当前位置:文档之家› 化工原理答案第七章干燥

化工原理答案第七章干燥

化工原理答案第七章干燥
化工原理答案第七章干燥

第七章 干 燥

湿空气的性质

【7-1】湿空气的总压为.1013kPa ,(1)试计算空气为40℃、相对湿度为%60?=时的湿度与焓;(2)已知湿空气中水蒸气分压为9.3kPa ,求该空气在50℃时的相对湿度?与湿度H 。

解 湿空气总压.1013p kPa =

(1).06?=,40℃时水蒸气的饱和蒸气压.7375s p kPa = 湿度 ..../ (067375)

0622

0622002841013067375

s s p H kg kg p p ???==?=--?.水干气

焓 ()..1011882492I H t H =++

(...)../= 10118800284402492002841133kJ kg +??+?= (2) 湿空气中水汽分压.93V p kPa = 50℃时水的饱和蒸气压.1234s p kPa = 相对湿度 ..93

07541234

V s p p ?===. 湿度 . (93)

0622

=062200629101393

V V p H kg kg p p =?=--.水/干气 【7-2】空气的总压为101.33kPa ,干球温度为303K ,相对湿度%70?=,试用计算式求空气的下列各参数:(1)湿度H ;(2)饱和湿度s H ;(3)露点d t ;(4)焓I ;(5)空气中的水汽分压V p 。

解 总压.,.101333033007p kPa t K ?====℃, (1) 30℃时,水的饱和蒸气压.4241s p kPa = 湿度 ...? (074241)

0622

06220018810133074241

s s p H kg kg p p ???==?=--?..水/干气

(2) 饱和湿度 (4241)

0622

062200272101334241

s s s p H kg kg p p ==?=--.水/干气 (3)露点d t 时的饱和湿度.00188s H kg kg =水/干气 .0622s

s s

p H p p =- (1013300188)

2970622062200188

s s s pH p kPa H ?=

==++

从水的饱和蒸气压为2.97kPa 查得水的饱和温度为23.3℃,故空气的露点.233℃d t = (4) .3000188t H kg kg ==℃,水/干气时,空气的焓为

()..1011882492H H t H =++

(...)../= 1011880018830249200188782kJ kg +??+?=干气 (5) t=30℃时的.4241s p kPa =

水汽分压 ...074241297V s p p kPa ?==?=

【7-3】在总压为101.3kPa 下测得湿空气的干球温度为50℃,湿球温度为30℃,试计算湿空气的湿度与水汽分压。

解 湿球温度50℃W t =时,水的饱和蒸气压.1234s p kPa =,比汽化热/2378W r kJ kg = 湿球表面处的湿空气,在总压.1013p kPa =及湿球温度50℃W t =时的湿度为 (1234)

0622

06220086310131234

s W s p H kg kg p p ==?=--...水/干气 空气在50℃t =时的湿度为 ().()..109

0086350300077水/2378

W W H W

H H t t kg kg k r α=-

-=-

-=?干气 湿空气的水汽摩尔分数为 ./..././.00771802

0110077180212895

y =

=+

水汽分压 ...0111013111V p yp kPa ==?=

【7-4】利用湿空气的I H -图填写下表的空白。

【7-5】空气的总压力为101.3kPa ,干球温度为20℃.湿球温度为15℃。该空气经过一预热器,预热至50℃后送入干燥器。热空气在干燥器中经历等焓降温过程。离开干燥器时相对湿度%80?=。利用1-H 图,试求:(1)原空气的湿度、露点、相对湿度、焓及水汽分压;(2)空气离开预热器的湿度、相对湿度及焓;(3)100m 3

原空气经预热器加热,所增加的热量;(4)离开干燥器时空气的温度、焓、露点及湿度;(5)100m 3

原空气在干燥器中等焓降温增湿过程中使物料所蒸发的水分量。

解 空气总压.1013p kPa =,干球温度t=20℃,湿球温度15℃W t =。

(1)原空气的湿度./000085H kg kg =水干气,露点012℃d t =,相对湿度%060?=,焓/043I kJ kg =干气,水汽分压.013V p kPa =。

(2) 空气离开预热器的温度t=50℃,求得湿度./1000085H H kg kg ==水干气,相对湿度

%112?=,焓/172I kJ kg =干气。

(3) 原空气的比体积 ()

..(..)30027320

07741244077412440010844273273

H T H m kg υ+=+=+?=..湿气/干气

3100m 原空气在预热器所增加的热量为 ()().10100

100

724334360844

H

Q I I kJ υ=

-?-==

(4) 空气在干燥器中为等焓降温增湿过程,离开干燥器时,已知相对湿度280%?=,求得温度227℃t =,焓/272I kJ kg =干气,露点2

24℃d t =,湿度./20018H kg kg =水干气。

(5) 3100m 原空气,在干燥器中,等焓降温增湿过程中,使物料所蒸发的水分量为 ()()..21100

100

0.

0180.008511260844

H

W H H kg υ=

-=

-=水 【7-6】在去湿设备中,将空气中的部分水汽除去,操作压力为101.3kPa ,空气进口温度为20℃,空气中水汽分压为6.7kPa ,出口处水汽分压为1.33kPa 。试计算100m 3

湿空气所除去的水分量。

解 总压...12101367133v v p kPa p kPa p kPa ===,, 空气进口湿度 .. (11167)

0622

062200441101367v v p H kg kg p p ==?=--.水/干气 空气出口湿度 (3222133)

0622

0622828101013133

v v p H kg kg p p -==?=?--.水/干气 进口湿空气的比体积 ()

() (31293)

07741244077412440.0441=0.89湿气/273273

H T H m kg υ=+=+?干气 100m 3

湿空气中含有的干空气量为

.100

089

kg (干气)

,除去的水分量为 ()() (12100100)

00441000828402089089

H H kg -=-=.

.水 【7-7】湿空度的总压为101.3kPa ,温度为10℃,湿度为0.005kg 水/kg 干气。试计算:(1)空气的相对湿度1?;(2)空气温度升到35℃时的相对湿度φ。;(3)温度仍为35℃,总压提高到115kPa 时的相对湿度φ;(4)温度仍为第(1)问的10℃,若总压从101.3kPa 增大到500kPa ,试求此条件下的湿空气饱和湿度s H ,并与原空气的湿度H 比较,求出加压后每千克干空气所冷凝的水分量。

解 (1)总压../10130005p kPa H kg kg ==,湿度水干气 温度t=10℃时水的饱和蒸气压.11227s p kPa = 相对湿度 ().. .(.).110005101306580622062200051227s Hp H p ??===++?..

另一解法:

湿空气中水汽摩尔分数 ./. (00051802)

0005180212895

y =

+//

水汽的分压 ./..././.00051802101308070005180212895v p yp kPa ??

==?= ?+??

相对湿度 (110807)

06581227

v s p p ?===

(2) 温度t=35℃时,水的饱和蒸气压为.25808s p kPa = 相对湿度 (121)

21227065801395808

s s p p ??==?= (3)与(2)问相比,总压由.231013改为115p kPa p kPa == 相对湿度?与总压p 成正比,故

(332)

2115

013901581013

p p ??==?= (4) 温度10℃t =时,水的饱和蒸气压为 .1227500s p kPa p kPa ==,总压

饱和湿度 ..../.1227

0622

06220001535001227

s s s p H kg kg p p ==?=--水干气 原空气的湿度 ./0005H kg kg =水干气 每千克干空气所冷凝的水分量为

.../0005000153000347s H H kg kg -=-=水干气

【7-8】氮气与苯蒸气的混合气体,总压力为102.4kPa 。在24℃时,混合气体的相对湿度为60%。(1)试计算混合气体的湿度(kg 苯蒸气/kg 氮气);(2)试计算使混合气中的苯蒸气冷凝70%时的饱和湿度s H ;(3)若混合气温度降为10℃,试计算总压力增加到多大,才能使苯蒸气冷凝70%。

苯的饱和蒸气压s p 用附录十的Antoine 方程计算。 解 总压.102424℃p kPa t ==,温度,相对湿度.106?=。 (1) 计算湿度1 H ..111024,06p kPa ?== 苯在24℃时的饱和蒸气压1s p 计算 .lg (11211033)

6030551212422079

s p kPa =-

=+

氮的摩尔质量./2802g M kg kmol =,苯的摩尔质量./7811V M kg kmol =。

... .. (111111*********)

=02132802102406121

v s g s M p H kg M p p ???=

??=--?苯蒸气/kg 氮气 (2) 苯蒸气冷凝70%时的饱和湿度s H 计算

.11

07s

H H H -= ()

.....111070303021300639s H H H kg =-==?=苯蒸气/kg 氮气 (3) 温度210℃t =,苯蒸气冷凝70%,总压力2p =? 苯在10℃时的饱和蒸气压2s p 计算 .lg .,..221211033

6030556071022079

s s p p kPa =-

=+

222v s s g s M p H M p p =

?

- (27811607)

006392802607

p =?- 总压力增加到270.9kPa 时,才能使苯蒸气冷凝70%

干燥过程的物料衡算与热量衡算

【7-9】某干燥器的湿物料处理量为100kg 湿料/h ,其湿基含水量为10%(质量分数),干燥产品湿基含水量为2%(质量分数)。进干燥器的干燥介质为流量500kg 湿空气/h 、温度85℃、相对湿度10%的空气,操作压力为101.3kPa 。试求物料的水分蒸发量和空气出干燥器时的湿度H 2。

解 操作压力.1013p kPa =

湿物料处理量1100L kg =湿料/h ,湿基含水量.101ω=。干基含水量为 (1110101)

110109X ωω=

==

-- 产品湿基含水量.2002ω=,干基含水量为 (222002002)

11002098

X ωω=

==

-- (1) 物料的水分蒸发量W 湿物料中绝干物料的质量流量为

()().11110010190干料/c L L kg h ω=-=-=

水分蒸发量为 ()..(

)...120100290816水分/09098

c W L X X kg h =-=-= (2) 空气出干燥器时的湿度H 2计算

空气的流量为500kg 湿空气/h ,温度t=85℃时,水的饱和蒸气压.5874s p kPa =,相对湿度.01?=

空气进干燥器的湿度 .. (1015874)

0622

0622003831013015874

s s p H kg kg p p ???==?=--?...水/干气

干空气的质量流量为 .15005004821003831

G kg H =

==++干气/h H 2的计算如下

()21W G H H =-

(218160038300552482)

W H H kg G =

+=+=水/kg 干气 【7-10】某干燥器的生产能力为700kg 湿料/h ,将湿物料由湿基含水量0.4(质量分数)干燥到湿基含水量0.05(质量分数)。空气的干球温度为20℃,相对湿度为40%,经预热器

加热到100℃,进入干燥器,从干燥器排出时的相对湿度为%60?=。若空气在干燥器中为等焓过程,试求空气消耗量及预热器的加热量。操作压力为101.3kPa 。

解 湿物料流量L=700kg 湿料/h ,湿基含水量.04ω=1,则干基含水量为 (1110404)

110406X ωω=

==

-- 产品湿基含水量.2005ω=,干基含水量为 (222005005)

11005095

X ωω=

==

-- 湿物料中绝干物料的质量流量为

()()./11700104420c L L kg h ω=-=-=干料

物料中的水分蒸发量为

()....120400542030206095c W L X X kg ??

=-=-= ???

水分/h

空气温度020℃t =,相对湿度.104?=,从I H -图上查得湿度./100057H kg kg =水干气。 经预热器加热,温度升到1100℃t =,湿度未变,为./1000057H H kg kg ==水干气,焓/1116I kJ kg =干气。

空气从干燥器出来时的相对湿度.206?=,从空气进干燥器的状态点1沿

()/116I kJ kg =干气的等I 线,直到.206?=时,空气出干燥器的湿度./20029H kg kg =水干气。

空气消耗量 / (203023600)

36干气/002900057

W G kg s H H ===--

预热器的加热量为

()()()...1001036101188p H Q Gc t t H t t =-=?+- ()()

....361011880005710020294kW =+?-= 【7-11】在常压干燥器中将某物料从湿基含水量0.05(质量分数)干燥到湿基含水量0.005(质量分数)。干燥器的生产能力为7200kg 干料/h ,物料进、出口温度分别为25℃与65℃。热空气进干燥器的温度为120℃,湿度为0.007kg 水/kg 干气,出干燥器的温度为80℃。空气最初温度为20℃。干物料的比热容为./()18 ℃kJ kg ?。若不计热损失,试求:(1)干空气的消耗量G 、空气离开干燥器时的湿度H 2;(2)预热器对空气的加热量。

解 已知数据如习题7-11附图所示。 物料的干基湿含量为 ..1110055

1100595

X ωω=

==-- 习题7-11附图

化工原理干燥试题及答案

干燥 一、填空题: 1、空气湿度的测定是比较麻烦的,实际工作中常通过(),然后经过计算得到。 2、一定状态的空气容纳水分的极限能力为() 3、物料与一定湿度的空气接触,不能被除去的水分称为()。 4、干燥过程可分为两个阶段:()和(),两个干燥阶段的交点称为(),与其对应的物料含水量称为()。 5、恒速干燥阶段又称为(),其干燥速率的大小取决于()。 6、降速干燥阶段又称为(),其干燥速率的大小取决于(),与外部的干燥条件关系不大。 7、临界含水量X 随()的不同而异。 8、平衡水分X*与()有关。 9、在连续干燥中,常采用湿物料与热空气并流操作的目的在于(),代价是()。 10、干燥过程中采用中间加热方式的优点是(),代价是()。 11、干燥过程中采用废气再循环的目的是(),代价是()。 12、干燥速率是指(),其微分表达式为()。 13、恒速干燥阶段干燥时间T=() 14、若降速干燥阶段的干燥速率与物料的含水量X呈线性变化,干燥时间T=() 15、干燥器按加热的方式可分为(),(),()和介电加热干燥器。 16、干燥器中气体和物料的流动方式可分为()、()和()。 17、结合水分和非结合水分的区别是()。 时,若水的初温不同,对测定结果()影响(有或没有)。 18、测定湿球温度t W 二、判断题: 1、只要知道湿空气的性质参数(如湿度H,相对湿度φ,比容vH,比热CH, ,绝热饱和温度tas,露点td)中的任意两个焓IH,干球温度t,湿球温度t W 就可确定其状态。() 2、温度为t的湿空气,增大湿度其湿球温度升高。() 3、同一房间内不同物体的平衡水汽分压相同,温度相等。() 4、物料的平衡水分与物料的堆放方式有关。() 5、物料的平衡水分是物料与一定状态的空气接触能被干燥的限度。() 6、结合水的蒸汽压低于同温度下纯水的饱和蒸汽压。() 7、平衡水分必定是结合水分。() 8、一定的温度下,物料中结合水分不仅与物料有关,而且与空气的状态有关。() 9、等温干燥过程必定是升焓干燥过程。() 三、选择题

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

化工原理干燥试题及答案

化工原理干燥试题及答 案 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

干燥 一、填空题: 1、空气湿度的测定是比较麻烦的,实际工作中常通过(),然后经过计算得到。 2、一定状态的空气容纳水分的极限能力为() 3、物料与一定湿度的空气接触,不能被除去的水分称为()。 4、干燥过程可分为两个阶段:()和(),两个干燥阶段的交点称为(),与其对应的物料含水量称为()。 5、恒速干燥阶段又称为(),其干燥速率的大小取决于()。 6、降速干燥阶段又称为(),其干燥速率的大小取决于(),与外部的干燥条件关系不大。 随()的不同而异。 7、临界含水量X 8、平衡水分X*与()有关。 9、在连续干燥中,常采用湿物料与热空气并流操作的目的在于(),代价是()。 10、干燥过程中采用中间加热方式的优点是(),代价是()。 11、干燥过程中采用废气再循环的目的是(),代价是()。 12、干燥速率是指(),其微分表达式为()。 13、恒速干燥阶段干燥时间T=() 14、若降速干燥阶段的干燥速率与物料的含水量X呈线性变化,干燥时间T=()

15、干燥器按加热的方式可分为(),(),()和介电加热干燥器。 16、干燥器中气体和物料的流动方式可分为()、()和()。 17、结合水分和非结合水分的区别是()。 时,若水的初温不同,对测定结果()影响(有或没18、测定湿球温度t W 有)。 二、判断题: 1、只要知道湿空气的性质参数(如湿度H,相对湿度φ,比容vH,比热CH, ,绝热饱和温度tas,露点td)中的任意两个焓IH,干球温度t,湿球温度t W 就可确定其状态。() 2、温度为t的湿空气,增大湿度其湿球温度升高。() 3、同一房间内不同物体的平衡水汽分压相同,温度相等。() 4、物料的平衡水分与物料的堆放方式有关。() 5、物料的平衡水分是物料与一定状态的空气接触能被干燥的限度。() 6、结合水的蒸汽压低于同温度下纯水的饱和蒸汽压。() 7、平衡水分必定是结合水分。() 8、一定的温度下,物料中结合水分不仅与物料有关,而且与空气的状态有关。() 9、等温干燥过程必定是升焓干燥过程。() 三、选择题 1、一定状态的空气温度不变,增大总压,则湿度(),容纳水分的能力(),所以干燥过程多半在常压或真空条件下进行。

化工原理干燥习题

《化工原理》 第九章干燥 一、填空题: 1.按操作方式分类,干燥可分为和 . 答案:连续干燥,间歇干燥 2..干燥进行的必要条件是物料表面所产生的水汽(或其它蒸汽)压力__________________。答案:大于干燥介质中水汽(或其它蒸汽)的分压。 3.干燥这一单元操作,既属于传质过程,又属______________。 答案:传热过程 4.相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气的吸收水汽的能力_________;当φ=0时。表示该空气为___________。 答案: 小;绝干空气 5.在一定温度下,物料中结合水分和非结合水分的划分是根据___________而定的;平衡水分和自由水分是根据__________而定的。 答案:物料的性质;物料的性质和接触的空气状态 6.作为干燥介质的湿空气,其预热的目的____________________________ _____________________。 答案:降低相对湿度(增大吸湿的能力)和提高温度(增加其热焓) 7.除去固体物料中湿分的操作称为。 答案: 干燥 8.空气经过程达到饱和的温度称为绝热饱和温度。 答案: 绝热增湿 9. 在一定空气状态下干燥某物料,能用干燥方法除去的水分为__________;首先除去的水 分为____________;不能用干燥方法除的水分为__________。 答案: 自由水分;非结合水分;平衡水分 10.湿空气的焓湿图由等湿度线群、等温线群、、水气分压线和相对湿度 线群构成。

答案:等焓线群 11.在进行干燥操作时,湿空气不可作为干燥介质。 答案:饱和(或φ=1) 12.表示单位质量绝干部空气中所含空气及水气的总容积称为湿空气的。 答案:比容 13. 某物料含水量为0.5 kg水.kg绝干料,当与一定状态的空气接触时,测出平衡水分 为0.1kg水.kg绝干料,则此物料的自由水分为_____________。 答案: 0.4 kg水.kg绝干料 14. 表面的温度等于________________,而在干燥的降速阶段物料的温度 _________________。 答案:最大或恒定、水分、热空气的湿球温度,上升或接近空气的温度 15.不饱和的空气在总不变的情况下,进行等湿冷却至饱和状态时的温度称 为。 答案: 露点温度 16. 当干燥一种易碎的物料,可采用_______________干燥器。 答案: 厢式 17. 在进行干燥操作时,湿空气不可作为干燥介质。 答案:饱和空气 18.表示单位质量绝干部空气中所含空气及水气的总容积称为湿空气的。 答案:湿度 19.湿空气通过预热器预热后,其湿度___________,热焓______________,相对湿度 __________。(增加、减少、不变) 答案: 不变、增加、减少 20. 对于不饱和空气,表示该空气的三个温度,即:干球温度t,湿球温度tw和露点t d间 的关系是______________。 答案: t>t w>t d> 二、选择题

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理干燥练习题答案

一、填空题 1、对流干燥操作的必要条件是(湿物料表面的水汽分压大于干燥介质中的水汽分压);干燥过程是(热量传递和质量传递)相结合的过程。 2、在实际的干燥操作中,常用(干湿球温度计)来测量空气的温度。 3、恒定得干燥条件是指(温度)、(湿度)、(流速)均不变的干燥过程。 4、在一定得温度和总压强下,以湿空气作干燥介质,当所用湿空气的相对湿度 较大时,则湿物料得平衡水分相应(增大),自由水分相应(减少)。 5、恒速干燥阶段又称(表面汽化)控制阶段,影响该阶段干燥速率的主要因素是(干燥介质的状况、流速及其与物料的接触方式);降速干燥阶段又称(内部迁移)控制阶段,影响该阶段干燥速率的主要因素是(物料结构、尺寸及其与干燥介质的接触方式、物料本身的温度等)。 6、在恒速干燥阶段,湿物料表面的温度近似等于(热空气的湿球温度)。 7、可用来判断湿空气的干燥能力的大小的性质是相对湿度。

8、湿空气在预热过程中,湿度 不变 温度 增加 。 9、干燥进行的必要条件是 干燥介质是不饱和的热空气 。 10、干燥过程所消耗的热量用于 加热空气 , 加热湿物料 、 气化水分 、 补偿热损失 。 二、选择题 1、已知湿空气的如下两个参数,便可确定其他参数(C )。 A .p H , B.d t H , C.t H , D.as t I , 2、在恒定条件下将含水量为(干基,下同)的湿物料进行干燥。当干燥至含水量为时干燥速率下降,再继续干燥至恒重,测得此时含水量为,则物料的临界含水量为(A ),平衡水分为(C )。 3、已知物料的临界含水量为(干基,下同),先将该物料从初始含水量干燥降至,则干燥终了时物料表面温度θ为(A )。 A. w t ?θ B. w t =θ C. d t =θ D. t =θ 4、利用空气作干燥介质干燥热敏性物料,且干燥处于降速阶段,欲缩短干燥时间,则可采取的最有效措施是( B )。 A.提高干燥介质的温度 B.增大干燥面积、减薄物料厚度

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

化工原理(管国锋主编 第三版)课后习题答案10 固体干燥

第10章 固体干燥 1) 已知空气的干燥温度为60℃,湿球温度为30℃,试计算空气的湿含量H ,相对湿度 ,焓I 和露点温度 。 2) 利用湿空气的I —H 图完成本题附表空格项的数值,湿空气的总压 。 3) 湿空气( =20℃, )经预热后送入常压干燥器。试求:①将空气预热到100℃所需热量:②将该空气预热到120℃时相应的相对湿度值。 4) 湿度为 的湿空气在预热器中加热到128℃后进入常压等焓干燥器中,离开干燥器时空气的温度为49℃,求离开干燥器时露点温度。 解: I = (1.01+1.88H)t +2500H ∵等焓 ∴ I 1 = I 2 ∴(1.01+1.88H 1)t 1+2500H 1 = (1.01+1.88H 2)t 2+2500H 2 (1.01+1.88?0.018) ?128+2500?0.018= (1.01+1.88H 2) ?49+2500H 2 ∴ H 2 = 0.0498 kg 水/kg 干气 ∵H p P p =-?0622. ∴0049806221013105...=? ?-p p ∴ p = 7510 Pa 查表得 t d = 40℃ 5) 在一定总压下空气通过升温或一定温度下空气温度通过减压来降低相对湿度,现有温度为40℃,相对湿度为70%的空气。试计算:①采用升高温度的方法,将空气的相对湿度降至20%,此时空气的温度为多少?②若提高温度后,再采用减小总压的方法,将空气的相对湿度降至10%,此时的操作总压为多少? 解: (1) t = 40℃时查表 p s = 7.377KPa ,∴ p = ?p s = 0.7?7.377 = 5.1639 Kpa

化工原理实习心得

化工原理实习心得 化工原理实习是对化工原理知识的一个实践过程, 下面化工原理实习心得是想跟大家分享的,欢迎大家浏览。 第一篇:化工原理实习心得 在实习的过程中,自己学到了许多原先在课本上学 不到的东西,而且可以使自己更进一步接近社会,体会 到市场跳动的脉搏,如果说在象牙塔是看市场,还是比 较感性的话,那么当你身临企业,直接接触到企业的生 产与销售的话,就理性得多。因为,在市场的竞争受市 场竞争规则的约束,从采购、生产到销售都与市场有着 千丝万缕的联系,如何规避风险,如何开拓市场,如何 保证企业的生存发展,这一切的一切都是那么的现实。 于是理性的判断就显得重要了。在企业的实习过程中, 我发现了自己看问题的角度,思考问题的方式也逐渐开拓,这与实践密不可分,在实践过程中,我又一次感受 充实,感受成长。 通过安排到xxx车间进行实习,了解产品生产工艺 流程、职能部门的设置及其职能,了解企业的内部控制,在这一个多月的时间里,下到生产车间后,先了解整个 xxx生产的流程,从采购入库,到领料生产,到最后的

成品入罐,对整个车间的生产活动有了基本认识,这对 我们熟悉企业,进行实务操作打下良好基础。 其中,先前我们对xxx的生产几乎一无所知,但下 到车间之后,我们不仅了解了生产流程,还进一步了解 了xxx的生产工艺流程和用途,由于脂肪酸生产完后是直接用于公司后面的扬子石化生产,所以每个月的生产有一定的额度.而且由于季节和温度等条件的限制,机器开工的时间长度及强度也有相关的规定,另外,对一些流水 线的参观,也激发了我对如何通过新流水线的建设,对 降低生产成本的思考,于是,感受颇深的一点,要做一 名合格的会计人员,对基本、基础的作业环节是要了解的,否则,很容易让理论脱离实践. 在熟悉了车间的生产流程后,工作人员拿了以前的 交接班记录和中间产品申请单和报表等资料给我们看, 在翻看这些资料的过程中,有不懂或弄不清楚的资料, 积极向同事请教,在他们的耐心指导下,我们对车间的 整个产品检验的程序方法有了一定上的认识。 由于化工生产是不间断的,所以车间生产必须时刻有人,车间的工作人员采取四班两倒(一天白班12小时一天晚班休两天)和常白班制度.我们车间有四个人(主任,工 艺员,等)上长白班,其他人分成甲乙丙丁四个班四班两倒. 虽然我们没有正式分配,但我们都严格遵守车间的生

化工原理——干燥

第七章 干燥 【例7-1】 已知湿空气的总压p t =101.3kPa ,相对湿度?=0.6,干球温度t =30℃。试求: ①湿度H ;②露点t d ;③绝热饱和温度;④将上述状况的空气在预热器中加热至100℃所需的热量。已知空气质量流量为100kg (以绝干空气计)/h ;⑤送入预热器的湿空气体积流量,m 3 /h 。 解:已知p t =101.3kPa ,?=0.6,t =30℃。 由饱和水蒸气表查得水在30℃时的蒸气压p s =4.25kPa ①湿度H 可由式7-4求得: 016025 46031012546062206220.......p p p .H s t s =?-??=-=??kg/kg ②按定义,露点是空气在湿度不变的条件下冷却到饱和时的温度,现已知 55225460...p p s =?==?kPa 由水蒸气表查得其对应的温度t d =21.4℃。 ③求绝热饱和温度t as 。按式(7-18) ()()H H c r t t as H as as --=/ (a ) 已知t =30℃并已算出H =0.016kg/kg ,又c H =1.01+1.88H =1.01+1.88×0.016=1.04kJ/kg ,而r as 、H as 是t as 的函数,皆为未知,可用试差法求解。 设t as =25℃,p as =3.17kPa ,H as =0.622 02.017 .33.10117 .3622.0=-=-as t as p p p kg/kg , r as =2434kJ/kg ,代入式(a )得t as =30-(2434/1.04)(0.02-0.016)=20.6℃<25℃。 可见所设的t as 偏高,由此求得的H as 也偏高,重设t as =23.7℃,相应的p as =2.94kPa ,H as =0.622×2.94/(101.3-2.94)=0.0186kg/kg ,r as =2438kJ/kg ,代入式(a )得t as =30-(2438/1.04)(0.0186-0.016)=23.9℃。两者基本相符,可认为t as =23.7℃。 ④预热器中加入的热量 Q =100×(1.01+1.88×0.016)(100-30) =7280kJ/h 或2.02kW ⑤送入预热器的湿空气体积流量 8825.46.03.1013.10127330273294.22100=?? ? ???-??? ??+?? =V m 3/h 【例7-2】 已知湿空气的总压为101.3kPa 相对湿度为50%,干球温度为20℃。试用I-H 图求解: (a )水气分压p ; (b )湿度H ; (c )焓I ; (d )露点t d ; (e )湿球温度t W ; (f )如将含500kg/h 干空气的湿空气预热至117℃,求所需热量Q 。 解:见本题附图。

化工原理第七章干燥课后习题及答案

第七章 干 燥 湿空气的性质 【7-1】湿空气的总压为.1013kPa ,(1)试计算空气为40℃、相对湿度为%60?=时的湿度与焓;(2)已知湿空气中水蒸气分压为9.3kPa ,求该空气在50℃时的相对湿度?与湿度H 。 解 湿空气总压.1013p kPa = (1).06?=,40℃时水蒸气的饱和蒸气压.7375s p kPa = 湿度 ..../ (067375) 0622 0622002841013067375 s s p H kg kg p p ???==?=--?.水干气 焓 ()..1011882492I H t H =++ (...)../= 10118800284402492002841133kJ kg +??+?= (2) 湿空气中水汽分压.93V p kPa = 50℃时水的饱和蒸气压.1234s p kPa = 相对湿度 ..93 07541234 V s p p ?===. 湿度 . (93) 0622 =062200629101393 V V p H kg kg p p =?=--.水/干气 【7-2】空气的总压为101.33kPa ,干球温度为303K ,相对湿度%70?=,试用计算式求空气的下列各参数:(1)湿度H ;(2)饱和湿度s H ;(3)露点d t ;(4)焓I ;(5)空气中的水汽分压V p 。 解 总压.,.101333033007p kPa t K ?====℃, (1) 30℃时,水的饱和蒸气压.4241s p kPa = 湿度 ...? (074241) 0622 06220018810133074241 s s p H kg kg p p ???==?=--?..水/干气 (2) 饱和湿度 (4241) 0622 062200272101334241 s s s p H kg kg p p ==?=--.水/干气 (3)露点d t 时的饱和湿度.00188s H kg kg =水/干气 .0622s s s p H p p =- (1013300188) 2970622062200188 s s s pH p kPa H ?= ==++ 从水的饱和蒸气压为 2.97kPa 查得水的饱和温度为23.3℃,故空气的露点.233℃d t = (4) .3000188t H kg kg ==℃,水/干气时,空气的焓为 ()..1011882492H H t H =++

化工原理实验心得

实验心得 09生物工程一班钟鑫鑫20091466 经过这一学期的理论课学习和相关的实验操作,我认识到化工原理实验属于工程实验的范畴,它是用自然科学的基本原理和工程实验方法来解决化工及相关领域的工程实际问题。它与一般化学实验的不同之处在于它具有明显的工程特点,研究对象和研究方法也与物理化学等基础学科明显不同。工程实验以实际工程问题为研究对象,对于化学工程问题,由于被加工的物料千变万化,设备大小和形状相差悬殊,涉及的变量繁多,实验研究的工作量之大之难是可想而知的,因此,面对实际的工程问题我们采用处理实际问题的工程实验方法。一个化工过程往往由很多单元过程和设备组成为了进行完善的设计和有效的操作,我们必须掌握并正确判断有关设计或操作参数的可靠性,必须准确了解并把握设备的特性。化工过程的影响因素众多,有些重要工程因素的影响难以从理论上解释,还有些关键的设备特性和过程参数往往不能由理论计算而得,这些都必须通过实验加以研究解决。另外我们还学习操作了计算机仿真技术,模拟真实的化工过程,运用全数字化动态模型深入了解化工过程系统的操作原理。在加深对实验原理理解的基础上,可通过反复操作,握实验步骤为实际操作做好充分准备,同时培养了我们理论联系实际的能力提高了独立思考和独立工作的能力。 本学期我们学习了六个实验。例如:流体流动阻力的测定认识和掌握流体流动阻力实验的一般实验方法,来测定直管的摩擦阻力系数λ和突然扩大管和阀门的局部阻力系数ξ,还有层流管的摩擦阻力与雷诺数Re 的关系(λ=64/Re),同时验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度的函数λ=f(Re,ε/d)。离性泵性能实验通过实验了解离心泵的构造,并掌握其操作和调节方法,测定了离心泵在恒定转速下的特性曲线(He~Q,N 轴~Q,η~Q),并却确定泵的最佳工作范围,熟悉了孔板流量计的构造,测定其孔流系数与雷诺数的关系,还测定了管路特性曲线。(一)雷诺演示实验通过实验建立对层流和湍流两种流动类型的直观感性认识,观测雷诺数与流体流动类型的相互关系,观察层流中流体质点的速度分布(二)流体机械能转换演示实验通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和伯努利方程,还通过实测流速的变化与之相应的压头损失的变化,确定两者之间的关系。通过这五个实验的学习,我学到最重要的一点就是:理论联系实际。它们将单元操作实验与实验技术的应用融为一体,实现了我们实验技术基本功的训练。三个验证试验也正是我们这学期化工原理理论课学习的重点内容,具体的实验操作让我们在理解理论的基础上加深了对化工操作的认识,这在工程理念上对我们以后从事科研或者工作都是一个很大的转折点。而且我发现我们学校的实验室设备相对其他工科高校来说是很齐全的,为我们提供了很好的实训环境,这在一定程度上大大提高了我们的操作能力竞争优势。实验前的预习和准备对实验操作来说是不可小觑的,如果能做到像老师那样对操作步骤和实验原理了然于心,那么实验操作时必然能达到游刃有余的地步,我也始终觉得实验预习是非常重要的环节,也是思考范围最不受局限的阶段,可以带着各种问题和验证性的假设进入实验室并在自己动手之后得到答案,进而思考操作意义,还能获得老师的经验指导,我相信这对每一个实验员来说都是值得令人欣喜的事。所以对于进实验室的我们来说,“有备而来”是至关重要的。实验中的数据处理也接近工程实验的范畴,我们采用了计算机处理,解决了实验数据量大繁杂及绘图技巧上的一系列问题。每次完成报告之前我都有尝试换一种方式,不看课本,就回想实验操作,根据每一步的操作来想实验原理,用自己的话陈述操作步骤,除了完成基本的报告要求,还会把实验创新方面的问题也提进来,可我总觉得有些使不上劲,不敢下笔,归结原因是自己理论知识还不够丰厚,这就提醒了我在以后的实验中需要做更多准备。另外一点就是培养了我们独立思考的能力和团队合作的精神,比如实验中相关参数的确定都是需要综合考虑设备及环境因素来

最新化工原理干燥复习题

一、填空题: 1、干燥进行的必要条件是物料表面所产生的水汽(或其它蒸汽)压力__________________。 2、干燥这一单元操作,既属于传热过程,又属______________。 3、相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气的吸收水汽的能力_________;当φ=0时。表示该空气为___________。 4、干燥速率曲线是在恒定干燥条件下测定的,其恒定干燥条件是指:_________________均恒定。 5、在一定温度下,物料中结合水分和非结合水分的划分是根据___________而定的;平衡水分和自由水分是根据__________而定的。 6、在一定空气状态下干燥某物料,能用干燥方法除去的水分为__________;首先除去的水分为____________;不能用干燥方法除的水分为__________。 7、已知某物料含水量X1=0.4kg水/kg绝干料,从该物料干燥速率曲线可知:临界含水量X C=0.25kg水/kg绝干料,平衡含水量X*=0.05kg水/kg绝干料,则物料的非结合水分为__________,结合水分为__________,自由水分为___________,可除去的结合水分为________。 8、作为干燥介质的湿空气,其预热的目的____________________________ _____________________。 9、当空气的湿含量一定时,其温度愈高,则相对温度愈_______,表明空气的吸湿能力愈__________,所以湿空气在进入干燥器之____________都要经______________。 10、在等速干燥阶段,干燥速率____________,物料表面始终保持被润湿,物料表面的温度等于________________,而在干燥的降速阶段物料的温度_________________。 11、固体物料的干燥,一般分为_________________两个阶段。 12、在对流干燥器中最常用的干燥介质是_______________,它既是__________又是______。 13、等焓干燥过程的条件是_________________________________________ _________________。 14、若将湿空气的温度降至其露点以下,则湿空气中的部分水蒸汽___________。 15、对于不饱和空气,表示该空气的三个温度,即:干球温度t,湿球温度t W和露点t d间的关系是______________。 16、由干燥速率曲线可知恒速干燥阶段所除去的水分是__________,降速干燥阶段除去的

化工原理部分复试试题及答案

简答题: 1,试分析精馏过程中回流比大小对操作费与设备费的影响并说明适宜回流比如何确定。 答:回流比有两个极限,全回流时,达到一定的分离程度需要的理论板层数最小(设备费用最低),但无产品取出,对工业生产无意义;最小回流比时,需要无限多理论板层数,设备费用为无限大,随回流比加大,N T 降为有限数,设备费用降低,但随回流比的加大,塔径、换热设备等加大,且操作费用加大。操作回流比的确定应尽可能使设备费用与操作费用总和为最小,通常取R=(1.2~2)R min 。 2,精馏塔在一定条件下操作,试问:回流液由饱和液体改为冷液时,塔顶产品组成有何变化?为什么? 答:从泡点回流改为冷液回流时,塔顶馏出液组成增大。原因是:冷液回流至塔顶时,冷凝一部分蒸气,放出的潜热把冷液加热至塔顶第一板的饱和温度。冷凝部分中含难挥发组分较大,使气相易挥发组分增浓。同时,在塔顶回流比保持不变的条件下,增加了塔内的内回流,这也有利于分离。 3,简述精馏和蒸馏的区别与联系。 答:精馏引入塔顶回流和塔底蒸汽上升,通过多次部分气化和部分冷凝从而达到高纯度分离的目的,相当于多级蒸馏。 而蒸馏只是通过简单的一次气液相平衡来分离气液混合物,只能达到有限度的分离。 二者在本质上是一致的,都是通过各组分相对挥发度的差异而达到分离目的的。 4,精馏塔在一定条件下操作时,试问:将加料口向上移动两层塔板,此时塔顶和塔底产品组成将有何变化?为什么? 答:当加料板从适宜位置向上移两层板时,精馏段理论板层数减少,在其它条件不变时,分离能力下降,塔顶馏出液组成下降,塔底釜残液浓度升高,易挥发组分收率降低。 5,提高吸收剂用量对吸收是有利的。当系统为气膜控制时,试分析K y a 的变化情况。 答:以液相阻力为主的吸收操作,增加吸收剂用量,可降低液相阻力而有效地加快吸收过程,即可明显提高吸收速率,所以吸收过程的K ya 的值可明显提高。 计算题: 1、(17分) 常压下,用煤油从苯蒸汽与空气混合物吸收苯,吸收率为99%,混合气量为53Kmol/h ,入塔气含苯2%(体积),入塔煤油中含苯0.02%(摩尔分率),溶剂用量为最小用量的 1.5倍,在操作温度50℃下,相平衡关系为y * =0.36x ,总传质系数K y a=0.015kmol/m 2 ·s ,塔径为1.1米,试求所需填料层高度(m )。 解:1,○由题意,可得: y 1=0.02 y 2=y 1(1—η)=0.02×(1—0.99)=0.0002 x 1e = y 1/m=0.02/0.36=0.0556 --------2分

化工原理课程设计心得体会

化工原理课程设计心得体会 相信每一个学生经过了化工原理的课程设计之后都会有许多的感悟心得。下面是收集的化工原理课程设计心得体会范本,欢迎阅读参考! 本次化工原理课程设计历时两周,是學習化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。 在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。 我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。

在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。 通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续學習是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。 我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。 两周的课程设计结束了,在这次的课程设计中不仅检验了我所學習的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,与同学分工设计,和同学们相

相关主题
文本预览
相关文档 最新文档