10.行列式

111

1

111111111111

x x x x .

11.n 阶行列式

111

1

11111

.

12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为

.

13.设行列式5

678123487654

321

D ,j A 4)4,3,2,1( j 为D 中第四行元的代数余子

式,则

44434241234A A A A .

14.已知d

b c a c

c a b b a b c a c

b a D

, D 中第四列元的代数余子式的和为.

15.设行列式62

211765144334

321

D ,j A 4为)4,3,2,1(4 j a j 的代数余子式,则

4241A A ,

4443A A .

16.已知行列式n

n D

1030

1

0021

12531

,D 中第一行元的代数余子式的和为

.

17.齐次线性方程组

0202321

2

1321x x x kx x x x kx 仅有零解的充要条件是.

18.若齐次线性方程组

230520232132321kx x x x x x x x 有非零解,则k =.

三、计算题

1.

c

b a d

b a d

c a d

c b

d c b a d

c

b

a

d c b a

33332

2

2

2

; 2.

y

x

y

x x y x y y x y x ;

3.解方程

00

11

01110111

0 x x x

x ; 4.

1

11111

32

1321221221

221 n n n n a a a a x a a a a x a a a a x a a a a x

5. n

a a a a

1

11111

1

11111210(n j a j ,,1,0,1 );

6. b

n b b )1(1111211111311

11

7. n a b b b a a b b a a a b

32122

2111111111; 8.x

a a a a x

a a a a x a a a a x n n

n

3

21212121;

9.

2

2

1

22

21212121111n

n n n

n x x x x x x x x x x x x x x x

; 10.

2

1

120000021000121

00012

11.a

a a a

a a a a a

D 110

11000110

0011

0001.

四、证明题

1.设1 abcd ,证明:

01111111111112

22

22

222

d

d

d

d c c c c b b b b a a a a .

2.3

3

3

222

11123

333322

22211

111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x

b a .

3.

))()()()()()((1111

4

4

4

4

2222d c b a c d b d b c a d a c a b d c b a d c b a d c b a .

4.

n

j i i j

n

i i

n n

n n n n n n n

n

a a

a a

a

a

a

a a

a a a a a a 11

2

1

22221222

212

1)(111

.

5.设c b a ,,两两不等,证明01

113

33 c b a c b

a 的充要条件是0 c

b a .

参考答案

一.单项选择题

A D A C C D A

B

C

D B B 二.填空题

1.n ;

2.”“ ;

3.43312214a a a a ;

4.0;

5.0;

6.!)1(1n n ;

7.1)1(212

)1()

1(n n n n n a a a ; 8.M 3 ; 9.160 ; 10.4x ; 11.1)( n n ;

12.2 ; 13.0; 14.0; 15.9,12 ; 16.)1

1(!1 n

k k n ; 17.3,2 k ;

18.7 k 三.计算题

1.))()()()()()((c d b d b c a d a c a b d c b a ; 2. )(233y x ; 3. 1,0,2 x ; 4.

1

1

)(n k k

a

x

5.

)11

1()1(00

n

k k

n

k k a a ; 6. ))2(()1)(2(b n b b ; 7. n

k k k

n

a b

1

)()

1(; 8. n

k k n

k k a x a x 1

1

)()(;

9. n

k k x 1

1; 10. 1 n ;

11. )1)(1(42a a a . 四. 证明题 (略)

第二章 矩阵

一、单项选择题

1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

(a)2

2A A (b)))((22B A B A B A (c)AB A A B A 2)( (d)T T T B A AB )( 2.设方阵A 、B 、C 满足AB=AC,当A 满足( )时,B=C 。

(a) AB =BA (b) 0 A (c) 方程组AX=0有非零解 (d) B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则 kA ( )。 (a)

A k (b) A k (c) A k n (d) A k n

4.设A 为n 阶方阵,且0 A ,则( )。

(a) A 中两行(列)对应元素成比例 (b) A 中任意一行为其它行的线性组合

(c) A 中至少有一行元素全为零 (d) A 中必有一行为其它行的线性组合 5.设A ,B 为n 阶可逆矩阵,下面各式恒正确的是( )。 (a) 111)( B A B A (b) B A AB T )(

(c) B A B A T 11)( (d) 111)( B A B A 6.设A 为n 阶方阵,*A 为A 的伴随矩阵,则( )。 (a) (a) 1* A A (b) A A * (c) 1

* n A

A (d) 1

* n A

A

7. 设A 为3阶方阵,行列式1 A ,*A 为A 的伴随矩阵,则行列式

*12)2(A A ( )。 (a) 827

(b) 278 (c) 827 (d) 27

8 8. 设A ,B 为n 阶方矩阵,22B A ,则下列各式成立的是( )。

(a) B A (b) B A (c) B A (d) 2

2

B A 9. 设A ,B 均为n 阶方矩阵,则必有( )。

(a) B A B A (b) BA AB (c) BA AB (d) 2

2

B A 10.设A 为n 阶可逆矩阵,则下面各式恒正确的是( )。 (a )T A A 22 (b) 112)2( A A

(c) 111])[(])[( T T T A A (d) T T T T A A ])[(])[(11

11.如果

3332

31

232221

331332

1231

113332

31

232221

131211

333a a a a a a a a a a a a a a a a a a a a a A ,则 A ( )。 (a )

103010001 (b)

100010301 (c)

101010300 (d)

130010001 12.已知

113022131A ,则( )。

(a )A A T (b) *1A A

(c ) 113202311010100001A (d )

113202311010100001A 13.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC ,则( )。

(a )I ACB (b )I CAB (c )I CBA (d )I BAC 14.设A 为n 阶方阵,且0|| A ,则( )。 (a )A 经列初等变换可变为单位阵I

(b )由BA AX ,可得B X

(c )当)|(I A 经有限次初等变换变为)|(B I 时,有B A 1

(d )以上(a )、(b )、(c )都不对 15.设A 为n m 阶矩阵,秩n m r A )(,则( )。

(a )A 中r 阶子式不全为零 (b )A 中阶数小于r 的子式全为零

(c )A 经行初等变换可化为

00

0r I (d )A 为满秩矩阵 16.设A 为n m 矩阵,C 为n 阶可逆矩阵,AC B ,则( )。 (a)秩(A )> 秩(B ) (b) 秩(A )= 秩(B )

(c) 秩(A )< 秩(B ) (d) 秩(A )与秩(B )的关系依C 而定 17.A ,B 为n 阶非零矩阵,且0 AB ,则秩(A )和秩(B )( )。

(a)有一个等于零 (b)都为n (c)都小于n (d)一个小于n ,一个等于n 18.n 阶方阵A 可逆的充分必要条件是( )。

(a)n r A r )( (b) A 的列秩为n

(c) A 的每一个行向量都是非零向量 (d)伴随矩阵存在 19.n 阶矩阵A 可逆的充要条件是( )。 (a) A 的每个行向量都是非零向量 (b) A 中任意两个行向量都不成比例

(c) A 的行向量中有一个向量可由其它向量线性表示

(d)对任何n 维非零向量X ,均有0 AX

二、填空题

1.设A 为n 阶方阵,I 为n 阶单位阵,且I A 2,则行列式 A _______

2.行列式 0

00

c b c a b

a

_______

3.设2

100020101A ,则行列式)9()3(21I A I A 的值为_______

4.设

212

32321A ,且已知I A 6,则行列式 11A _______ 5.设A 为5阶方阵,*A 是其伴随矩阵,且3 A ,则 *A _______ 6.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______

7.非零矩阵

n n n n n n b a b a b a b a b a b

a b a b a b a

212221

212

111的秩为________ 8.设A 为100阶矩阵,且对任何100维非零列向量X ,均有0 AX ,则A 的秩为_______

9.若)(ij a A 为15阶矩阵,则A A T 的第4行第8列的元素是_______ 10.

A

与I 4相似,则 A _______

11.

K K

K K K K 311122

1

lim _______ 12.

n

n 410013

1

212

1lim _______ 三、计算题

1.解下列矩阵方程(X 为未知矩阵).

1) 223221103212102X

; 2)

0101320100211100110X

3) 1()T T X I B C B I ,其中310404422B ; 101212121C

; 4) 2AX A X I ,其中101020101A

5) 2AX A X ,其中423110123A

2.设A 为n 阶对称阵,且20A ,求A .

3.已知110021101A

,求21

(2)(4)A I A I . 4.设11201A ,23423A ,30000A ,41201A

,求123

4A A A

A

.

5.设112224336A

,求一秩为2的方阵B ,使0AB .

6.设211011101,121110110A B

,求非奇异矩阵C ,使T A C BC .

7.求非奇异矩阵P ,使1P AP 为对角阵.

1) 2112A 2) 112131201A

8.已知三阶方阵A 的三个特征根为1,1,2,其相应的特征向量依次为

(0,0,1),(1,1,0),(2,1,1)T T T ,求矩阵A .

9.设532644445A

,求100

A .

四、证明题

1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.

2. 设0k A (k 为整数), 求证I A 可逆.

3.设12.,,k a a a L 为实数,且如果0k a ,如果方阵A 满足

1110k k k k A a A a A a I L ,求证A 是非奇异阵.

4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .

5. 证明可逆的对称矩阵的逆也是对称矩阵.

6. 证明两个矩阵和的秩小于这两个矩阵秩的和.

7.证明两个矩阵乘积的秩不大于这两个矩阵的秩中较小者.

8. 证明可逆矩阵的伴随矩阵也可逆,且伴随矩阵的逆等于该矩阵的逆矩阵的伴随矩阵.

9.证明不可逆矩阵的伴随矩阵的逆不大于1.

10.证明每一个方阵均可表示为一个对称矩阵和一个反对称矩阵的和。

第二章参考答案

一:1. a ;2. b ;3.c ;4.d ;5.b ;6.d ;7.a ;8.d ;9.c ;10.d ;11.b ;12.c ;13.b ;14.a ;15.a ;16.b ;17.c ;18.b ;19.d.

二.1. 1或-1;2. 0;3. -4;4. 1;5. 81;6. 0;7. 1;8. 100;9.

i815

1

i i4

a a

10. I ;12. 0;11.

0020.

三、1.1)、

0162

130

10;2)、

2

132121

3)、 461351341;4)、

201030102; 5)、

9122692683. 2. 0;3.

010131130;4.

10002100121001

21; 5. 001111113不唯一;6. 100001010;7. 1)、

1111. 2)、 221112311;8. 111001023

;9.

13231213213232244322133221223100100100100100100100100100100100100100)()()()()()()(.

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??221321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=321332123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=321161109412316z z z

所以有?????+--=+-=++-=3 21332123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m?n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m?n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个4?5矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m?n的矩阵A和B可以相加(减),得到的和(差)仍是m?n矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m?n的矩阵A与一个数c可以相乘,乘积仍为m?n的矩阵,记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0? c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

2014计算机网络理论复习

计算机网络理论复习 一、单项选择题 1.Internet网是一种( C ) A 帧中继网 B 企业内部网 C 国际互联网 D 局域网 2.计算机网络的两大基本功能是数据处理和( A ) A 数据通信 B 数据分析 C 差错控制 D 帧中继 3.利用LAN传输数据时,给计算机必须配备的硬件设备是(A ) A 网卡 B 调制解调器 C 同轴电缆 D 中继器 4.以分组为单位进行数据传送的层对应于OSI的(B ) A 物理层 B 网络层 C 传输层 D 数据链路层 5.TCP/IP协议的(C )包括TCP和UDP协议。 A 物理层 B 网络层 C 传输层 D 应用层 6.X.25网是一种( C ). A 帧中继网 B 企业内部网 C 公用分组交换网 D 局域网 7.利用电话线传输数据时,给计算机必须配备的硬件设备是(B ) A 网卡 B 调制解调器 C 同轴电缆 D 中继器 8.以帧为单位进行数据传送的层对应于OSI的( D ) A 物理层 B 网络层 C 传输层 D 数据链路层 9.TCP/IP协议的(D )包括简单邮件传输协议SMTP、域名系统服务DNS、远程登录协议Telnet、文件传输协议FTP、简单文件传输协议TFTP、名字服务协议NSP,远程过程调用RPC和简单网络管理协议SNMP。 A 物理层 B 网络层 C 数据链路层 D 应用层 10.( D )工作在数据链路层 A 集线器 B 路由器 C 网关 D 交换机 11.在以下四个WWW网址中,( B )不符合WWW网址的书写规范。 A www. sina. com. cn B www https://www.doczj.com/doc/887095282.html, C www. https://www.doczj.com/doc/887095282.html, D www. hotel. net. fr 12.利用LAN传输数据时,给计算机必须配备的硬件设备是(A ) A 网卡 B 调制解调器 C 同轴电缆 D 中继器 13.在域名系统中,edu表示( C ) A 政府机构 B 大学 C 教育机构 D 商业公司 14.江苏科技大学主页的统一资源定位器URL为:https://www.doczj.com/doc/887095282.html,/index.html,其中http表示( A ) A 传输访问控制协议 B 主机名 C 网页名 D 被访问的文件名 15.C类IP地址默认的网络掩码是( C )。 A 255.0.0.0 B 255.255.0.0 C 255.255.255.0 D 255.255.255.255 16.SNMP协议的下层协议是( B )。 A IP B UDP C TCP D SMTP

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

2020知到智慧树线性代数答案中国石油大学

第一章单元测试 文章目录[隐藏目录]?第一章单元测试 ?第二章单元测试 ?第三章单元测试 ?第四章单元测试 ?第五章单元测试 1、判断题: 二阶行列的乘积项中的元素可以取自同一行. 选项: A:错 B:对 答案: 【错】 2、单选题: 选项: A:16 B:12 C:-12 D:-16 答案: 【12】 3、单选题: 选项: A:n B:2n

C:0 D:4n 答案: 【0 】 4、单选题: 选项: A: B: C: D: 答案: 【】 5、判断题: 齐次线性方程组的系数行列式等于零,则解是唯一的。选项: A:错

答案: 【错】 6、判断题: 线性方程组的系数行列式不等于零,则解可能不唯一。 选项: A:对 B:错 答案: 【错】 7、判断题: 齐次线性方程组的存在非零解,则系数行列式一定等于零。选项: A:对 B:错 答案: 【对】 8、判断题: 一次对换改变排列的一次奇偶性。 选项: A:对 B:错 答案: 【对】 9、判断题: 两个同阶行列式相加,等于对应位置的元素相加后的行列式。选项:

B:错 答案: 【错】 10、判断题: 克莱默法则对于齐次线性方程组而言,方程的个数可以不等于未知数的个数。 选项: A:错 B:对 答案: 【错】 第二章单元测试 1、判断题: 因为零矩阵的每个元素都为零,所以零矩阵相等。 选项: A:错 B:对 答案: 【错】 2、判断题: 选项: A:错 B:对 答案: 【错】

3、单选题: 选项: A: B: C: D: 答案: 【】 4、单选题: 选项: A:A的伴随矩阵的行列式等于A的行列式的n次方 B:A和A的伴随矩阵的行列式相等 C:A的伴随矩阵的行列式等于A的逆矩阵的行列式 D:A的伴随矩阵的行列式等于A的行列式的n-1次方 答案: 【A的伴随矩阵的行列式等于A的行列式的n-1次方】5、判断题: 选项: A:对

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 7 3 4 111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 1 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 .

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 21332123 2113235322y y y x y y y x y y y x , 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??22 1321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=3 2133 2123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=32 1161109412316z z z

所以有?????+--=+-=++-=3 2133 2123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374?? ? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

基于线性代数智能在线测试系统的考试改革及实践

基于线性代数智能在线测试系统的考试改革及实践 摘要:大学课程的考核方式必须改革已成为共识,但改革的出路在哪里,目前正处在探索阶段。本文介绍了基于线性代数智能在线测试系统的线性代数课程的考核模式,并对该考核模式进行了分析。 关键词:测试系统;考核模式;考试改革;线性代数 考试是督促学生自觉地学习、检查教与学两方面效果的重要方式和手段,也是对学习行为的一种行之有效的导向措施,当然也是区分、发现、选拔人才经常采用的方法。在信息技术条件下如何更有效地发挥考试的功能,是当代教育工作者亟待解决的一个重要课题。我们在这方面做了一些探索。 一、目前的现状 目前大学课程的考核方式有以下三种:(1)平时成绩+期末考试成绩:(2)平时成绩+课程小论文+期末考试成绩:(3)平时成绩+实践成绩+期末考试成绩。平时成绩主要包括上课的出勤率、作业的完成情况、期中考试成绩等,期末考试一般为出卷笔试,可以为闭卷也可以为开卷。平时成绩所占的比重一般为20%(无期中考试)或30%(有期中考试),期末考试成绩所占比重一般都在50%以上。在课程考核中设置平时成绩的目的就是督促学生平时自觉地学习,期末考试是为了检查教师的教和学生的学这两方面的效果。 上述三种考核方式都含有平时成绩和期末考试成绩,并且所占的权重也最大。因此这三种考核方式都存在以下两方面的缺点:(1)平时成绩的评定有很大的主观性,不能很好地反映学生平时的学习情况,因而不能很好的起到督促学生自觉地学习的目的。有些学生为了做到不缺勤,可以按时到教室来,但来了后不是睡觉就是看其他无关的书,更有甚者玩手机;有些学生平时的作业都是抄别人的,这样他们的平时成绩也会很高,这使得在考核中设置平时成绩的目的落空了。 (2)期末考试也存在很多弊端,有些平时根本没有学习的学生,为了过关就想尽各种办法作弊;相当一部分学生平时学习松懈、考前突击准备,这样虽然有些也能通过考试,但他们考完后什么也没学到;现在有些学校为了控制不及格率,要求教师降低试卷的难度,考前复习时缩小复习范围:由于目前的考核方式中期末考试占有很大的比重,基本上是“一锤定音”式的,给学生造成很大的压力,对发挥失常、因为一些特殊原因不能参加考试的学生没有补救的机会。为了克服这些缺点,有些教师做了一些尝试,比如根据课程的特点增加课程小论文,加强实践环节的考核等。但像高等数学、线性代数和概率论与数理统计等这样的公共基础

线性代数第二单元测试题

线性代数第二单元测试题 一.单项选择题(3’×8=24’) 1.若A 、B 为n 阶方阵,则下列结论正确的是( ). (A )A+B|A|B||||=+; (B )AB BA =; (C )AB BA ||||=; (D )A B A B 111---+=+(). 2.B A ,均为三阶可逆矩阵,则下列等式成立的是( ). (A )111)(---=B A AB ; (B )A A =-; (C )B A B A B A +-=-22; (D )A A 22=. 3.B A ,均为三阶矩阵,AB=0,则下列等式成立的是( ). (A )A=0 (B )B=0 (C )A=0 或B=0 (D )|A|或|B|=0 4、设A 是方阵,若AC AB =,则必有 ( ) (A )0≠A 时C B =; (B )C B ≠时0=A ; (C )C B =时0≠A ; (D )0≠A 时C B =. 5.设B A ,为n 阶矩阵,**,B A 是伴随矩阵,???? ??=B O O A C ,则=*C ( ). (A ) ?? ?? ??**B B O O A A ; (B ) ???? ??**A A O O B B ; (C ) ???? ??**B A O O A B ; (D ) ???? ??**A B O O B A .

6、设,,A B C 均为n 阶矩阵, 且ABC E =,则必有( ); A .CA B E = B .BA C E = C .CBA E = D .ACB E = 7、设*A 为n 阶方阵A 的伴随方阵,则下列结论不正确的是( ); A .**AA A A = B .*AA A E = C .1*n A A -= D .*n A A = 8. 设,A B 均为n 阶矩阵, 且()A B E O -=,则必有( ); A .A O =或 B E = B .A BA = C .0A =或1B = D .两矩阵A 与B E -中,至少有一个为奇异矩阵 二.填空题(2’×13=26’) 1.若???? ??=4321A ,??? ? ??=0110P ,那么=20042003AP P 、 2.B A ,为三阶矩阵,1-=A ,2=B ,则()='-21 2B A 3.已知53)(2+-=x x x f ,??? ? ??=b a A 00,则=)(A f 4.设A 是n 阶矩阵, 满足AA T =E ,且|A|<0,则E A +=____0_____. 5.α是三维列向量,???? ? ??----='111111111αα,则T αα= . 6、A=101020001?? ? ? ??? ,则 -12A+3E A -9E ()()= 7、设矩11531A B 3A B A B 1320--????==-== ? ?-????,,则, 。 8、设A 为三阶矩阵,且2=A ,则=--1*2A A ,|A*|=______

线性代数第二章习题答案

习 题 2-1 1.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序. 解: ????? ?? ? ? ? ??000010 100100110000001011 1110001110106543216 54321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵???? ??-=???? ?? +-=2521 ,03231 z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得?????=-=+=-0253223z x y x ,解得:?? ? ??===211 z y x 。 习 题 2-2 1.设???? ??=0112A ,??? ? ??-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)2 2B A -. 解:(1)??? ? ??--=???? ??--???? ??=???? ??--???? ??=-202892001050224402150112252B A ; (2)???? ??--=???? ??--???? ??--=???? ?????? ??--???? ??-???? ??=-2592041021820112402140210112BA AB ; (3)??? ? ??--=???? ??-???? ??=???? ??-???? ??--???? ?????? ??=-152441606112254021402101120112B A 22. 2.已知????? ??--=230412301321A ,??? ? ? ??---=052110 35123 4B ,求B A 23-. 解:??? ? ? ??----????? ??--=052110351234223041230 13 21 323B -A ??? ? ? ??----=????? ??----????? ??--=61941016151055011010422061024686901236903963 3.设??? ? ? ??----=????? ??=101012121234,432112 122121B A ,求

十天学好线性代数——一种有效的学习方法

斯考特·杨在12个月内自学完成4年麻省理工学院计算机科学的33门课程,并通过了MIT的实际测试。平均算来,杨修完每门课程大概只需要一个半星期。诀窍在于,他有一套加速学习的策略,这套策略历经33门课的锤炼,力图弄清楚学得更快的窍门。 译者:MapleFlying 发布:2012-11-01 14:13:48双语对照| 查看译者版本最近,我的朋友斯考特·杨(Scott Young)成就了一个惊人的壮举:他在一年之内,完成了传说中的MIT计算机科学课程表的全部33门课,从线性代数到计算理论。最重要的是,他是自学的,观看在线教程讲座,并用实际的考试作自我评估。(到斯考特的FAQ页面,看看他如何完成这个挑战)按照他的进度,读完一门课程大概只需要1.5个星期。我坚信,能快速掌握复杂信息,对成就卓越事业至关重要。因此,我很自然地问起斯考特,让他给我们分享他的学习奥秘。所幸他答应了。接下来是一份斯考特的详细解说稿,深入剖析他的学习技巧(包括具体例子),展示他如何拿下这MIT挑战。以下时间交给斯考特…… 看我怎么驾驭MIT计算机科学的课程 我老想着学快一点,再快一点,并为此兴奋不已。掌握那些重要的学 问吧,专业知识与娴熟技艺将是你的职业资本,帮你赚取金钱与享受 生活。如果过得好是你的目标,学问能引你到向往之地。 尽管学得更快有很多好处,但大多数人并不愿意学习“如何学习”。 大概是因为我们不肯相信有这种好事,在我们看来,学习的速度只取决于好基因与天赋。确实总有些人身怀天赋本钱,但研究表明你的学习方法也很重要。更深层次的知识加工,与时而反复的温故知新,在某些情况下会加倍你的学习效率。是的,“刻意练习”方面的研究表明,没有正确的方法,学习将永远停滞。 今天,我想分享一下学习策略,看看我如何在12个月内完成4年MIT计算机科学的课程。这套策略历经33门课的锤炼,试图弄清楚学得更快的窍门,哪些方法有用,哪些没用。 为什么临时抱佛脚没用? 十天内掌握线性代数:惊人的超速学习实验19436阅读90赞37评论打开文章名片 登录注册 译言 -精选

线性代数第一章测试题

一、判断题 (1)标准秩序是指n 个不同元素,各元素间按从小到大的顺序排列( √) (2)在由 n 个元素构成的任一排列中,当某两个元素的先后秩序与标准秩序不同时,就说它们构成了一个逆序( √ ) (3)一个排列中所有逆序的总和称作逆序数( √ ) (4)逆序数为偶数的排列叫做偶排列,逆序数为奇数的排列叫做奇排列( √ ) (5)一个排列中的任意两个元素对换,排列不改变奇偶性( × ) (6)将行列式 nn n n n n a a a a a a a a a D 222211212111 = 的行与列互换,得到行列式 nn n n n n T a a a a a a a a a D 222212111211 = T D 叫作行列式D 的转置行列式( √ ) (7)已知行列式D ,则T D D =( √ ) (8)交换行列式的两行(或列),行列式不改变符号( × ) (9)如果行列式有两行或两列完全相同,该行列式可以不等于0( √ ) (10)行列式中某一行(或列)的各元素有公因子,则可提到行列式符号外面( √ ) (11)行列式所有行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( × ) (12)行列式某行(或列)的元素都乘以同一个数k ,等于用数k 乘以该行列式( √ ) (13)行列式的某一行元素全为零,行列式的值恒为零( √ ) (14)若行列式中有两行(列)的元素对应成比列,行列式的值可能为零,也可能不为零 ( × ) (15)若行列式的某一行(列)的元素都是两数之和,则该行列式可以表示成两行列式之和 ( × ) (16)把行列式的某一行(或列)各元素都乘以同一数k 后,加到另一行(或列)对应元素上去,行列式的值改变( × ) (17)在n 阶行列式中,划去元素ij a 所在的行和列,余下的n-1阶行列式,称为元素ij a 的余子式,记为ij M ,而其代数余子式表示为ij j i M +-)1(( √ ) (18)行列式D 等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 ),2,1( 2211n i A a A a A a D in in i i i i =+++=

《线性代数》第一章行列式测试卷

《线性代数》第一章行列式测试卷 班级 学号 姓名 一、单项选择题(本大题共10 题,每小题2分,共20分) 1、下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2、如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3、 n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4、=0 0010 010********( ). (A) 0 (B)1- (C) 1 (D) 2 5、=0 0011 00000100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6、在函数10003232 111 12)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 7、若21 3332 31232221 13 1211 ==a a a a a a a a a D ,则=---=32 3133 31 22212321 12 111311 122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8、若 a a a a a =22211211,则=21 1122 12ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9、已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10、若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 二、填空题(本大题共4 题,每小题3分,共12分) 1、n 2阶排列)12(13)2(24-n n 的逆序数是 2、若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于 . 3、如果M a a a a a a a a a D ==3332 31232221 13 1211 ,则=---=32 32 3331 2222232112121311 133333 3a a a a a a a a a a a a D 4、已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的 新行列式的值为 三、计算题(本大题共9题,1-7题每小题6 分,8-9题 每小题8 分,共58 分) 1、解方程00 110 11101110=x x x x

线性代数-第三单元测试

一、判断题 10’ 1. 可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E 。 ( ) 2. 若A 可逆,则对矩阵)(E A 施行若干次初等行变换和初等列变换,当A 变为E 时,相应地E 变为1 -A ,故求得A 的逆矩阵。 ( ) 3. 对于矩阵A ,总可以只经过初等行变换把它化为标准形。 ( ) 4. 若A ,B 都是n 阶可逆矩阵,则A 总可以经过初等行变换化为B 。 ( ) 5. 设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零。 ( ) 6. 若A ,B 均为n 阶非零方阵且O AB =, 则A 的秩n A R <)(。 ( ) 7 从矩阵n m A ?(1>n )中划去一列得到矩阵B ,则)()(B R A R >。 ( ) 8. 设B A ,均为n m ?矩阵,若)()(B R A R =,则A 与B 必有相同的标准形。( ) 9. 在秩为r 的矩阵A 中,有可能存在值为零的r 阶子式。 ( ) 10.设A 为n m ?矩阵,若AY AX =,且n A R =)(,则Y X =。 ( ) 二、 单项选择题30’ 1. 设A ? ??? ??=333231 232221 131211 a a a a a a a a a ,B =????? ??---=323332 31 12131221222322 11222a a a a a a a a a a a a , 1P ????? ??=100001010,2P ???? ? ??=100210001, 则B =( ) (A) A P P 21 (B) 1211--AP P (C) 21P AP (D) 1 112--AP P 。 2. 若矩阵,,A B C 满足=A BC ,则( ). (A)()()R R =A B (B) ()()R R =A C (C)()()R R ≤A B (D)()max{(),()}R R R ≥A B C 3. 设A 为3阶方阵,将A 的第1列与第2列交换得矩阵B ,再把B 的第2列加到第3列得矩阵C ,则满足C AQ =的可逆矩阵Q 为( ) (A) ????? ??101001010 (B) ????? ??100101010 (C) ????? ??110001010 (D) ???? ? ??100001110 4. 下列矩阵中不是初等矩阵的矩阵是( )

线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;2294201722213 2222222222092650850311111111 1215042 132111111111 1323???? ? ??----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )* * =A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数第二章习题部分答案

第二章向量组的线性相关性 §2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题 1. 设3 α1α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T, 则线性组合α13α2+α3= (5,0,2)T . 3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量, 则2β1+β2β3= (2,8,2)T . 二、试确定下列向量组的线性相关性

1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T 解:设k1α1+k2α2+k3α3=0, 则k1 210 +k2 121 +k3 111 = 000 即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=03k2k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。 2. α1=(1,1,2)T, α2=(0,0,0)T, α3=(1,4,3)T 线性相关

三、设有向量组α1=(1,1,0)T, α2=(1,3,1)T, α3=(5,3,t)T,问t取何值时该向量组线性相关。 解:设k1α1+k2α2+k3α3=0, 则k1 110 +k2 131 +k3 53t =0 即k1+k2+5k3=0k1+3k23k3=0k2+tk3=0 k1+k2+5k3=0k24k3=0k2+tk3=0 k1+k2+5k3=0k1+3k23k3=0(t4)k3=0 所以,t=4, 线性相关; t≠4, 线性无关 四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。 解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=k1a1k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=k1k1+k2a1k2k1+k2a2. 五、已知向量组α1,α2,,α2n,令β1=α1+α2,β2=α2+α3,,β2n=α2n+α1,求证向量组β1,β2,,β2n线性相关。

信息技术驱动下的混合式教学模式设计——以“概率论与数理统计”和“线性代数”为例

高教专区 tougao3@https://www.doczj.com/doc/887095282.html, 103 MAR 2018 NO.06 摘要: 随着信息化时代的来临,“概率论与数理统计”“线性代数”作为应用性较强的课程,其重要性与日俱增。作者从教学内容的设计、教学方法和教学手段、对学生的考核等方面对其进行了探索和实践,并采用了MOOC、软件雨课堂及习题视频等信息技术手段,开展了混合式教学,收到了良好成效,因此,本文从具体实践、探究方法等方面对混合式教学进行了阐述,以期能够帮助更多教师提高教学效率。 关键词: 信息技术;混合式教学;概率论与数理统计;线性代数;教学设计中图分类号: G434 文献标识码:A 论文编号:1674-2117(2018)06-0103-03信息技术驱动下的混合式教学模式设计 ——以“概率论与数理统计”和“线性代数”为例 “概率论与数理统计”“线性代数”是我国本科类院校非数学专业开设的两门重要基础课程,它们能为各类算法提供最基本的数学基础,因而,这两门课程越来越受到本科生乃至研究生的重视。由于课程难度相对较大,传统的教学模式无法引起学生的兴趣,而在课堂上引入最新的信息技术手段,能使学生轻松地理解和消化重难点,进而提升课堂教学效率。下面,笔者将从学习资源建设、信息技术手段应用及过程化考核三方面分享实践经验。 ● 学习资源建设1.教材 教学内容是教学改革的核心。 教学内容主要包括教材、讲义、课件、作业等。其中教材建设是首要任务。“概率论与数理统计”“线性代数”两门课程以往的教材理论性过强,远离了实际应用,且可读性不够。笔者通过对学生的调查研究[1],根据学生的特点,编写了线性代数和概率统计教材,并在使用过程中不断修订和更新,如在教材中融入 实例,结合软件应用等。 [2][3] 2.学习配套资源(1)编写作业册 数学知识的掌握离不开课后的练习、复习和巩固。笔者针对两门课程建设了电子版作业册,且与课堂教学同步,用于布置课后作业,学生可 自行打印。电子版作业册题型丰富多样,包括填空、判断、选择、解答、计算、证明、开放性题目及选做题目,能为不同层次的学生提供足够的、基本的练习,强化他们对概念的理解。 (2)习题视频 由于课堂时间有限,学生接受能力参差不齐,因此,笔者制作了习题视频,每个视频10分钟左右,内容包括对典型习题的讲解、知识点的串讲等。每门课程录制总时长约3个小时,供学生课外学习使用。 ● 信息技术手段的应用1.MOOC作为课堂教学的有益补充 MOOC的兴起,丰富了学生的 孔朝莉 周密 鲍兰平 三亚学院理工学院

相关主题
文本预览
相关文档 最新文档