当前位置:文档之家› 基于一种新的组合核函数的最小二乘支持向量机结构损伤检测的机器学习方法

基于一种新的组合核函数的最小二乘支持向量机结构损伤检测的机器学习方法

基于一种新的组合核函数的最小二乘支持向量机结构损伤检测的机器学习方法
基于一种新的组合核函数的最小二乘支持向量机结构损伤检测的机器学习方法

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

最新人教版八年级下册数学一次函数知识点归纳及练习

一次函数 一.常量、变量: 在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。 二、函数的概念: 函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数. 三、函数中自变量取值范围的求法: (1)用整式表示的函数,自变量的取值范围是全体实数。 (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。 (3)用寄次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。 (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。 四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象. 五、用描点法画函数的图象的一般步骤 1、列表(表中给出一些自变量的值及其对应的函数值。) 注意:列表时自变量由小到大,相差一样,有时需对称。 2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。 六、函数有三种表示形式: (1)列表法(2)图像法(3)解析式法 七、正比例函数与一次函数的概念: 一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例. 八、正比例函数的图象与性质: (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。 九、求函数解析式的方法: 待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。 1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0. 2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与x 轴交点的横坐标 3.一次函数与一元一次不等式: 解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.4.解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b在x 轴上方的部分(射线)所对应的的横坐标的取值范围. 十、一次函数与正比例函数的图象与性质 一次函数 概念如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 图像一条直线 性质k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大).

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

机器学习SVM(支持向量机)实验报告

实验报告 实验名称:机器学习:线性支持向量机算法实现 学员:张麻子学号: *********** 培养类型:硕士年级: 专业:所属学院:计算机学院 指导教员: ****** 职称:副教授 实验室:实验日期:

一、实验目的和要求 实验目的:验证SVM(支持向量机)机器学习算法学习情况 要求:自主完成。 二、实验内容和原理 支持向量机(Support V ector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法。通过引入了核方法之后SVM也可以用来解决非线性问题。 但本次实验只针对线性二分类问题。 SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。 对于线性问题: 假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为: 需压求取: 由于该问题为对偶问题,可变换为: 可用拉格朗日乘数法求解。 但由于本实验中的数据集不可以完美的分为两类,即存在躁点。可引入正则化参数C,用来调节模型的复杂度和训练误差。

作出对应的拉格朗日乘式: 对应的KKT条件为: 故得出需求解的对偶问题: 本次实验使用python 编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。 三、实验器材 实验环境:windows7操作系统+python 编译器。 四、实验数据(关键源码附后) 实验数据:来自UCI 机器学习数据库,以Heart Disease 数据集为例。 五、操作方法与实验步骤 1、选取C=1,训练比例7:3,利用python 库sklearn 下的SVM() 函数进

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6 月20日

支持向量机的算法学习 1. 理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据 (样本) 出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论( Statistical Learning Theory 或SLT) 是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1] ,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是VC维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine) 的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency) 、收敛速度、推广性能(GeneralizationPerformance) 等的重要结论。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy) 和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

支持向量机

支持向量机 支持向量机模型选择研究 摘要:统计学习理论为系统地研究有限样本情况下的机器学习问题提供了一套 比较完整的理论体系。支持向量机 (suPportvectorMachine,SVM)是在该理论体系下产生的一种新的机器学习方法,它能较好地解决小样本、非线性、维数灾难和局部极小等问题,具有很强的泛化能力。支持向量机目前已经广泛地应用于模式识别、回归估计、概率密度估计等各个领域。不仅如此,支持向量机的出现推动了基于核的学习方法(Kernel-based Learning Methods) 的迅速发展,该方法使得研究人员能够高效地分析非线性关系,而这种高效率原先只有线性算法才能得到。目前,以支持向量机为主要代表的核方法是机器学习领域研究的焦点课题之一。 众所周知,支持向量机的性能主要取决于两个因素:(1)核函数的选择;(2)惩罚 系数(正则化参数)C的选择。对于具体的问题,如何确定SVM中的核函数与惩罚系 数就是所谓的模型选择问题。模型选择,尤其是核函数的选择是支持向量机研究的中心内容之一。本文针对模型选择问题,特别是核函数的选择问题进行了较为深入的研究。其中主要的内容如下: 1.系统地归纳总结了统计学习理论、核函数特征空间和支持向量机的有关理论与算法。 2.研究了SVM参数的基本语义,指出数据集中的不同特征和不同样本对分类结 果的影响可以分别由核参数和惩罚系数来刻画,从而样木重要性和特征重要性的考察可以归结到SVM的模型选择问题来研究。在

对样本加权SVM模型(例如模糊SVM)分析的基础上,运用了特征加权SVM模型,即FWSVM,本质上就是SVM与特征加权的结合。 3,在系统归纳总结SVM模型选择。尤其是核函数参数选择的常用方法(例如交叉验证技术、最小化LOO误差及其上界、优化核评估标准)。关键词:机器学习;模式分类;支持向量机;模型选择;核函数;核函数评估 支持向量机基础 引言 机器学习的科学基础之一是统计学。传统统计学所研究的是渐近理论,即当样本数目趋于无穷大时的极限特性。基于传统统计学的机器学习,也称为统计模式识别,由Duda等人提出。Duda的贡献主要是以经典统计理论为工具刻画了模式识别与机器学习的各类任务,同时暗示了对所建模型的评价方法。然而,在实际应用中,学习样本的数目往往是有限的,特别当问题处于高维空问时尤其如此。统计学习理论研究的是有限样本情况下的机器学习问题,它基于PAC(Probably Approximately Correct)框架给出关于学习算法泛化性能的界,从而可以得出误差精度和样木数目之间的关系。这样,样木集合成为泛化指标的随机变量,由此建立了结构风险理论。 Minsky和PaPert在20世纪60年代明确指出线性学习机计算能力有限。总体上,现实世界复杂的应用需要比线性函数更富有表达能力的假设空间"多层感知器可以作为这个问题的一个解,由此导向了 多层神经网络的反向传播算法。核函数表示方式提供了另一条解决途径,即将数据映射到高维空间来增强线性学习机的计算能力。核函数的引入最终使得在适当的特征空间中使用人们熟知的线性算法高效地检测非线性关系成为一可能。SVM是建立在统计学习理论(包括核函数的表示理论)基础上的第一个学习算法,目前主要应用于求解监督学习问题,即分类和回归问题。SVM以泛化能力为目标,其目的不是

数据挖掘第二讲作业

第二讲大数据分析处理概述 1、Hadoop是一个(C) A.进行大数据分析处理的操作系统 B.专门存储大数据的数据库 C.大数据计算框架 D.收费的商业数据分析服务提供商 2、Hadoop集群可以运行的3个模式是(ABC)多选 A.本地模式 B.伪分布模式 C.全分布模式 D.离线模式 3、在Hadoop中,计算任务被称为Job,JobTracker是一个后台服务进程,启动之后,会一直监听并接收来自各个TaskTracker发送的心跳信息,包括资源使用情况和任务运行情况等信息,它使用的端口号是(B) A.70 B.30 C.80 D.60 4、在Hadoop中,一个作业(Job)包含多个任务(Task),从JobTracker接收并执行各种命令:运行任务、提交任务、杀死任务等;另一方面,将本地节点上各个任务的状态通过心跳周期性汇报给JobTracker,它使用的端口号是(D) A.70 B.30 C.80 D.60 5、Hadoop是由(B)语言编写的 A.C B.Java C.Python D.Scala 6、Hadoop中,集群的结构是(A) A.Master/Slave 结构 B.P2P结构 C.串行结构 D.以上都是 7、Hadoop平台中使用哪种技术可以运行Python语言编写的MapReduce代码(A)

A.Hadoop Streaming B.Hadoop C++编程接口 C.Hive D.Hbase 8、在Hadoop中,下列哪项主要提供基础程序包以及和操作系统进行交互(A) A.Hadoop Common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 9、Hadoop的局限和不足(ABCD) A.抽象层次低,需要手工编写代码来完成,使用上难以上手 B.对于迭代式数据处理性能比较差 C.中间结果也放在HDFS文件系统中 D.时延高,只适用Batch数据处理,对于交互式数据处理,实时数据处理的支持不够 10、以下哪项不是Hadoop Streaming框架的优点(C) A.可以使用其他语言(包括脚本语言)编写的程序移植到Hadoop平台上 B.可以使用性能更好的语言(C/C++)来编写程序 C.可以不用设置Map与Reduce过程 D.Streaming框架汇总通过limit等方式可以灵活的先知应用程序使用的内存等资源 11、下列哪些选项是Hadoop Streaming框架的缺点(A) A.Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理 B.Hadoop Streaming 不方便程序向Hadoop平台移植 C.Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出 D.只要程序能从标准输入读取数据、向标准输出写数据,就能使用Hadoop Streaming 12、在Hadoop中,下列哪项主要功能是计算资源的调度(C) A.Hadoop common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 13、在Hadoop中,下列哪项负责文件的分布式存储与访问(B) A.Hadoop common package B.Hadoop Distributed File System C.Hadoop YARN D.MapReduce Engine 14、在Hadoop中,下列哪项负责计算任务的并行化(D) A.Hadoop common package B.Hadoop Distributed File System

初二数学一次函数知识点总结

一次函数知识点总结 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定 的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2 -1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D 3、定义域: 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2 (3)关系式含有二次根式时,被开放方数大于等于零;(4 (5例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .. . D . 函数y =x 的取值范围是___________. 已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2 325≤ <- y B. 2 52 3< 0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0)

机器学习SVM习题集

SVM 1.判断题 (1) 在SVM训练好后,我们可以抛弃非支持向量的样本点,仍然可以对新样本进行分类。(T) (2) SVM对噪声(如来自其他分布的噪声样本)鲁棒。(F) 2.简答题 现有一个点能被正确分类且远离决策边界。如果将该点加入到训练集,为什么SVM的决策边界不受其影响,而已经学好的logistic回归会受影响? 答:因为SVM采用的是hinge loss,当样本点被正确分类且远离决策边界时,SVM给该样本的权重为0,所以加入该样本决策边界不受影响。而logistic回归采用的是log损失,还是会给该样本一个小小的权重。 3.产生式模型和判别式模型。(30分,每小题10分) 图2:训练集、最大间隔线性分类器和支持向量(粗体) (1)图中采用留一交叉验证得到的最大间隔分类器的预测误差的估计是多少(用样本数表示即可)? 从图中可以看出,去除任意点都不影响SVM的分界面。而保留所有样本时,所有的样本点都能被正确分类,因此LOOCV的误差估计为0。 (2)说法“最小结构风险保证会找到最低决策误差的模型”是否正确,并说明理由。(F) 最小结构风险(SRM)只能保证在所有考虑的模型中找到期望风险上界最小的模型。 (3)若采用等协方差的高斯模型分别表示上述两个类别样本的分布,则分类器的VC维是多少?为什么? 等协方差的高斯模型的决策边界为线性,因为其VC维维D+1。题中D=2.

4、SVM 分类。(第1~5题各4分,第6题5分,共25分) 下图为采用不同核函数或不同的松弛因子得到的SVM 决策边界。但粗心的实验者忘记记录每个图形对应的模型和参数了。请你帮忙给下面每个模型标出正确的图形。 (1)、211min , s.t.2N i i C ξ=??+ ? ?? ∑w ()00, 1, 1,....,, T i i i y w i N ξξ≥+≥-=w x 其中0.1C =。 线性分类面,C 较小, 正则较大,||w||较小,Margin 较大, 支持向量较多(c ) (2)、211min , s.t.2N i i C ξ=??+ ? ?? ∑w ()00, 1, 1,....,, T i i i y w i N ξξ≥+≥-=w x 其中1C =。 线性分类面,C 较大, 正则较小,||w||较大,Margin 较小 支持向量的数目少(b ) (3)、()111 1max ,2N N N i i j i j i j i i j y y k ααα===?? - ??? ∑∑∑x x 1 s.t. 0, 1,....,, 0N i i i i C i N y αα=≤<==∑ 其中()()2 ,T T k '''=+x x x x x x 。 二次多项式核函数,决策边界为二次曲线 (d)

实验2分类预测模型-支持向量机

实验2分类预测模型——支持向量机SVM 一、 实验目的 1. 了解和掌握支持向量机的基本原理。 2. 熟悉一些基本的建模仿真软件(比如SPSS 、Matlab 等)的操作和使用。 3. 通过仿真实验,进一步理解和掌握支持向量机的运行机制,以及其运用的场景,特别是在分类和预测中的应用。 二、 实验环境 PC 机一台,SPSS 、Matlab 等软件平台。 三、 理论分析 1. SVM 的基本思想 支持向量机(Support Vector Machine, SVM ),是Vapnik 等人根据统计学习理论中结构风险最小化原则提出的。SVM 能够尽量提高学习机的推广能力,即使由有限数据集得到的判别函数,其对独立的测试集仍能够得到较小的误差。此外,支持向量机是一个凸二次优化问题,能够保证找到的极值解就是全局最优解。这希尔特点使支持向量机成为一种优秀的基于机器学习的算法。 SVM 是从线性可分情况下的最优分类面发展而来的,其基本思想可用图1所示的二维情况说明。 图1最优分类面示意图 图1中,空心点和实心点代表两类数据样本,H 为分类线,H1、H2分别为过各类中离分类线最近的数据样本且平行于分类线的直线,他们之间的距离叫做分类间隔(margin )。所谓最优分类线,就是要求分类线不但能将两类正确分开,使训练错误率为0,而且还要使分类间隔最大。前者保证分类风险最小;后者(即:分类间隔最大)使推广性的界中的置信范围最小,从而时真实风险最小。推广到高维空间,最优分类线就成为了最优分类面。 2. 核函数 ω

支持向量机的成功源于两项关键技术:利用SVM 原则设计具有最大间隔的最优分类面;在高维特征空间中设计前述的最有分类面,利用核函数的技巧得到输入空间中的非线性学习算法。其中,第二项技术就是核函数方法,就是当前一个非常活跃的研究领域。核函数方法就是用非线性变换 Φ 将n 维矢量空间中的随机矢量x 映射到高维特征空间,在高维特征空间中设计线性学习算法,若其中各坐标分量间相互作用仅限于内积,则不需要非线性变换 Φ 的具体形式,只要用满足Mercer 条件的核函数替换线性算法中的内积,就能得到原输入空间中对应的非线性算法。 常用的满足Mercer 条件的核函数有多项式函数、径向基函数和Sigmoid 函数等,选用不同的核函数可构造不同的支持向量机。在实践中,核的选择并未导致结果准确率的很大差别。 3. SVM 的两个重要应用:分类与回归 分类和回归是实际应用中比较重要的两类方法。SVM 分类的思想来源于统计学习理论,其基本思想是构造一个超平面作为分类判别平面,使两类数据样本之间的间隔最大。SVM 分类问题可细分为线性可分、近似线性可分及非线性可分三种情况。SVM 训练和分类过程如图2所示。 图2 SVM 训练和分类过程 SVM 回归问题与分类问题有些相似,给定的数据样本集合为 x i ,y i ,…, x n ,y n 。其中,x i x i ∈R,i =1,2,3…n 。与分类问题不同,这里的 y i 可取任意实数。回归问题就是给定一个新的输入样本x ,根据给定的数据样本推断他所对应的输出y 是多少。如图3-1所示,“×”表示给定数据集中的样本点,回归所要寻找的函数 f x 所对应的曲线。同分类器算法的思路一样,回归算法需要定义一个损失函数,该函数可以忽略真实值某个上下范围内的误差,这种类型的函数也就是 ε 不敏感损失函数。变量ξ度量了训练点上误差的代价,在 ε 不敏感区内误差为0。损失函数的解以函数最小化为特征,使用 ε 不敏感损失函数就有这个优势,以确保全局最小解的存在和可靠泛化界的优化。图3-2显示了具有ε 不敏感带的回归函数。 o x y 图3-1 回归问题几何示意图 o x y 图3-2 回归函数的不敏感地

GIS空间分析名词解释

.... 拓扑分析、空间叠加、缓冲分析、网络分析P3 数字地面模型(DTM): 数字高程模型(DEM): 不规则三角网(TIN): 地质统计学:是利用空间变量的自相关特征研究空间随机场性质的一种统计理论。它分为(1)结构分析理论;(2)克立格插值理论(插值理论);(3)条件模拟理论。 协方差、空间采样理论P9 估计误差:是指实测值与真实值之间的误差。 估计方差:是指估计误差的离散程度。 z,它的空间分布由x , y水平坐标系统来描述。 DEM派生信息:以数字地面模型为基础,通过数字地形分析(DTA)手段可提取出用于描述地表不同方面特征的参数,这些参数统称为DEM派生信息。 坡度、坡向、曲率P16 地面曲率:地面曲率是对地形表面一点扭曲变化程度的定量化度量因子,地面曲率在垂直和水平两个方向上分量分别称为平面曲率和剖面曲率。 剖面曲率、平面曲率、坡形P18 汇流量(汇流面积):一个栅格单元的汇流量是其上游单元向其输送的水流量的总和。 地形湿度指数:单位等高线上的汇流面积与坡度之比。 通视分析:就是利用DEM判断地形上任意点之间是否可以相互可见的技术方法,分为视线分析和视域分析。 ,具体指在点. 线. 面实体周围自动建立的一定宽度的多边形。 叠置分析:是将同一地区的两组或两组以上的要素进行叠置,产生新的特征的分析方法。 合成叠置、统计叠置P30 交、并、剪P31 差、识别P32 距离分析:用于分析图像上每个点与目标的距离,如有多目标,则以最近的距离作为栅格值。 距离制图、直线距离分析P32 密度分析:针对一些点要素(或线要素)的特征值(如人口数)并不是集中在点上(或线上)的特点,对要素的特征值进行空间分配,从而更加真实地反映要素分布。 密度制图:根据输入的要素数据集计算整个区域的数据聚集状况,从而产生一个连续的密度表面。 泰森多边形:设平面有n个互不重叠的离散数据点,则其中任意一个离散数据点Pi都有一个临近范围Bi,在Bi中的任一点同Pi点间的距离都小于它们同其它离散数据点间的距离,其中Bi是一个不规则多边形,称为泰森多边形。 重分类Reclassify:即基于原有数值,对原有数值重新进行分类整理从而得到一组新值并输出,是对单个波段,改变值的分布。 重采样Resample:是改变影像分辨率(每个像素点代表矢量大小),可以用于多波段。 像元统计、邻域统计、区域统计P38 Aggregate、Majority Filter、Expand和Shrink P38 协方差函数、互协方差函数P44 平稳假设:指区域化变量Z(x)的任意n维分布函数不因空间点x发生位移而改变。 二阶平稳假设:数学期望与协方差函数均存在且平稳。 两点之差的方差之半定义为Z(x)的变差函数。 角度容差、距离容差P50 块金常数、变程、基台值P51 套和结构:实际的区域化变量的变化性是十分复杂的,反映在变差函数上就是它的结构不是单纯的一种结构,而是多层次结构叠加在一起称为套和结构。 ,克里格法是建立在变异函数理论及结构分析基础上,在有限区域内对区域化变量取值进行线性无偏最优估计的方法。

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机模型的研究与设计

百度文库- 让每个人平等地提升自我 支持向量机实验模型的研究与设计 用户手册 1.简介 本模型是基于SVM(即支持向量机)的机器学习模型,能够将线性可分的和非线性可分的两种情况下的两类数据集进行分类,并对分类结果进行分析。用户可以选择装载已有的数据进行分类,也可以手动创建两类数据集进行分类。用户根据要分类的数据集,从两个训练算法中选择适当的训练算法,并且从三个核函数中选择适当的核函数对数据集进行分类。 2.系统要求 操作系统方面:Windows 98,Windows NT,Windows ME,Windows 2000, Windows XP及Windows 2003系统; 应用软件方面:必须安装MATLAB 或以上版本 3.使用说明 (1)首先运行或者文件,进入模型主界面,如下图: 用户在进入实验前必须先按“设置路径”按钮设置路径,然后就可以通过“进入支持向量机模型”按钮进入模型。

百度文库- 让每个人平等地提升自我(2)进入支持向量机机器学习模型后,界面如下图:用户可以通过各个按钮对模型进行操作 (3)装载或创建数据 a.通过“装载数据”按钮装载数据,用户选择数据所在的文件 b.通过“创建数据”按钮创建数据

百度文库- 让每个人平等地提升自我 可以创建线性可分数据集如下: 可以创建非线性可分数据集如下: C.装载数据或创建数据后的界面上显示数据点,如下图:

百度文库- 让每个人平等地提升自我 (4)通过“训练SVM”按钮对数据集进行分类 在此仅介绍了对线性可分数据集分类的情况,对其他的数据集,操作也跟如下类似。在数据集线性可分情况下,使用不同算法的分类结果: 选择SMO训练算法和Linear核函数的分类结果: (5)通过“重新设置”按钮,重新选择SMO训练算法和Polynomial核函数的分类结果

相关主题
文本预览
相关文档 最新文档