当前位置:文档之家› 传感器实验部分

传感器实验部分

传感器实验部分
传感器实验部分

1

实验一 金属箔式应变片——单臂电桥性能实验

一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:

εK R R =?/

式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压U

O14/εEK =

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验步骤:

1、根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1

、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。

图1-1 应变式传感器安装示意图

2 3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。检查接线无误后,合上主控箱电源开关。调节Rw 1,使数显表显示为零。

4、在电子秤上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到500g (或200g )砝码加完。记下实验结果填入表1-1,关闭电源。

表1-1 单臂电桥输出电压与加负载重量值

5、根据表1-1计算系统灵敏度S ,S=W u ??/(u ?输出电压变化量;W ?重量变

化量)计算线性误差:δf1=y m /? F ?S ×100%,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差:y F ?S 满量程输出平均值,此处为500g 或200g 。

五、思考题:

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可。

图1-2 应变式传感器单臂电桥实验接线图

3

实验二 金属箔式应变片——半桥性能实验

一、实验目的:比较半桥与单臂电桥的不同性能,了解其特点。

二、基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压Uo 2=2/εEK 。

三、需要器件与单元:同实验一。 四、实验步骤:

1、传感器安装同实验一。做实验(一)2的步骤,实验模块差动放大器调零。

2、根据图1-3接线。R 1、R 2为实验模块左上方的应变片,注意R 2应和R 1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。接入桥路电源±4V ,调节电桥调零电位器Rw 1进行桥路调零,实验步骤

3、4同实验一中

4、5的步骤,将实验数据记入表1-2,计算灵敏度S=W u ??/,非线性误差δf2。若实验时无数值显示说明R 2与R 1为相同受力状态应变片,应更换另一个应变片。

接主控箱电源输出

接主控箱电源输出 接数显表

V i 地

图1-3 应变式传感器半桥实验接线图

4 表1-2 半桥测量时,输出电压与加负载重量值

五、思考题:

1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边

(2)邻边。

2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。

实验三金属箔式应变片——全桥性能实验

一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R1= R2= R3= R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U o3=

KE。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验一。

四、实验步骤:

1、传感器安装同实验一。

2、根据图1-4接线,实验方法与实验二相同。将实验结果填入表1-3;进行灵敏度和非线性误差计算。

表1-3全桥输出电压与加负载重量值

5

五、思考题:

1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1= R3,R2= R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻?

图1-5 应变式传感器受拉时传感器圆周面展开图

图1-4

6 实验四 金属箔式应变片单臂、半桥、全桥性能比较

一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。阐述理由(注意:实验一、二、三中的放大器增益必须相同)。

实验五 金属箔式应变片的温度影响实验

一、实验目的:了解温度对应变片测试系统的影响。

二、基本原理:电阻应变片的温度影响,主要来自两个方面。敏感栅丝的温度系数,应变栅线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致会产生附加应变。因此当温度变化时,在被测体受力状态不变时,输出会有变化。

三、需用器件与单元:应变传感器实验模块、数显表单元、直流源、加热器(已贴在应变片底部)

四、实验步骤:

1、保持实验三实验结果。

2、将200g 砝码加于砝码盘上,在数显表上读取某一整数U o1。

3、将5V 直流稳压电源(主控箱)接于实验模块的加热器插孔上,数分钟后待数显表电压显示基本稳定后,记下读数U ot ,U ot –U o1即为温度变化的影响。计算这一温度变化产生的相对误差%1001

?-=

ot

o ot U U U δ。 五、思考题:

1、金属箔式应变片温度影响有哪些消除方法?

2、应变式传感器可否用于测量温度?

7

实验六 直流全桥的应用——电子秤实验

一、实验目的:了解应变片直流全桥的应用及电路的标定。

二、基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V )改为重量量纲(g )即成为一台原始电子秤。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、±15V 电源、±4V 电源。

四、实验步骤:

1、按实验一中2的步骤将差动放大器调零:按图1-4全桥接线,合上主控箱电源开关调节电桥平衡电位器Rw 1,使数显表显示0.00V 。

2、将10只砝码全部置于传感器的托盘上,调节电位器Rw 3(增益即满量程调节),使数显表显示为0.200V (2V 档测量)或-0.200V 。

3、拿去托盘上的所有砝码,调节电位器Rw 4

(零位调节),使数显表显示为0.000V 或-0.000V 。

4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可称重,成为一台原始的电子秤。

5、把砝码依次放在托盘上,填入下表:

6、根据上表计算误差与非线性误差。

实验七 交流全桥的应用——振动测量实验

一、实验目的:了解利用交流电桥测量动态应变参数的原理与方法。

二、基本原理:对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器读得。

三、需用器件与单元:音频振荡器、低频振荡器、万用表(自备)、应变式传感

器实验模块、相敏检波器模块、振动源模块和应变输出双线示波器(自备)。

四、实验步骤:

1、模块上的传感器不用,改为振动模块振动梁上的应变片(即模块上的应变输出)。

2、按振动台模块上的应变片顺序,用连接线插入应变传感器实验模块上。组成全桥。接线时应注意连接线上每个插头的意义,对角线的阻值为350Ω左右,若二组对角线阻值均为350Ω,则接法正确。

3、根据图1-6,接好交流电桥调平衡电路及系统,R8、Rw1、C、Rw2为交流电桥调平衡网络。检查接线无误后,合上主控箱电源开关,将音频振荡器的频率调节到5KHz左右,幅度调节到10V p-p。(频率可用数显表F in监测,幅度可用示波器监测)。将示波器接入相敏检波的输出端,观察示波器的波形,顺时针调节Rw3到最大,调节Rw1、Rw2、Rw4,使示波器显示的波形无高低且最小(示波器的Y轴为0.1V/div,X 轴为0.2ms/div),用手按下振动圆盘(且按住不放),调节移相器与相敏检波器的旋钮,使示波器显示的波形有检波趋向。

4、将低频振荡器输出接入振动模块低频输入插孔,调节低频振荡器输出幅度和频率使振动台(圆盘)明显振动。

5、调节示波器Y轴为50mv/div、X轴为20ms/div,用示波器观察差动放大器输出端(调幅波)和相敏检波器输出端(解调波)及低通滤波器输出端(包络线波形——传感器信号)波形,调节实验电路中各电位器旋钮,用示波器观察各环节波形,体会电路中各电位器的作用。调节电位器使各波形接近理论波形,并使低通滤波器输出波形不失真,并且峰-峰值最大。

6、固定低频振荡器幅度旋钮位置不变,低频输出端接入数显单元的F in,把数显表的切换开关打到频率档监测低频频率。调节低频输出频率,用示波器读出低通滤波器输出V O的电压峰-峰值,填入表1-5。

8

9

表1-5

从实验数据得振动梁的自振频率为 Hz 。

接主控箱

电源输出

示波器

接音频振荡器

接主控箱电源输出

图1-6 应变片振动测量实验接线图

10 五、思考题:

1、在交流电桥测量中,对音频振荡器频率和被测梁振动频率之间有什么要求?

2、请归纳直流电桥和交流电桥的特点。

3、移相器的电路原理,如图1-7,试分析其工作原理。

4、相敏检波器的电路原理如图1-8,试分析其工作原理。

小 结:

电阻应变式传感器从1938年开始使用到目前,仍然是当前称重测力的主要工具,电阻应变式传感器最高精度可达万分之一甚至更高,除电阻应变片、丝直接以测量机械、仪器及工程结构等的应变外,主要是与种种形式的弹性体相配合,组成各种传感器和测试系统。如称重、压力、扭矩、位移、加速度等传感器,常见的应用场合如各

图1-7 移相器的电路原理图

(3)

图1-8 相敏检波器的电路原理图

11

种商用电子秤、皮带秤、吊钩秤、高炉配料系统、汽车衡、轨道衡等。

实验八 压阻式压力传感器的压力测量实验

一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,其输出电压的变化反映了所受到的压力变化。

三、需用器件与单元:压力源(已在主控箱)、压力表、压阻式压力传感器、压力传感器实验模块、流量计、三通连接导管、数显单元、直流稳压源±4V 、±15V 。

四、实验步骤:

1、根据图2-1连接管路和电路,主控箱内的气源部分,压缩泵、贮气箱、流量计

已接好。将硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用手按住气源插座边缘往内压,则硬管可轻松拉出)。另一端软导管与压力传感器接通。这里选用的差压传感器两只气咀中,一只为高压咀,另一只为低压咀。本实验模块连接见图2-2,压力传感器有4端:3端接+2V 电源,1端接地线,2端为U o +,4端为U o - 。1

图2-1 压阻式压力传感器测量系统

12 2、3、4端顺序排列见图2-2。端接线颜色通过观察传感器引脚号码判别。

2、实验模块上Rw 2用于调节零位,Rw 1可调节放大倍数,按图2-2接线,模块的放大器输出V o2

引到主控箱数显表的V i 插座。将显示选择开关拨到20V 档,反复调节Rw 2(Rw 1旋到满度的1/3)使数显表显示为零。

3、先松开流量计下端进气口调气阀的旋钮,开通流量计。

4、合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子向

上浮起悬于玻璃管中。

5、逐步关小流量计旋钮,使标准压力表指示某一刻度。

6、仔细地逐步由小到大调节流量计旋钮,使在5~20KP 之间每上升1KP 分别读取压力表读数,记下相应的数显表值列于表2-1。

表2-1 压力传感器输出电压与输入压力值

7、计算本系统的灵敏度和非线性误差。

8、如果本实验装置要成为一个压力计,则必须对电路进行标定,方法如下:输

入10KPa 气压,调节Rw 2(低限调节)使数显表显示1.00V ,当输入20KPa 气压,调节Rw 1(高限调节)使数显表显示2.00V ,这个过程反复调节直到足够的精度即可。

五、思考题:

利用本系统如何进行真空度测量?

接主控箱电源输出

V i

接主控箱数显表

图2-2 压力传感器压力实验接线图

实验九扩散硅压阻式压力传感器差压测量*

一、实验目的:了解利用压阻式压力传感器进行差压测量的方法。

二、基本原理:压阻式压力传感器的硅膜片受到两个压力P1和P2作用时,由于它们对膜片产生的应力正好相反,因此作用在压力膜片上是ΔP= P1-P2,从而可以进行差压测量。

三、需用器件与单元:实验八所用器件和单元、压力气囊。

四、实验步骤:

请学生自拟一个差压测量的方法。

实验十差动变压器的性能实验

一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模块、测微头、双线示波器、差动变压器、音频信号源(音频振荡器)、直流电源、万用表。

四、实验步骤:

1、根据图3-1,将差动变压器装在差动变压器实验模块上。

2、在模块上按照图3-2接线,音频振荡器信号必须从主控箱中的L V端子输出,调节音频振荡器的频率,输出频率为4~5KHz(可用主控箱的数显表的频率档F in输入来监测)。调节幅度使输出幅度为峰-峰值V p-p=2V(可用示波器监测:X轴为0.2ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级线圈波形(L V音频信号V p-p=2V

13

14 波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判断直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。)

3、旋动测微头,使示波器第二通道显示的波形峰-峰值V p-p 为最小。这时可以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。从V p-p 最小开始旋动测微头,每隔0.2mm 从示波器上读出输出电压V p-p 值填入表3-1。再从V p-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

表3-1 差动变压器位移ΔX 值与输出电压V p-p 数据表

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表3-1画出V op-p -X 曲线,作出量程为±1mm 、±3mm 灵敏度和非线性误差。

接第一通道示波器 接

第二通道示波器

插座管脚编号

图3-2 双线示波器与差动变压器连接示意图

图3-1 差动变压器电容传感器安装示意图

15

五、思考题:

1、用差动变压器测量较高频率的振幅,例如1KHz 的振动幅值,可以吗?差动变压器测量频率的上限受什么影响?

2、试分析差动变压器与一般电源变压器的异同。

实验十一 激励频率对差动变压器特性的影响实验

一、实验目的:了解初级线圈激励频率对差动变压器输出性能的影响。 二、基本原理:差动变压器输出电压的有效值可以近似用关系式:

22

221)(p

p

i

O L

R U M M U ωω+-=

表示,式中L P 、R P 为初级线圈电感和损耗电阻,U i 、ω为激励电

压和频率,M 1、M 2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激

励频率太低时,若222

P P L R ω>>,则输出电压U o 受频率变动影响较大,且灵敏度较低,只有当2

22P P R L >>ω时输出U o 与ω无关,当然ω过高会使线圈寄生电容增大,对性能

稳定不利。

三、需用器件与单元:与实验十相同。 四、实验步骤:

1、差动变压器安装同实验十。接线图同实验十。

2、选择音频信号输出频率为1KHz 从L V 输出。(可用主控箱的数显表频率档显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节Rw 1、Rw 2使输出变得更小。

3、旋动测微头,每间隔0.2mm 在示波器上读取一个V p-p 数据。

4、分别改变激励频率为3KHz 、5KHz 、7KHz 、9KHz ,重复实验步骤1、2将测试结果记入表3-2。

16

图3-3 零点残余电压补偿电路

表3-2 不同激励频率时输出电压(峰-峰值)与位移X的关系。

作出每一频率时的V-X曲线,并计算其灵敏度S i,作出灵敏度与激励频率的关系曲线。

实验十二差动变压器零点残余电压补偿实验

一、实验目的:了解差动变压器零点残余电压补偿方法。

二、基本原理:由于差动变压器两只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B-H特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。称其为零点残余电压。

三、需用器件与单元:音频振荡器、测微头、差动变压器、差动变压器实验模块、示波器。

四、实验步骤:

1、按图3-3接线,音频信号源从L V插口输出,实验模块R1、C1、Rw1、Rw2为电桥单元中调平衡网络。

17

2、用示波器调整音频振荡器输出为2V 峰-峰值。

3、调整测微头,使差动放大器输出电压最小。

4、依次调整Rw 1、Rw 2,使输出电压降至最小。

5、将第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压比较。

6、从示波器上观察,差动变压器的零点残余电压值(峰-峰值)。(注:这时的零点残余电压经放大后的零点残余电压=V 零点P-P /K ,K 为放大倍数)

五、思考题:

1、请分析经过补偿后的零点残余电压波形。

2、本实验也可用图3-4所示线路,请分析原理。

实验十三 差动变压器的应用——振动测量实验

一、实验目的:了解差动变压器测量振动的方法。

二、基本原理:利用差动变压器测量动态参数与测位移量的原理相同。 三、需用器件与单元:音频振荡器、差动变压器模块、移相器/相敏检波器/低通滤波器模块、数显单元、低频振荡器、示波器、直流稳压电源、振动源模块。

四、实验步骤:

1、将差动变压器按图3-5,安装在振动源模块的振动源上。

图3-4 零点残余电压补偿电路之二

18 2、按图3-6接线,并调整好有关部分。调整如下:(1)检查接线无误后,合上主控台电源开关,用示波器观察L V 峰-峰值,调整音频振荡器幅度旋钮使V op-p =2V 。(2)利用示波器观察相敏检波器输出,调整传感器连接支架高度,使示波器显示的波形幅值为最小。(3)仔细调节Rw 1和Rw 2使示波器(相敏检波输出)显示的波形幅值更小,基本为零点。(4)用手按住振动平台(让传感器产生一个大位移)仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。(5)松手,整流波形消失,变为一条接近零点线(否则再调节Rw 1和Rw 2)。低频振荡器输出引入振动源的低频输入,调节低频振荡器幅度旋钮和频率旋钮,使振动台振荡较为明显。用示波器观察放大器V o 、相敏检波器的V o 及低通滤波器的V o 波形。

3、保持低频振荡器的幅度不变,改变振荡频率用示波器观察低通滤波器的输出,读出峰-峰电压值,记下实验数据,填入下表3-3(频率与输出电压V p-p 的监测方法与实验十相同)。

差动变压器实验模块

图3-6 差动变压器振动测量实验接线图

图3-5 差动变压器振动测量安装示意图

19

表3-3

4、根据实验结果作出梁的f —V p-p 特性曲线,指出自振频率的大致值,并与用应变片测出的结果相比较。

5、保持低频振荡器频率不变,改变振荡幅度,同样实验,可得到振幅—V p-p 曲线(定性)。

注意事项:低频振荡器电压幅值不要过大,以免梁在自振频率附近振幅过大。 五、思考题:

1、如果用直流电压表来读数,需增加哪些测量单元,测量线路该如何?

2、利用差动变压器测量振动,在应用上有些什么限制?

实验十四 电容式传感器的位移特性实验

一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容d A C /ε=和其他结构的关系式通过相应的结构和测量电路可以选择ε、A 、d 三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(d 变)和测量也为(A 变)等多种电容传感器。

三、需用器件与单元:电容传感器、电容传感器实验模块、测微头、相敏检波、滤波模块、数显单元、直流稳压源。

四、实验步骤:

1、按图3-1安装示意图将电容传感器装于电容传感器实验模块上。

2、将电容传感器连线插入电容传感器实验模块,实验线路见图4-1。

3、将电容传感器实验模块的输出端V o1与数显表单元V i 相接(插入主控箱V i 孔),Rw 调节到中间位置。

20 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每隔0.2mm 记下位移X 与输出电压值,填入表4-1。

表4-1 电容传感器位移与输出电压值

5、根据表4-1数据计算电容传感器的系统灵敏度S 和非线性误差δf 。 五、思考题:

试设计利用ε的变化测谷物湿度的传感器原理及结构。能否叙述一下在设计中应考虑哪些因素?

实验十五 电容传感器动态特性实验

一、实验目的:了解电容传感器的动态性能的测量原理和方法。

二、基本原理:利用电容传感器动态响应好,可以非接触测量等特点,进行动态位移测量。

三、需用器件与单元:电容传感器、电容传感器实验模块、低通滤波器模块、数显单元、直流稳压电源、双线示波器、振动源模块。

四、实验步骤:

1、传感器安装图同实验十三图3-5,按图4-1接线。实验模块输出端V o1接滤波器输入端,滤波器输出端V o 接示波器一个通道(示波器X 轴为20ms/div 、Y 轴视输出大小而变)。调节传感器连接支架高度,使V o1输出在零点附近。

接主控箱电源输出

接主控箱数显表

V i

图4-1 电容传感器位移实验接线图

高中物理实验11传感器的简单使用学案1

实验十一传感器的简单使用 考纲解读1.知道什么是传感器,知道光敏电阻和热敏电阻的作用.2.能够通过实验探究光敏电阻和热敏电阻的特性.3.了解常见的各种传感器的工作原理、元件特性及设计方案. 基本实验要求Ⅰ 研究热敏电阻的特性 1.实验原理 闭合电路欧姆定律,用欧姆表进行测量和观察. 2.实验器材 半导体热敏电阻、多用电表、温度计、铁架台、烧杯、凉水和热水. 3.实验步骤 (1)按实验原理图甲连接好电路,将热敏电阻绝缘处理; (2)把多用电表置于欧姆挡,并选择适当的量程测出烧杯中没有水时热敏电阻的阻值,并记下温度计的示数; (3)向烧杯中注入少量的冷水,使热敏电阻浸没在冷水中,记下温度计的示数和多用电表测量的热敏电阻的阻值; (4)将热水分几次注入烧杯中,测出不同温度下热敏电阻的阻值,并记录. 4.数据处理 在图1坐标系中,粗略画出热敏电阻的阻值随温度变化的图线. 图1 5.实验结论 热敏电阻的阻值随温度的升高而减小,随温度的降低而增大. 6.注意事项 实验时,加热水后要等一会儿再测其阻值,以使电阻温度与水的温度相同,并同时读出水温. 基本实验要求Ⅱ

研究光敏电阻的光敏特性 1.实验原理 闭合电路欧姆定律,用欧姆表进行测量和观察. 2.实验器材 光敏电阻、多用电表、小灯泡、滑动变阻器、导线、电源. 3.实验步骤 (1)将光敏电阻、多用电表、灯泡、滑动变阻器如实验原理图乙所示电路连接好,其中多用电表置于“×100”挡; (2)先测出在室内自然光的照射下光敏电阻的阻值,并记录数据; (3)打开电源,让小灯泡发光,调节小灯泡的亮度使之逐渐变亮,观察多用电表表盘指针显示电阻阻值的情况,并记录. (4)用手掌(或黑纸)遮光时,观察多用电表表盘指针显示电阻阻值的情况,并记录. 4.数据处理 根据记录数据分析光敏电阻的特性. 5.实验结论 (1)光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小. (2)光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量. 6.注意事项 (1)实验中,如果效果不明显,可将电阻部分电路放入带盖的纸盒中,并通过盖上小孔改变射到光敏电阻上的光的多少来达到实验目的; (2)欧姆表每次换挡后都要重新调零. 考点一温度传感器的应用 例1 对温度敏感的半导体材料制成的某热敏电阻R T,在给定温度范围内,其阻值随温度的变化是非线性的.某同学将R T和两个适当的定值电阻R1、R2连成图2虚线框内所示的电路,以使该电路的等效电阻R L的阻值随R T所处环境温度的变化近似为线性的,且具有合适的阻值范围.为了验证这个设计,他采用伏安法测量在不同温度下R L的阻值,测量电路如图2所示,图中的电压表内阻很大.实验中的部分实验数据测量结果如表所示. 图2 温度t/℃30.040.050.060.070.080.090.0

传感器原理及应用实验讲义

传感器原理及应用

CSY-998系列传感器实验台 主要技术参数、性能及说明 CSY系列传感器系统实验仪是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,组成一个完整的测试系统。 实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。传感器位于实验工作台右边,装在圆盘式工作台的四周,依次为(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。光纤传感器的一端已固定在“光电变换器”上,另一端为活动的圆柱形探头,可根据要求加以固定。 一、传感器安装台部分: 双平行振动梁的自由端及振动 圆盘下面各装有磁钢,通过各自测微 头或激振线圈接入低频激振器VO 可做静态或动态测量。 应变梁:应变梁采用不锈钢片, 双梁结构端部有较好的线性位移。 传感器: 1.应变式传感器 箔式应变片阻值:350Ω,应变 系数:2。 2.热电偶(热电式) 直流电阻:10Ω左右,由两个铜 一康铜热电偶串接而成,分度号为T冷端温度为环境温度。 3.差动变压器 量程:≥5mm,直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体。 4.电涡流位移传感器 量程:3mm,直流电阻:1Ω-2Ω,多股漆包线绕制的扁平线圈与金属涡流片组成。 5.霍尔式传感器 日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。量程:±1mm。 6.磁电式传感器 直流电阻:30Ω-40Ω,由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s。 7.压电加速度传感器 PZT-5双压电晶片和铜质量块构成。谐振频率:>-10KHz。 8.电容式传感器 量程:+5mm,由两组定片和一组动片组成的差动变面积式电容传感器。 9.压阻式压力传感器

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器实验

传感器实验 精04 张为昭 2010010591

实验二电涡流传感器变换特性 一、实验目的 1. 了解电涡流传感器的结构、工作原理及应用; 2. 了解电涡流传感器调频电路的特点,测试电涡流传感器变换特性。 二、实验装置及原理 1.装置 图2.1 电涡流传感器装置 2.原理 涡流传感器是七十年代以后发展较快的一种新型传感器。它广泛应用在位移振动监测、金属材质鉴别、无损探伤等技术领域中。 涡流传感器通常由扁平环形线圈组成。在线圈中通以高频(通常为2.5MHz 左右)电流,则在线圈中产生高频交变磁场。当导电金属板接近线圈时,交变磁场在板的表面层内产生感应电流即涡流。涡电流又产生一个反方向的磁场,从而减弱了线圈的原磁场,也就改变了原线圈的自感量L、阻抗Z及Q值。线圈上述参数的变化在其它条件不变的情况下仅是线圈与金属板之间距离的单值函数。 实验中采用了测量线圈自感量L的调频电路,即把线圈作为谐振回路的一个电感元件。当线圈与金属板之间距离h发生变化时,谐振回路的频率f也发生变化,再用鉴频器将频率变化转换成电压变化输出。 图2.2 电涡流传感器原理 三、实验内容及步骤 1. 测量前置器输出频率f与距离h之间的关系;输出电压V与距离h之间

(1)被测金属板先采用铝板。转动微调机构或千分尺使金属板与传感器端面接触即h=0,记下相应的输出信号频率,然后改变h并记下相应的输出频率f 的数值于表2-1中。 (2)改变h并记下涡电流传感器相应的输出电压峰峰值于表2-2中。 (3)改变h并记下测量电路最终的输出电压于表2-3中。 2. 换上钢板重复1的步骤,注意钢板在与传感器距离很小时传感器无输出,调整距离至有输出时作为零点,再开始进行后续测量。 3. 估测电涡流传感器的工作测量范围: 铝板:1.5mm 钢板:1.5mm(相对零点的位移) 四、数据整理及问题分析 1.实验数据整理

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

传感器力学综合实验

传感器力学综合实验 采用美国PASCO 公司生产的动力学实验系统,该系统利用传感器代替传统测量仪器,配以Datastudio 数据处理软件,用电脑采集和处理数据,满足各种力学物理量的测量需要,能够设计包括冲量,动量,动能,能量守恒,动量守恒,弹性碰撞,非弹性碰撞,简谐振动,摩擦力等多种动力学实验。 加速度和简谐振动实验利用运动传感器和力传感器,对不同倾角的斜面上的弹簧和物体系统的振动周期和运动受力情况进行电脑监控和数据采集,通过“Datastudio ”软件进行分析和处理,根据受力与弹簧形变情况可求出弹簧倔强系数k ,也能根据测量受力和物体运动加速度情况从而验证牛顿第二定律F=ma 。 冲量定理实验是利用运动传感器和力传感器,对光滑导轨上的小车的运动情况和碰撞受力情况进行电脑监控和数据采集,通过“Datastudio ”软件进行分析和处理,给出弹性碰撞前后速度及碰撞过程中力随时间的变化关系,从而在一定精度下验证了冲量定理。 实习1加速度和简谐振动 一、实验目的 本实验目的是测量不同倾角的斜面上的弹簧和物体系统的振动周期和运动受力情况,并验证牛顿第二定律F=ma 。 二、实验仪器 ScienceWorkshop 接口,50N 力传感器,运动传感器,带质量的动力车,弹簧,导轨,底座和支杆 三、实验原理 对于弹簧上的物体,振动的理论周期为 k m T π2= (1) 这里T 是一个周期运动的时间,m 是振动质量,k 是弹簧倔强系数。 根据虎克定律,弹簧产生的力与弹簧被压缩或伸长的距离成正比, F=-kx (2) 这里k 是弹簧倔强系数。这样在实验上,可以通过施加不同的力让弹簧压缩或伸长不同的距离来确定。作力—距离的图,直线的斜率就等于k 。

物理传感器实验实例

欢迎使用朗威?DISLab 愿我们共同开启实验教学的数字化时代朗威?数字化信息系统实验室(DISLab) llongwill? Digital Information System Laboratory V6.0物理实验实例 上海市中小学数字化实验系统研发中心 山东省远大网络多媒体有限责任公司 2007年9月

目 录 1、静摩擦力研究…………………………………….……………………………………………P5 2、滑动摩擦力研究……………………………………….………………………………………P5 3、重力大小与质量的关系…………………………….…………………………………………P7 4、力的合成与分解……………………………………………………………………………P7 5、研究匀速直线运动……………………………………………….……………………………P8 6、研究匀加速直线运动………………………………………….……………………………P10 7、平均速度的测量…………………………………………….………………………………P11 8、平均速度与瞬时速度的关系……………………………………………………….………P12 9、加速度的测量………………………………………………………………………………P13 10、加速度与拉力的关系 ……………………….……………………………………………P15 11、加速度与质量的关系……………………………….......………..…………………………P16 12、牛顿第三定律………………………….……………………………………………………P17 13、浮力的相互作用……………………………….……………………………………………P18 14、用位移传感器研究自由落体运动………………………….………………………………P19 15、用光电门传感器测自由落体的加速度…………………….………………………………P21 16、超重与失重……………………………………………….…………………………………P22 17、动量定理(恒力)…………………………………….…..…………………………………P22 18、动量定理(变力)……………………………………………….……………………………P24 19、动量守恒定律……………………………………….………………………………………P26 20、功和能……………………………………………….………………………………………P28 21、观察碰撞中的动能………………………………….………………………………………P30 22、机械能守恒定律(斜轨法)…………………………………………….……………………P31 23、机械能守恒定律(摆球法)…………………………………………….……………………P33 24、单摆的振动图像…………………………………….………………………………………P34 25、阻尼振动…………………………………………….………………………………………P35 26、简谐振动的相位…………………………………….………………………………………P35 27、简谐波的叠加………………………………………….……………………………………P36 28、弹簧振子的振动图像………………………………….……………………………………P37 29、弹簧振子位移与弹簧受力关系……………….……………………………………………P38 30、受迫振动……………………………………………….……………………………………P39 31、单摆周期的测量……………………………………….……………………………………P41 32、单摆法测重力加速度………………………………….……………………………………P42 33、向心力研究…………………………………………….……………………………………P42 34、胡克定律……………………………………………….……………………………………P44 35、研究定滑轮与动滑轮………………………………….……………………………………P45 36、声波的振动图像……………………………………….……………………………………P46 37、噪声的波形…………………………………………….……………………………………P46 38、频率与音调的关系…………………………………….……………………………………P47 39、振幅与响度的关系………………………………….………………………………………P47 40、声波干涉………………………………………….…………………………………………P48 41、声波的合成……………………………………….…………………………………………P48 42、声音的共鸣……………………………………….…………………………………………P49

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

传感器综合的实验报告

传感器综合实验报告( 2012-2013年度第二学期) 名称:传感器综合实验报告 题目: 利用传感器测量重物质量院系:自动化系 班级:测控1201 班 小组成员:加桑扎西,黄承德 学生:加桑扎西 指导教师:仝卫国 实验周数:1周 成绩:

日期:2015 年7 月12日

传感器综合实验报告 一、实验目的 1、了解各种传感器的工作原理与工作特性。 2、掌握多种传感器应用于电子称的原理。 3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。 4、能根据原理特性分析结果,加深对传感器的认识与应用。 5、测量精度要求达到1%。 二、实验设备、器材 1、金属箔式应变片传感器用到的设备: 直流稳压电源、双平行梁、测微器、金属箔式应变片、标准电阻、差动放大器、直流数字电压表。 2、电容式传感器用到的设备: 电容传感器、电容变换器、差动放大器、低通滤波器、电压表、示波器。 3、电涡流式传感器用到的设备: 电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。 三、传感器工作原理 1、电容式传感器的工作原理: 电容器的电容量C是的函数,当被测量变化使S、d或 任意一个参数发生变化时,电容量也随之而变,从而可实现由被测量到电容量的转换。电容式传感器的工作原理就是建立在上述关系上的,若保持两个参数不变,仅改变另一参数,

就可以把该参数的变化转换为电容量的变化,通过测量电路再转换为电量输出。 差动平行变面积式传感器是由两组定片和一组动片组成。当安装于振动台上的动片上、下改变位置,与两组静片之间的相对面积发生变化,极间电容也发生相应变化,成为差动电容。如将上层定片与动片形成的电容定为C X1,下层定片与动片形成的电容定为C X2,当将C X1和C X2接入双T型桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。依据该原理,在振动台上加上砝码可测定重量与桥路输出电压的对应关系,称未知重量物体时只要测得桥路的输出电压即可得出该重物的重量。 2、电涡流式传感器的工作原理: 电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。依据该原理可制成电涡流式传感器电子称。3、金属箔式应变片传感器工作原理: 应变片应用于测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 实验中,通过旋转测微器可使双平梁的自由端上、下移动,从而使应变片的受力情况不同,将应变片接于电桥中即可使双平衡的位移转换为电压输出。电桥的四个桥臂电阻R1、R2、R3、R4,电阻的相对变化率分别为△R1/R1、△

实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μm 近红外波长域具有最大的辐射强度。例如汽油燃烧时的火焰辐射强度的波长。 火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。 火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。 火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。 理; 2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序; 2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1; 3、用按键KEY1控制ZIGBEEN是否发送数据。 6.4.1硬件部分 1、ZIGBEE调试底板一个; 图6-1 ZIGBEE调试底板 2、20PIN转接线一条和带USB的J-Link仿真器一个; 图6-2 J-Link仿真器 3、转接板一个; 实验内容 6.3 实验设备 6.4 电 源 开 关 电 源 传感器C端口 指示灯 2 J-LINK接 ZigBee_DEBUG 复位键 节点按键 拨码开关 ZigBe按键 红 外 发 射 指 示 灯 1 ZigBee复位键 可 调 电 阻传 感 器 A 端 口 传感器B端口 方口USB线,另一端连接电上电指示灯 20PIN转接线,另一端接转接板 20PIN转接线接口 10PIN转接线接口 串口接口

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器心得体会

传感器心得体会

传感器心得体会 【篇一:传感器实验总结】 《传感器及检测技术》教学实践工作总结 本学期,担任《传感器及检测技术》课程的理论和实践教学内容。本课程的实践教学主要是教学实验,在全体同学的大力配合下,比较圆满的完成了实践教学任务,达到了实验的预期目的。现将此课程的实践教学工作总结如下: 1、实验计划的制定 为更好的完成实践教学环节,使学生能够真正的在实践环节学到更多的东西,在学期初我就认真研究教材内容和教学大纲要求,针对教学内容和学生特点制定了详细的实验安排,并与实验室老师进行了认真的沟通,充分做好教学实践前的各项准备工作。 2、注重理论和实践的结合 每讲授一段内容,就组织同学们做一次实验,让学生把课堂上获得的理论知识及时的得到验证和应用,从而加深对所学内容的理解。同时鼓励同学们利用课余时间多到实验室做一些创造性的实验,提高他们的知识迁移能力和思维能力。 3、实验过程的安排 (1)每次实验前,提前下达实验任务,让学生做好实验前的各种准备工作。由班长做好分组工作,每组指定一名组长,实行组长负责制,负责本组的组织和协调工作,。 (2)进实验室时,讲清实验室纪律,不得随意摆弄实验用品,要严格遵守实验章程,在老师的指导下进行各种实验。

(3)实验过程中,认真抓好学生的纪律,不得无故迟到、早退,杜绝做与实验无关的事情。实验过程中教师要不断巡 视及时发现学生们遇到的各种问题,并给与指导或启发。尽量多鼓励、少批评,培养学生的自信心,提高学生学习的积极性。 (4)实验完毕,及时清查实验物品,并督促学生摆放好实验物品,做到物归原位。另外,每组展示实验成果,并派代表做出总结,谈谈实验中遇到的各种问题,并说明做出了怎样的处理,有哪些收获。小组成员之间先进行互评,然后由教师作出补充,并适当给与鼓励。同时督促同学课下认真完成实验报告。 4、反思改进 在每次实验完毕后,我都把实验中发现的问题进行归纳整理,进行反思,同时向有经验的教师请教,争取在下次实践课中加以改进。 总之,这一个学期的实践教学,总的来说基本上能够按照要求保质保量的完成教学任务,但从中我也发现了一些问题,在今后的教学工作中,我会努力的改进不足的地方,争取把以后的实践教学工作做得更好。 【篇二:实验心得体会】 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样, 做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

CSY-2000系列传感器与检测技术实验台

CSY-2000系列传感器与检测技术实验台 编写:吴爱平审核:孙士平 一、设备名称: 传感器与检测技术实验台 二、型号/规格: CSY-2000 三、生产厂家: 浙江高联科技开发有限公司 杭州高联信息技术有限公司 四、操作面板: 五、功能说明: CSY2000系列传感器与检测技术实验台,主要用于各大专院校开设的“自动检测技

术”“传感器原理与技术”“工业自动化控制”“非电量电测技术”等课程的教学实验。CSY2000系列传感器与检测技术实验台上是采用最新推出的模块化结构的产品。希望通过实验能让学生加强对书本知识的理解,并在实验进行的过程中,通过信号的拾取、转换、分析掌握作为一个科技工作者应具备的基本的操作技能与动手能力。 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、传感器(基本型18个、增强型23个)、相应的实验模板等四部分组成。 (1) 主控台部分,提供高稳定直流稳压电源、音频信号源、低频信号源、气压源,其中电源、音频、低频均具有断路保护功能;主控台面板上还装有电压、气压、 频率、转速的3位半数显表及计时表、RS232计算机串行接口、流量计、漏电 保护器。高精度温度转速两用仪表,调节仪置内为温度调节、置外为转速调节。 (2) 三源板提供振动源、转动源、加热源。 (3) 传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔式转速传感器、磁电式传感器、压 电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、 100铂电阻、Cu铜电阻、湿敏传感器、气敏传感器K型热电偶、E型热电偶、P t 共十八个。 (4) 实验模块部分提供相应的实验电路。普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个 模块。 六、参数指标: 直流电源: ±15V、+5V、±2V±4V±6V±8V±10V +2V∽+24V连续可调 音频信号源(音频振荡器):1KHZ∽10KHZ 低频信号源(低频振荡器):1HZ∽30HZ 气压源:0∽20kpa 振动频率:1HZ∽30HZ 转速:0-2400转/分 加热源:常温∽150℃(可调)

传感器综合实验仿真报告

综合实验报告 ( 2015 -- 2016年度第一学期) 名称:传感器原理与应用题目:综合实验—仿真部分院系:控制与计算机工程班级:测控1303 学号:1131160318 学生姓名:魏更 指导教师: 设计周数:一周 成绩: 日期:2016 年1月15日

一、课程设计(综合实验)的目的与要求 1、本实验的目的是配合《传感器原理与应用》课程的传感器静态特性与动态特性相关部分的内容,利用Matlab/Simulink 进行仿真验证。培养学生利用计算机进行数据处理和模型仿真的能力,为今后从事相关领域的工作打下基础。 2、要求学生了解传感器静态和动态特性的基础知识,掌握Matlab/Simulink 进行数据分析和仿真的基本方法。具体要求为:掌握基于最小二乘法的数据处理方法,能够进行简单的数据处理;掌握传感器动态特性的分析手段,了解不同阶次特性的基本性质,并能够进行相应的仿真实验,对传感器动态特性有感性认识。 二、实验正文 1、学习使用Matlab 进行最小二乘法数据处理,分别通过自己编写函数和使用Matlab 提供的函数实现相同功能。 ①按照最小二乘法原理编写Matlab 程序。 程序如下: x=(-200:100:1300); y=[-5.8914,-3.5536,0,4.0962,8.1385,12.2086,16.3971,20.6443,24.9055,29.129,33.2754,37.3259,41.2756,45. 1187,48.8382,52.4103]; z1=sum(x); z2=z1^2; z3=sum(power(x,2)); z4=sum(x.*y); z5=sum(y); n=length(x); k=(n*z4-z1*z5)/(n*z3-z2); a0=(z3*z5-z1*z4)/(n*z3-z2); fprintf('k=%f\n',k); fprintf('a0=%f',a0); y1=k*x+a0; plot(x,y1,'-b',x,y,'*r'); 输出结果: k=0.040274 a0=0.619114 拟合直线和各点的分布图见下图:

传感器实验

传感器实验

实验一金属箔式应变计性能——应变电桥 实验目的: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。 实验原理: 本实验说明箔式应变片及直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也 随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时, ∑ ? = R R R;当二个应变片组成差动状态工作,则有∑ ? = R R 2 R;用四个应变片 组成二个差动对工作,且R1= R2= R3= R4=R,∑ ? = R R 4 R。 实验所需部件:(括号{ }内为2001B型内容) 直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表 实验步骤: 1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1) 2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。 将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。 3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的W D电位器,使桥路输出为零。 4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm记录一个输出电压值,并记入下表: 位 移 mm 电 压V 根据表中所测数据在坐标图上做出V—X曲线,计算灵敏度S:S=X V? ?。 / 注意事项: 1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。 2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。 3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试

传感器实验

传感器综合实验 前提:电阻应变式传感器 电阻应变式传感器以电阻应变计为转换元件的电阻式传感器。电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。 一.实验目的 (1)加深对应力和应变概念的理解; (2)了解金属箔式应变片,单臂单桥的工作原理和工作情况; (3)验证单臂,半桥,全桥的性能及相互之间关系; (4)了解温度对应变测试系统的影响; (5)了解传感器(电阻应变片)在检测中的应用。 二.实验仪器: 直流稳压电源,15V不可调直流稳电源,差动放大器,电桥,F/V表,测微头,双平行梁,双孔悬臂梁称重传感器,应变片,砝码,加热器,水银温度计(自备),主,副电源。 三.实验原理 要测量模拟金属梁的应力,首先引入描述物体变形的物理量“应变”。设模拟金属梁原长为l的一段,在变形时发生“伸长”或“缩短”量为,则应变为 应变的大小,即与外力F的大小及应用位置有关,也与材料本身的弹性有关。根据胡克定律, 由上式可知,应变最大处,应力也最大。但应力是内力,无法直接测量,应先测量应变后换算出应力。而应变又可用电阻应变片将转换成易于放大的电压、电流或功率的变化进行测量。 因此,应力就可以测出。 (1)模拟金属梁的设置 如图,它是用长150毫米、宽17毫米的钢尺做成,其上下表面各贴有3片电阻应变片。上表面的应变片受力,下表面的应变片受压。拉区电阻值增大,压区电阻值变小。

相关主题
文本预览
相关文档 最新文档