当前位置:文档之家› 运动学知识点及例题(详细)讲解

运动学知识点及例题(详细)讲解

运动学知识点及例题(详细)讲解
运动学知识点及例题(详细)讲解

第一章运动的描述匀变速直线运动

专题一:运动的描述

1.质点

(1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点)

(2)物体看做质点的条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)<<它通过的距离

(3).质点具有相对性,而不具有绝对性。

(4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建

立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

2.参考系

(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。

(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。

对参考系应明确以下几点:

①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。

②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。

③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系

④比较两物体运动时,要选同一参考系。

3.位置、位移和路程

(1)位置是空间某个点,在x轴上对应的是一个点

(2)位移是表示质点位置变化的物理量。是矢量,在x轴上是有向线段,大小等于物体的初位置到末位

置的直线距离,与路径无关。

(3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。

一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB的长度是路程,AB 是位移S。

C

B B

(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。

4、时刻和时间

时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量.

时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量.

时间间隔=终止时刻-开始时刻。

5、速度、平均速度和瞬时速度

(1)速度是表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。(适于一切运动)速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。

(2)平均速度是描述作变速运动物体运动平均快慢的物理量。只能粗略描述物体运动的快慢。做变速运动的物体,通过的位移s跟发生这段位移所用时间t的比值。叫这段时间(或这段位移上)的平均速度。

平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

平均速度与一段时间或一段位移相对应,故说平均速度必须指明是哪段时间或哪段位移内的平均速度(3)瞬时速度是描述变速运动物体瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含

义上看,瞬时速度指某一时刻附近极短时间内的平均速度,是矢量,方向为此时刻的运动方向。瞬时速度的大小叫瞬时速率,简称速率。是标量。

6、平均速率与瞬时速率(是标量)

(1)平均速率:等于路程与时间的比值

(2)瞬时速率:瞬时速度的大小

7、匀速直线运动

(1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,则叫

(2)特点:a=0,v=恒量.

(3)位移公式:S=vt.

(4)匀速直线运动的x—t图象

的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条

直线。

(5)匀速直线运动的v-t 图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。

由图可以得到速度的大小和方向,如v 1=20m/s,v 2=-10m/s,表明一个质点沿正方向以20m/s 的速度运动,另一个反方向以10m/s 速度运动。 8、加速度

(1)定义:速度的改变量跟发生这一改变量所用时间的比值 (2)定义式:a=

t v ??=0t V V t

- (3)是矢量,与速度变化(?v )的方向相同(a 与v 同向加速,a 与v 反向减速) (4)物理意义:描述速度改变快慢的物理量

速度越大(v 越大),加速度越大------错误 速度变化越大(△V 越大),加速度越大-------错误 在相同时间(或单位时间)内速度变化越大(△V 越大),加速度越大------正确 速度变化越快,加速度越大------正确 速度变化率越大,加速度越大------正确

速度增大时,加速度一定增大(或减小或不变)-------错误 速度减小时,加速度一定增大(或减小或不变)-------错误 速度增大时,加速度可能增大(或减小或不变)-------正确

速度减小时,加速度可能增大(或减小或不变)-------正确 速度为零时,加速度一定为零-------错误

10、用电火花计时器(或电磁打点计时器)研究匀变速直线运动 1、实验步骤:

(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路 (2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码. (3)将纸带固定在小车尾部,并穿过打点计时器的限位孔

(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带. (5)断开电源,取下纸带

(6)换上新的纸带,再重复做三次 2、常见计算:

(1)2B AB BC T υ+=,2C BC CD

T υ+=

(2)2

C B C

D BC

a T T υυ--== 11、常见题型

题型一、基本概念的理解

题型二、平均速度与瞬时速度的理解 题型三、速度与加速度的关系理解

专题二:匀变速直线运动

一、匀变速直线运动的规律

1、定义: 在相等的时间内速度的变化相等的直线运动叫做匀变速直线运动. 2.特点:a=恒量. 3.三个基本公式:

(1)速度随时间变化关系v t =v 0十at (2)位移随时间变化关系x=v 0t +2

1at 2

(3)速度与位移关系 v t 2-v 02=2ax ,以上三式知3求2 (4)x=

t v v t

2

0+. 说明:(1)以上公式只适用于匀变速直线运动.

(2)四个公式中只有两个是独立的,即由任意两式可推出另外两式.四个公式中有五个物理量,而两个独立方程只能解出两个未知量,所以解题时需要三个已知条件,才能有解.

(3)式中v 0、vt 、a 、s 均为矢量,方程式为矢量方程,应用时要规定正方向,凡与正方向相同者取正值,相反者取负值;所求矢量为正值者,表示与正方向相同,为负值者表示与正方向相反.通常将v 0的方向规定为正方向,以v 0的位置做初始位置. 4、推论:

(l )匀变速直线运动的物体,在任两个连续相等的时间里的位移之差是个恒量,即Δx = x n - x n-1=aT 2=恒量.X m - x n =(m-n)aT 2

(2)匀变速直线运动的物体,在某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即

图2-5

2

t V =V =

2

0t

v v +.(此平均速度公式只适于匀变速直线,定义式V =x/t 适于一切运动)以上两推论在“测定匀变速直线运动的加速度”等学生实验中经常用到,要熟练掌握. (3)匀变速直线运动的物体,在某段位移的中间位移处的瞬时速度为2

2

202

t x v v v

+=

无论加速还是减速

v

x 2

>2

t V

(4)初速度为零的匀加速直线运动(设T 为等分时间间隔):

① IT 末、2T 末、3T 末……瞬时速度的比为V l ∶V 2∶V 3……∶V n =1∶2∶3∶……∶n ; ② 1T 内、2T 内、3T 内……位移的比为S l ∶S 2∶S 3∶……S n =12∶22∶32∶……∶n 2;

③ 第一个T 内,第二个T 内,第三个T 内……位移的比为S I ∶S Ⅱ∶S Ⅲ∶……∶S N =l ∶3∶5∶……∶(2n

-1);

④ 从静止开始通过x 、2x 、3x 位移……末速度比为1:2:3……n ⑤ 从静止开始通过x 、2x 、3x 位移……所用时间之比为1:2:3……n ⑥静止开始通过连续相等的位移所用时间的比t 1∶t 2∶t 3∶……t n =

()()()

123121--????--n n ::::

二、自由落体运动和竖起上抛运动 (一)自由落体运动

1、定义: 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。

2、特点:(l )只受重力;(2)初速度为零.

3、公式:(1)v t =gt ;(2)x=21gt 2;(3)v t 2=2gx ;(4)x=t v t 2

;(5)

gt t h v 2

1

==-

-;

4、重力加速度:

(1)自由落体加速度也叫重力加速度,用g 表示.

(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。 (3)通常情况下取重力加速度g =10m/s 2

(二)竖起上抛运动

1、定义:将物体沿竖直方向抛出,抛出后只在重力作用下的运动。

2、公式:(1)v t =v 0-gt ,(2)s=v 0t -2

1

gt 2 (3)v t 2

-v 02

=-2gh

3、几个特征量:最大高度h= v 02/2g ,运动时间t=2v 0/g .

4、两种处理办法:

(1)分段法:上升阶段看做末速度为零,加速度大小为g 的匀减速直线运动,下降阶段为自由落体运动. (2)整体法:从整体看来,运动的全过程加速度大小恒定且方向与初速度v 0方向始终相反,因此可以把竖直上抛运动看作是一个统一的减速直线运动。这时取抛出点为坐标原点,初速度v 0方向为正方向,则a=一g 。

5、上升阶段与下降阶段的特点

(l )物体从某点出发上升到最高点的时间与从最高点回落到出发点的时们相等。即 t 上=v 0/g=t 下 所以,从某点抛出后又回到同一点所用的时间为t=2v 0/g

(2)上把时的初速度v0与落回出发点的速度V 等值反向,大小均为

gH

2;即 V=V0=

gH

2

注意:①以上特点适用于竖直上抛物体的运动过程中的任意一个点所时应的上升下降两阶段,因为从任意一点向上看,物体的运动都是竖直上抛运动,且下降阶段为上升阶段的逆过程.

②以上特点,对于一般的匀减速直线运动都能适用。若能灵活掌握以上特点,可使解题过程大为简化.尤其要注意竖直上抛物体运动的时称性和速度、位移的正负。 三、解题思路与步骤

1、正负号的规定,一般以初速度方向为正,其余量同向为正,反向为负。若初速度为0,则以加速度方向为正

2、解题步骤

(1)审题。明确研究对象。弄清题意和物体的运动过程。 (2)选择参考系、坐标系。规定正方向(一般取初速度为正方向)。 (3)画草图,明确已知量和待求物理量 (4)选择恰当的公式求解(知三求二)。 例如:知道a 、t 、

0v 求解末速度t v 用公式:at v v t +=0

(5)解方程。

(6)判断结果是否符合题意,根据正、负号确定所求物理量的方向。 四、题型

1、对匀变速直线运动公式的理解

物体先做匀减速直线运动,速度减为0后又反向加速的直线运动,全过程加速度不变,可全程用公式,但特别注意刹车问题中速度减为零后不能反向加速问题:要先求刹车时间 2、解匀变速直线问题的常用方法 (1)基本公式法

但对匀减速运动要注意两点,一是加速度在代入公式时一定是负值,二是题目所给的时间不一定是匀减速运动的时间,要判断是否是匀减速的时间后才能用(刹车不返回问题)。

例1、高速汽车以20m/s 的速度做匀减速运动,刹车过程中的加速度的大小为5m/s2 ,则刹车后6s 汽车的位移是多少?

分析:有的同学分析题目后,直接由公式得到s=20×6+1/2×5×62=210(m)。但本题中汽车是匀减速运动,代入公式中的加速度应为 -5m/s2 ,又若汽车静止需时为t ,则t=4s,由此可见汽车实际运动了4s 而不是6 s ,故汽车的位移应为s=20×4+1/2×(-5)×42=40(m)。 (1)平均速度法

平均速度公式V =x/t 适于一切运动,V =2

0t

v v +,只适于匀变速直线 (2)中间时刻、中间位置速度法

例2、物体从斜面顶端由静止开始匀加速滑下,经过斜面中点时的瞬时速度是2m/s ,则物体从顶端滑到最底端的过程中,平均速度是多少?

分析:设最底端速度为v t,由得v t=2(m/s)。

(m/s)。

(3)比例法

对于初速度为0的匀加速运动与末速度为0的匀减速运动用比例关系较快

例3、一物体做初速度为零的匀加速直线运动,在第三秒内通过的位移为10米,则该物体第一秒内的位移为多少?

分析:由比值关系③知:sⅠ:sⅢ=1:5,故sⅠ=2m。

例4、物体从光滑的斜面顶端由静止开始下滑经过一秒到达斜面中点,那么物体滑下的总时间是多少?

分析:由比值关系式④知t1:t2=1:,故t 总=(S)。

例5、一矿井深度为125米,在井口每隔相等时间落下一个小球,当第11个小球刚好从井口开始下落时,第1个小球恰好到达井底,此时第三个小球距井底多少米?( g=10m/s2)

分析:由比值关系式②知第三个小球下落的距离和总高度的比值s8:s10=82:102,小球下落的高度h=,所以此时小球距井底高度为125-80=45(m)。

(4)逆向思维法

把运动过程的末态作为初态的反向研究,一般用于末态已知的情况

例6、一物体竖直上抛,最后一秒的位移为最大高度的二分之一,求物体上抛的最大高度。(g=10m/s2) 分析:物体到达最高点后自由落体,该两种运动是对称的,即自由落体的第一秒和竖直上抛的最

后一秒的位移大小一样。设最大高度为H,则,即H=10(m)。

(5)图象法

例7、矿井里的升降机,从静止开始匀加速上升经时间3s速度达到3m/s,然后以这个速度匀速上升了6s,最后匀减速上升经2s到达井口正好停下来,求矿井深度。

分析:本题可用公式分段求解但比较麻烦,

若利用速度图象“面积”表示对应时间内的位

移,则简便多了。s=

如图1所示。

例8、以初速度2v0由地面竖直上抛一物A,而后又以初速度v0竖直上抛另一物B,要使两物在空中相遇,求抛出两物的时间间隔。

分析:常规解题即分别对A、B应用竖直上抛位移公式列方程,联立后得一含两未知数的二次方程,再组合为四个不等式组求出解的范围。若用图象法则比较简单。在同一坐标系中作出A的s―t图线,见图2。两物体在空中相遇即两图线相交,由图2显见只有抛出A后相隔2v0/g到4v0/g时间内抛出B,A、B 相遇。

例9(93年高考)两辆完全相同的汽车,沿水平路面一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行驶的距离为S,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为

A S

B 2S

C 3S

D 4S

分析:此题应用图象解法十分简单,介绍如下:

在同一坐标平面上作出前、后两车的v—t图象分别如图3中的实线和虚线所示。前车刹车的初速度为V0,停止时末速度为零。通过的位移S在数值上必等于ΔAOB的“面积”。后车在前车停止时开始刹车,并且刹车的加速度与前车相同,所以线段CD与AB的斜率相等,或者CD∥AB,四边形ABCD必为平行四边形,ΔCBD≌ΔAOB后车通过的总位移在数值上等于矩形AOBC与ΔCBD“面积”之和,即将2S+S=3S,要使唤两车不致相撞,它们原有的距离不得小于3S-S=2S,故B正确。

例10、物体沿一直线运动,在t时间内通过的路程为S,它在中间位置S/2处的速度为v1,在中间时刻t/2时的速度为v2则v1和v2的关系为:

A当物体作匀加速直线运动时,v1 >v2

B当物体作匀减速直线运动时,v1 >v2

C当物体作匀速直线运动时,v1 =v2

D当物体作匀速直线运动时,v1

分析:如图4所示,在v—t图象中,由于S1

时的时间大于t/2,故位移中点的速度大于时间中点的速度,即v1 >v2,所以A正

确同样可以利用v—t图象分析B、C也正确。

(6)推论法

Δx=xn-xn-1=aT2

(7)对称性分析法

例11、竖直上抛一物体,物体应在运动中两次经过A、B两点的时间分别为TA、TB,B在A的上方,求A、B两点间的距离。

分析:匀变速直线运动的往复过程具有时间、速度及位移的对称性。将此利用于竖直上抛运动的下落过程可得:

专题三:运动图象追及与相遇问题

一、物理图象的识图方法:一轴、二线、三斜率、四面积、五截距、六交点(或特殊点

1、“轴”:确定图象的意义

横、纵轴所代表的物理量,即图象是描述哪两个物理量间的关系,是位移和时间关系,还是速度和时间关系?同时还要注意单位和标度。

2、“点”“线”:确定物体的运动性质

“线”上的点反映两个量的瞬时对应关系,如x-t图的点对应某一时刻的位移,v-t图的点对应某一时刻的瞬时速度;

“线”上的一段对应一个物理过程,如x-t图象中图线若为倾斜的直线,表示质点做匀速直线运动,v-t图象中图线若为倾斜直线,则表示物体做匀变速直线运动。

3、“斜率”:表示横、纵坐标轴上两物理量的比值,常有一个重要的物理量与之对应,用于求解定量计算中对应物理量的大小和定性分析中对应物理量变化快慢的问题。如x-t图象的斜率表示速度大小,v-t图象的斜率表示加速度大小。

4、“面积”:图线和坐标轴所围成的面积也往往表示一个物理量,这要看两轴所代表的物理量的乘积有无实际意义。这可以通过物理公式来分析,也可以从单位的角度分析。如x和t乘积无实际意义,我们在分析x-t 图象时就不用考虑“面积”;而v和t的乘积vt=x,所以v-t图象中的“面积”就表示位移。

5、“截距”:表示横、纵坐标轴上两物理量在“初始”(或“边界”)条件下的物理量的大小,由此往往能得到一个很有意义的物理量。

6、“特殊点”:如交点,拐点(转折点)等。如x-t图象的交点表示两质点相遇,而v-t图象的交点表示两质点速度相等。

二、直线运动的x—t图象

1、图象的意义:反映位移随时间变化的规律

2、运动性质的确定:

图象是平行t轴的直线表示物体静止

图象是倾斜直线表示物体匀速直线运动

图象是曲线表示物体做变速直线运动

3、图象有关物理量的意义

点:表示某时刻物体所在的位置,两图线的交点表示两物体地该时刻相遇

斜率:表示物体运动的速度大小和方向

截距:表示初始位移和初始时刻

三、直线运动的v-t图象

1、图象的意义:反映速度随时间变化的规律

2、运动性质的确定:

图象是平行t轴的直线表示物体做匀速直线运动(v不变)

图象是倾斜直线表示物体匀变速直线运动(a不变)

图象是曲线表示物体做非匀变速直线运动(a变)

3、图象有关物理量的意义

点:表示某时刻物体的速度,两图线的交点表示两物体地该时刻速度相等

斜率:表示物体的加速度大小和方向

截距:表示初始速度和初始时刻

面积:表示物体的位移(t轴之上为正,之下为负)

图9

1.如图所示,A 、B 、C 三物体从同一地点、同时出发沿x 轴方向做直线运动的位移一时间图象,在0—t

时间内 ( ) A.平均速度

B .平均速率

C .A 一直在B 、C 的前面

D .A 的速度一直比B 、C 的速度大

2求下图2车什么时间相遇?

3.如图5所示,a 、b 两斜线分别表示从同一地点沿同一方向的两物体做直线运动时的 速度图象,下列说法正确的是( )

A .前10s 内b 的位移比较大

B .10s 时a 、b 两物体相遇

C .10s 末a 、b 两物体速度相等

D .a 的加速度比b 的加速度大 4某质点的v -t 图象如图9所示,则下列说法中正确的是 ( )

A .第3末质点离出发点最远

B .第2s 末质点运动方向改变

C .第3s 内和第4s 内质点的加速度方向相反

D .前3s 内质点的位移大小为6m

5下图是A 。B 两物体的运动图像,什么时候A.B 相遇?

四、追及和相遇问题

1.“追及”、“相遇”的问题

讨论在同一时刻两物体能否到达同一位置,关键抓住两个关系和一个条件 (1)两个关系:是时间关系和位移关系。 (2)一个条件:两物体的速度相同

是两物刚好能追上、追不上、两者最大距离、最小距离、刚好相遇”、的临界条件。

①速度小者追速度大者,追上前两个物体速度相等时,有最大距离;

②速度大者减速追赶速度小者,(或匀速的追加速的)追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 2、追及问题的常见情况及处理方法

(1)肯定能追上的问题,求追上时的时间、速度等

直接按追上列位移关系方程,时间关系方程

(2)能否追上的临界问题

方法一:按能追上列位移方程求时间,若有解,能追上,在追上前有最大距离且出现在速度相等时,再按速度相等求最大位移。若无解,则追不上,有最小距离,出现在速度相等时,再按速度相等示最小距离方法二:按速度相等,求两者的位移来直接判断是否遇上了。

方法三:图象法

方法四:函数极值法

3、解题思路和方法

(1)根据对两物体的运动过程分析,画出物体运动示意图

(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程

(4)联立方程求解

分析“追及”、“相遇”问题时应注意的问题

若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动,所以先要算一下它停下来所需时间

四、主要题型

1、运动图象的理解和应用:求位移、求速度、求加速度,相遇问题

2、追及和相遇问题:求相遇时的物理量,临界条件问题

专题四实验:研究匀变速直线运动

一、实验目的

1.练习使用打点计时器,学会用打上点的纸带研究物体的运动.

2.掌握判断物体是否做匀变速直线运动的方法.

3.会利用纸带测定匀变速直线运动的加速度.

二、实验原理

1.打点计时器

(1)作用:计时仪器,每隔0.02s打一次点.

(2)工作条件:

电磁打点计时器:4-6 V以下交流电源

电火花计时器:220 V交流电源

2.纸带上点的意义:

①表示和纸带相连的物体在不同时刻的位置;

②通过研究纸带上各点之间的间隔,可以判断物体的运动情况.

3.利用纸带判断物体是否做匀变速直线运动的方法

设x1、x2、x3、x4……为纸带上相邻两个计数点之间的距离,假如△x=x2-x1=x3-x2=x4-x3=……=常数,即连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体做匀变速直线运动.

4.由纸带能求的物理量物体运动速度和加速度的方法

(1)两个计数点间的时间间隔

(2)某点的瞬时速度

根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度vn=(xn+xn+1)/2T

(3)由纸带求物体运动加速度的方法

①利用△x=aT2

②利用Xm-Xn=(m-n)aT2

③利用“逐差法”求加速度. “逐差法”求加速度的目的是尽可能多地使用我们测量的数据,以减小偶然误差.设T为相邻两计数点之间的时间间隔,则:

a1=(x4-x1)/3T2 ,a2=(x5-x2)/ 3T2,a3=(x6-x3)/ 3T2

加速度的平均值为:a=(a1+a2+a3)/3

④用v-t图象求加速度:求出打各个计数点时纸带的瞬时速度,再作出v-t图象,图线的斜率即为做匀变速直线运动物体的加速度.

三、实验器材

电火花计时器或电磁打点计时器、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸.

四、实验步骤

1. 把带有滑轮的长木板平放在实验桌上,把滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,并把打点计时器连接在电源上。

2. 把一条细绳拴在小车上,细绳跨过定滑轮,下边挂上合适的钩码。把纸带穿过打点计时器的复写纸下,并把它的一端固定在小车的后面。

3. 把小车停止靠近打点计时器处,接通电源等打点计时器计时稳定后,放开小车。换上新纸带,重复实验3次

五、数据处理(纸带问题分析)

1. 从三条纸带中选择一条比较理想的,舍掉开头一些比较密集的点子,在后边便于测量的地方找一个开始点。为了测量方便和减小误差,通常不用每打一次点的时间作为时间的单位,而用每打五次点的时间作为时间的单位,就是T=0.02×5=0.1s。在选好的开始点下面标明A,在第六点下面标明B,在第十一点下面标明C,在第十六点下面标明D,……,点A、B、C、D……叫做计数点,如图所示。两个相邻计数点间的距离分别是x1、x2、x3……

x1x2 x3

A B C D

2. 测出六段位移x1、x2、x3、x4、x5、x6的长度,把测量结果填入下表1中。

3、求被测物体在任一计数点对应时刻的瞬时速度v:应用做匀变速直线运动的物体某段时间内的平均

速度等于该段时间中间时刻的瞬时速度.如T

x x v c 23

2+=

4、判断物体运动的性质:

方法一:利用x 1、x 2、x 3 …可以计算相邻相等时间内的位移差x 2-x 1、x 3- x 2、x 4- x 3…,如果各Δx 的差值不等于零且在5%以内,可认为它们是相等的,则可以判定被测物体的运动是匀变速直线运动. 5、由实验数据做v-t 图

(1):根据表格中的v-t 数据,在直角坐标系中描点,(2)做一条直线,使同一次实验得到的各点尽量落到这条直线上,落不到直线上的各点应均匀分布在直线的两侧,这条直线就是本次实验的v-t 图,若是一条倾斜的直线如图,

6、求被测物体的加速度有3种方法:

方法1:“逐差法”.从纸带上得到6个相邻相等时间内的位移,则()()2

3216549T s s s s s s a ++-++=

.

方法2:利用任意两段相邻记数点间的位移求加速度,最后取平均值.如

六、注意事项

1.交流电源的电压和频率要符合要求

2、实验前要检查打点的稳定性和清晰程度,必要时要调节振针的高度和更换复写纸 3.释放物体前,应使物体停在靠近打点计时器的位置.

4、使用打点计时器打点时,应先接通电源,待打点计时器稳定工作后,再释放纸带.

5、要防止钩码落地和小车跟滑轮相接,在小车到达滑轮前及时接住它。

6.小车另一端挂的钩码个数要适当,避免速度过大而使纸带上打的点太少,或者速度太小,使纸带上打的点过于密集.控制在50cm 的纸带上清晰的取六、七个计数点为宜。

7.要区别计时器打出的点与人为选取的计数点,一般在纸带上每隔四个点取一个计数点,即T=0.1s 。 8、要多测几组数据,尽量减小误差;计算a 时要注意用逐差法,以减小误差. 9、坐标轴单位选取要合适 七、误差分析

图1-5-2

s

1. 本实验参与计算的量有x 和T ,因此误差来源于x 和T .由于相邻两计数点之间的距离x 测量有误差而使a 的测量结果产生误差.

2.由于电源的频率不稳定而使T 不稳定产生误差. ………………

八、主要题型

题型一:实验数据处理

.基础知识理解、纸带问题、图象处理、测重力加速度 题型二:实验原理和误差分析 1..基础知识理解

(1)“研究匀变速直线运动”的实验中,使用电磁打点计时器(所用交流电的频率为50 Hz),得到如图所示的纸带.图中的点为计数点,相邻两计数点间还有四个点未画出来,下列表述正确的是( )

A .实验时应先放开纸带再接通电源

B .(s6-s1)等于(s2-s1)的6倍

C .从纸带可求出计数点B 对应的速率

D .相邻两个计数点间的时间间隔为0.02 s 【答案】 C

(2)在一次实验中,如果某同学不知道实验所使用的交流电电源的实际频率已超过50 Hz ,那么他计

算出来的平均速度值与真实值相比是( )

A .偏大

B .偏小

C .相等

D .不能确定 【答案】 B 2 纸带问题的分析 (1)判断物体的运动性质

根据匀速直线运动特点x=vt ,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。由匀变速直线运动的推论2

aT x =?,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。 (2)求某点速度 (3)求加速度 方法一:逐差法

()()

2

1234569T

x x x x x x a ++-++=

方法二:v —t 图象法

利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v —t 图象),然后进行描点连线,求出图线的斜率k=a. 方法三:利用任意两段相邻记数点间的位移求加速度,最后取平均值.如

(1)某学生用打点计时器研究小车的匀变速直线运动.他将打点计时器接到频率为50 Hz的交流电源上,实验时得到一条纸带如图1-5-15所示.他在纸带上便于测量的地方选取第一个计时点,在这点下标明A,第六个点下标明B,第十一个点下标明C,第十六个点下标明D,第二十一个点下标明E.测量时发现B 点已模糊不清,于是他测得AC长为14.56 cm,CD长为11.15 cm,DE长为13.73 cm,则打C点时小车的瞬时速度大小为m/s,小车运动的加速度大小为m/s2,AB的距离应为cm.(保留三位有效数字)

【解析】某时刻的瞬时速度等于一段时间内的平均速度:

小车的加速度:

由于,

所以

【答案】0.986,2.58,5.99

(2)如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据.(重力加速度g=10 m/s2),求:

⑴斜面的倾角α;

⑵物体与水平面之间的动摩擦因数μ;

⑶t=0.6 s时的瞬时速度v.

【解析】⑴由前三列数据可知物体在斜面上匀加速下滑时的加速度为

⑵由后二列数据可知物体在水平面上匀减速滑行时的加速度大小为

⑶由2+5t=1.1+2(0.8-t),解得t=0.1 s

即物体在斜面上下滑的时间为0.5 s

则:t=0.6 s时物体在水平面上,其速度为v=v1.2+a2t=2.3 m/s

【答案】⑴α=30?;⑵μ=0.2;(3)2.3 m/s

如图所示,某同学在做“研究匀变速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T=0.10s,其中S1=7.05cm、S2=7.68cm、S3=8.33cm、

S4=8.95cm、S5=9.61cm、S6=10.26cm,则A点处瞬时速度的大小是_______m/s,小车运动的加速度计算表达式为________________,加速度的大小是_______m/s2(计算结果保留两位有效数字).

【解析】某时刻的瞬时速度等于一段时间内的平

均速度:

(考虑两位有效数字)

用逐差法来计算加速度:

【答案】0.86,,0.64

3. 图象处理

(1)某同学用如图所示的实验装置研究小车在斜面上的运动.实验步骤如下:

a.安装好实验器材.

b.接通电源后,让拖着纸带的小车沿平板斜面向下运动,重复几次.选出一条点迹比较清晰的纸带,舍去开始密集的点迹,从便于测量的点开始,每两个打点间隔取一个计数点,如图1中0、1、2……6点所示.

c.测量1、2、3......6计数点到0计数点的距离,分别记作:S1、S2、S3 (6)

d.通过测量和计算,该同学判断出小车沿平板做匀速直线运动.

e.分别计算出S1、S2、S3……S6与对应时间的比值.

f.以为纵坐标、t为横坐标,标出与对应时间t的坐标点,划出—t图线。

结合上述实验步骤,请你完成下列任务:

①实验中,除打点及时器(含纸带、复写纸)、小车、平板、铁架台、导线及开关外,在下面的仪器和器材中,必须使用的有和.(填选项代号)

A.电压合适的50 Hz交流电源B.电压可调的直流电源

C.刻度尺D.秒表E.天平F.重锤

②将最小刻度为1 mm的刻度尺的0刻线与0计数点对齐,0、1、2、5计数点所在位置如图2所示,则S2=cm,S5=cm.

③该同学在图3中已标出1、3、4、6计数点对应的坐标,请你在该图中标出与2、5两个计数点对应的

坐标点,并画出—t图.

④根据—t图线判断,在打0计数点时,小车的速度v0=m/s;它在斜面上运动的加速度a=m/s2.

【解析】①打点计时器使用的电源为交流电源,利用刻度尺测量各点之间的距离.

②由刻度尺的最小刻度为mm,故要估读到0.1mm,即要读到0.01cm位.

③因为cm/s,cm/s,描出对应的两点,再连线即可得S/t-t图线.

④由图线在纵轴上的截距可求得初速度,图线的斜率则表示加速度.

【答案】①A,C;②(2.97~2.99),(13.19~13.21);③图略;④(0.16~0.20),(4.50~5.10)

4. 测重力加速度

(1)如图所示,将打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置可以测定重力加速度.

(1)所需器材有打点计时器(带导线)、纸带、复

写纸、带铁夹的铁架台和带夹子的重物,此外

还需________(填字母代号)中的器材.

A.直流电源、天平及砝码B.直流电源、毫米刻度尺

C.交流电源、天平及砝码D.交流电源、毫米刻度尺

(2)通过作图象的方法可以剔除偶然误差较大的数据,提高实验的准确程度.为使图线的斜率等于重力加速度,除作v-t图象外,还可作____________图象,其纵轴表示的是________,横轴表示的是

________.

【解析】本题考查了利用验证机械能守恒定律的实验装置测定重力加速度,意在考查考生的知识迁移能力和利用图象处理实验数据的能力.

(1)本实验不需要测量重物的质量,直接通过处理纸带,利用匀变速直线运动的规律即可求得,缺少低压交流电源和刻度尺,故D正确;

(2)由匀变速直线运动的规律2gh=v2可得:=gh,当纵轴表示,横轴表示重物下落高度h时,则图象的斜率即为重力加速度.

【答案】(1)D(2) -h,速度平方的二分之一,重物下落高度h

(2)某同学用如下图所示装置测量重力加速度g,所用交流电频率为50

Hz,在所选纸带上取某点为0号计数点,然后每隔2个计时点取一个计

数点,所有测量数据及其标记符号如下图所示.

该同学用两种方法处理数据(T为相邻两计数点的时间间隔):

从数据处理方法看,在s1、s2、s3、s4、s5、s6中,对实验结果起作用的:方法A中有________;方法B中有________.因此,选择方法________(A或B)更合理,这样可以减少实验的________(系统或偶然)误差.本实验误差的主要来源有________________(试举出两条).

1质点运动学

第1章 质点运动学 一、基本要求 1.理解描述质点运动的位矢、位移、速度、加速度等物理量意义; 2.熟练掌握质点运动学的两类问题:即用求导法由已知的运动学方程求速度和加速度,并会由已知的质点运动学方程求解位矢、位移、平均速度、平均加速度、轨迹方程;用积分法由已知的质点的速度或加速度求质点的运动学方程; 3.理解自然坐标系,理解圆周运动中角量和线量的关系,会计算质点做曲线运动的角速度、角加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。 二、基本内容 (一)本章重点和难点: 重点:掌握质点运动方程的物理意义及利用数学运算求解位矢、位移、速度、加速度、轨迹方程等。 难点:将矢量运算方法及微积分法应用于运动学解题。(提示:矢量可以有黑体或箭头两种表示形式,教材中一般用黑体形式表示,学生平时作业及考试请用箭头形式表示) (二)知识网络结构图: ? ?? ?? ? ?? ?? ? ??? ??? ?????? ?? ??相对运动 总加速度法向加速度切向加速度角加速度角速度曲线运动轨迹方程参数方程位矢方程质点运动方程运动方程形式平均加速度加速度平均速度速度位移 位矢基本物理量,,,,:)(,,

(三)容易混淆的概念: 1.瞬时速度和平均速度 瞬时速度(简称速度),对应于某时刻的速度,是质点位置矢量随时间的变化率,用求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不用求导法。 2. 瞬时加速度和平均加速度 瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度矢量随时间的变化率,用求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不用求导法。 3.质点运动方程、参数方程和轨迹方程 质点运动方程(即位矢方程),是质点位置矢量对时间的函数;参数方程是质点运动方程的分量式;而轨迹方程则是从参数方程中消去t 得到的,反映质点运动的轨迹特点。 4.绝对速度、相对速度和牵连速度 绝对速度是质点相对于静止参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静止参照系的速度。 (四)主要内容: 1.质点的位矢、位移、运动方程 (1)质点运动方程()(t r ):k t z j t y i t x t r )()()()(++=(描述质点运动的空间位置与时间的关系式) (2)位矢(r ):k z j y i x r ++=

高一年级物理运动学知识点总结

高一年级物理运动学知识点总结 【一】 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 7.质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动 8.动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。 9.质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。 【二】 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的

描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示. (3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. 【三】 6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直

高中物理运动学公式总结

高中物理运动学公式总结 The Standardization Office was revised on the afternoon of December 13, 2020

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3= =?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23-): :(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt= s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

高考理综知识点全面总结复习

物理 一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。 三个大小相等的共面共点力平衡,力之间的夹角为1200。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则312123 sin sin sin F F F ααα==(拉密定理)。 5.物体沿斜面匀速下滑,则tan μα=。 6.两个一起运动的物体“刚好脱离”时: 貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 二、运动学: 1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。 2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动: 时间等分时, S S aT n n -=-12 , 位移中点的即时速度V V V S 212222=+, V V S t 22 > 纸带点痕求速度、加速度: T S S V t 2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时: 时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体: (g 取10m/s 2) n 秒末速度(m/s ): 10,20,30,40,50 n 秒末下落高度(m):5、20、45、80、125 第n 秒内下落高度(m):5、15、25、35、45 6.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g = 7.相对运动:共同的分运动不产生相对位移。 8.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用22v as =求滑行距离。 9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。 10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。

第1章 质点运动学

第1章 质点运动学 一、选择题 1. 一物体在位置1的矢径是 r 1, 速度是 v 1. 经?t 秒后到达位置2,其矢径是 r 2, 速度 是 v 2.则在?t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ?-1 2 (D) t r r ?+12 2. 一物体在位置1的速度是 v 1, 加速度是 a 1.经?t 秒后到达位置2,其速度是 v 2, 加速度是 a 2.则在?t 时间内的平均加速度是 [ ] (A) )(1 12v v -?t (B) )(112v v +?t (C) )(2112a a - (D) )(2 112a a + 3. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量 (B) 加速度是描述物体位移变化率的物理量 (C) 加速度是描述物体速度变化的物理量 (D) 加速度是描述物体速度变化率的物理量 4.运动方程表示质点的运动规律, 运动方程的特点是 [ ] (A) 绝对的, 与参考系的选择无关 (B) 只适用于惯性系 (C) 坐标系选定后, 方程的形式是唯一的 (D) 参考系改变, 方程的形式不一定改变 5. 竖直上抛的物体, 在t 1秒末时到达某一高度, t 2秒末再次通过该处,则该处的高度是 [ ] (A) 212 1t gt (B) )(2121t t g + (C) 2 21)(2 1t t g + (D) )(2 112t t g - 6. 一质点作曲线运动, 任一时刻的矢径为 r , 速度为 v , 则在?t 时间内 [ ] (A) v v ?=? (B) 平均速度为??r t (C) r r ?=? (D) 平均速度为 t r ?? 7. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的 t d d v 和t d d v 的变化情 T 1-1-1图 T 1-1-2图

运动学知识点整理

运动学知识点与公式整理 一、速度、时间、加速度 1、平均速度定义式:t x ??=/υ ① 当式中t ?取无限小时,υ就相当于瞬时速度。 ② 如果是求平均速率,应该是路程除以时间。请注意平均速率是 标量;平均速度是矢量。 2、两种平均速率表达式(以下两个表达式在计算题中不可直接应用) ① 如果物体在前一半时间内的平均速率为1υ,后一半时间内的平均 速率为2υ,则整个过程中的平均速率为22 1υυυ+= ② 如果物体在前一半路程内的平均速率为1υ,后一半路程内的平均 速率为2υ,则整个过程中的平均速率为2 1212υυυυυ+= 3、加速度的定义式:t a ??=/υ ● 在物理学中,变化量一般是用变化后的物理量减去变化前的物理量。 ● 应用该式时尤其要注意初速度与末速度方向的关系。 ● a 与υ同向,表明物体做加速运动;a 与υ反向,表明物体做减速运动。 ● a 与υ没有必然的大小关系。 匀变速直线运动 1、匀变速直线运动的三个基本关系式 ① 速度与时间的关系at +=0υυ ② 位移与时间的关系202 1at t x +=υ (涉及时间优先选择,必须注意对于匀减速问题中给出的时间不一定就是公式中的时间,首先运用at +=0υυ,判断出物体真正的运动时间) ③ 位移与速度的关系ax t 2202=-υυ (不涉及时间,而涉及速度) 一般规定0v 为正,a 与v 0同向,a >0(取正);a 与v 0反向,a <0 (取负) 同时注意位移的矢量性,抓住初、末位置,由初指向末,涉及到x 的正负问题。 注意运用逆向思维: 当物体做匀减速直线运动至停止,可等效认为反方向初速为零的

高考物理专题复习--21运动学图像专题知识要点

运动学图像专题 主标题:运动学图像专题 副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。 关键词:匀变速直线运动,图像 难度:3 重要程度:3 内容: 1、考点剖析:运动图像是高考中的热点,多以选择题出现(在计算题中也有应用),难度中等。高考较注重学生对图像的理解,有些题目利用图像分析求解能使问题简化,深刻理解运动图像的物理意义,能从图像中获得有效信息,灵活运用运动学规律公式是解决此类问题的关键。 2、知识点:利用图像法可直观地反映物理规律,分析物理问题。图像法是物理研究中常用的一种重要方法,运动学中常用的图像为v-t图像。在理解图像物理意义的基础上,用图像法分析解决有关问题(如往返运动、定性分析等)会显示出独特的优越性,解题既直观又方便。 3、题型分类:(主要讨论v-t图像和s-t图像,其他图像的意义在例题中说明) 点:即图像的各种交点;v-t图像中表示该时刻两物体的速度相同;s-t图像中表示该时刻两物体的位移相同 线:即图像的斜率;v-t图像中表示该时刻物体的加速度;s-t图像中表示该时刻物体的速度 面:即图像的面积;v-t图像中表示一段时间内的位移;s-t图像中无意义; 例1、如图所示是某质点做直线运动的v-t图像,由图可知这个质点的运动情况是( ) A、前5s做的是匀速运动 B、5s~15s内做匀加速运动,加速度为1m/s2 C、15s~20s内做匀减速运动,加速度为3.2m/s2 D、质点15s末离出发点最远,20秒末回到出发点 【解析】由图像可知前5s做的是匀速运动,选项A正确;5~15s内做匀加速度运动,加速度为0.8m/s2,选项B错误;15s~20s做匀减速运动,加速度为-3.2m/s2,选项C错,质点一直做单方向的直线运动,在20s末离出发点最远,选项D错误。 【答案】A 例2、如图所示是甲、乙两物体从同一点出发的位移-时间(x-t)图像,由图像可以看出在0~4s这段时间内( )

1质点运动学答案

质点运动学 1.一质点在平面上运动,已知质点位置矢量的表示式为(其中a、b为常量),则该质点作 ( ) A.匀速直线运动. B.变速直线运动. C.抛物线运动. D.一般曲线运动. 答案:B 2对于沿曲线运动的物体,以下几种说法中哪一种是正确的: ( ) A.切向加速度必不为零. B.法向加速度必不为零(拐点处除外). C.由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. D.若物体作匀速率运动,其总加速度必为零. E.若物体的加速度为恒矢量,它一定作匀变速率运动. 答案:B 3.一个质点在做匀速率圆周运动时() A.切向加速度改变,法向加速度也改变. B.切向加速度不变,法向加速度改变. C.切向加速度不变,法向加速度也不变. D.切向加速度改变,法向加速度不变. 答案:B 4.{ 一质点沿x方向运动,其加速度随时间变化关系为 a=3+2t(SI), 如果初始时质点的速度v 0为5 m/s,则当t为3s时,质点的速度 v=_________________. } 答案:23m/s 5.{ 一辆作匀加速直线运动的汽车,在6s内通过相隔60 m远的两点,已知汽车经过第二点时的速率为15m/s,则(1)汽车通过第一点时的速率v1=___________________; (2)汽车的加速度a=___________________________. } 答案:5.00 m/s|1.67 m/s2 6.{ 一质点作半径为0.1 m的圆周运动,其角位置的运动学方程为: (SI) 则其切向加速度为=_____________________. } 答案:0.1m/s2 7.{ 试说明质点作何种运动时,将出现下述各种情况: (1);__________________________________ (2),a n=0;__________________________________ at、a n分别表示切向加速度和法向加速度。 } 答案:变速率曲线运动|变速率直线运动

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

大学物理第1章质点运动学知识点复习及练习

第1章质点运动学(复习指南) 一、基本要求 掌握参考系、坐标系、质点、运动方程与轨迹方程得概念,合理选择运动参考系并建立直角坐标系,理解将运动对象视为质点得条件、 掌握位矢、位移、速度、加速度得概念;能借助直角坐标系计算质点在平面内运动时得位移、平均速度、速度与加速度、会计算相关物理量得大小与方向、 二、基本内容 1.位置矢量(位矢) 位置矢量表示质点任意时刻在空间得位置,用从坐标原点向质点所在点所引得一条有向线段,用表示.得端点表示任意时刻质点得空间位置.同时表示任意时刻质点离坐标原点得距离及质点位置相对坐标轴得方位.位矢就是描述质点运动状态得物理量之一.对应注意: (1)瞬时性:质点运动时,其位矢就是随时间变化得,即.此式即矢量形式得质点运动方程. (2)相对性:用描述质点位置时,对同一质点在同一时刻得位置,在不同坐标系中可以就是不相同得.它表示了得相对性,也反映了运动描述得相对性. (3)矢量性:为矢量,它有大小,有方向,服从几何加法.在平面直角坐标系系中 位矢与x轴夹角正切值 ? 质点做平面运动得运动方程分量式:,. 平面运动轨迹方程就是将运动方程中得时间参数消去,只含有坐标得运动方程、 2.位移 得大小?. 注意区分:(1)与,前者表示质点位置变化,就是矢量,同时反映位置变化得大小与方位.后者就是标量,反映从质点位置到坐标原点得距离得变化.(2)与,表示时间内质点通过得路程,就是标量.只有当质点沿直线某一方向前进时两者大小相同,或时,. 3.速度 定义,在直角坐标系中 得方向:在直线运动中,表示沿坐标轴正向运动,表示沿坐标轴负向运动. 在曲线运动中,沿曲线上各点切线,指向质点前进得一方.

1.质点运动学答案

质点运动学1 一、选择题 1、 分别以r 、s 、υ 和a 表示质点运动的位矢、路程、速度和加速度,下列表述 中正确的是 A 、r r ?=? B 、υ==dt ds dt r d C 、dt d a υ= D 、υ=dt dr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y -=, 0=t 时质点位于坐标原 点,当质点返回原点时,其速度和加速度分别为 A 、116-?s m ,216-?s m B 、116-?-s m ,216-?s m C 、116-?-s m ,216-?-s m D 、116-?s m ,216-?-s m [ C ] 3、已知质点的运动方程为:θθcos cos 2Bt At x +=,θθsin sin 2Bt At y +=,式中 θ、、B A 均为恒量,且0>A ,0>B ,则质点的运动为: A .一般曲线运动; B .圆周运动; C .椭圆运动; D .直线运动; ( D ) [分析] 质点的运动方程为 2 2 c o s c o s s i n s i n x A t B t y A t B t θθθθ?=+?=+? 由此可知 θt a n =x y , 即 ()x y θt a n = 由于=θ恒量,所以上述轨道方程为直线方程。 又 ()()???+=+=θθs i n c o s Bt A v Bt A v y x 22 ???====恒量恒量 θθsin cos B a B a y x 22 由于0>A ,0>B ,显然v 与a 同号,故质点作匀加速直线运动。 4、质点在平面内运动,位矢为)(t r ,若保持0=dt dr ,则质点的运动是 A 、匀速直线运动 B 、 变速直线运动 C 、圆周运动 D 、匀速曲线运动 [ C ]

(精编!)高一物理《运动学知识点归纳》

运动学知识点归纳(必修一第一、二章) 【考试说明】 【知识网络】 【考试说明解读】 1.参考系 *⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵运动学中的同一公式中涉及的各物理量必须选择同一参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 *⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 物体可视为质点的主要三种情形: ①物体只作平动时; *②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。 ⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)

相对应。 4.位移和路程 *⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置指向末位置的 有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 *⑵路程:路程等于实际运动轨迹的长度,是一个标量。 *只有在单方向的直线运动中,位移的大小才等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移 所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速 度,即 t s v = ,平均速度是矢量,其方向就是相应位移的方向。 *公式V =(V 0+V t )/2只对匀变速直线运动适用。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有 一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度, 即t v v t v a t 0 -=??= ⑶速度、速度变化、加速度的关系: *①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必 然的联系。 *②大小关系:V 、△V 、a (F 合)无必然的大小决定关系!! *③*只要a 与v 方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速 度减小,速度增大得越来越慢(仍然增大)!! *只要a 与v 方向相反,物体的速度一定减小!! *7、运动图象:s —t 图象与v —t 图象的比较 (深刻把握!!) 下图和下表是形状一样的图线在s —t 图象与v —t 图象中的比较. s — t 图 v —t 图 图A-2-6-1

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

运动学知识点总结

运动学知识点总结 一,质点、参考系、坐标系 1,机械运动:物体相对于其它物体位置发生变化,称为机械运动,简称运动 2,运动是绝对的,静止是相对的 3,质点:用来代替物体的有质量、无大小的点(理想化模型,为简化问题研究方便而引入)物体看成质点的条件:物体本身形状大小相对于研究问题是次要的,可忽略。 (物体本身大小远小于研究距离) 4,参考系:为研究物体运动而选为标准的物体(就是假设不动的物体) 参考系可任意选取,应尽量使得研究问题简化 5,坐标系:为定量描述质点位置的变化而建立的坐标 轴 二,时间和位移 1,时刻:对应某一位置,某一瞬间,是一个点 时间间隔,简称时间:对应一段位移、一段过程 时间轴:(要能看懂,哪个是时间?哪个是时刻?) 2,标量和矢量 标量:只有大小没有方向的量。如“路程、速率、时间” 矢量:既有大小又有方向的量。如“位移、速度、加速度” 3,路程:通过路径的长度。标量,可以是直线、也可以是曲线。只能粗略反映物体的运动 4,位移:表示物体位置变化的物理量。是从初位置指向末位置的有向线段。能精确反映物体运动矢量,线段长度表示位移大小,箭头表示位移方向 5,路程位移关系:路程和位移是两个不同类型的物理量,绝不能说“位移等于路程”! 单向的直线运动:“位移大小”才等于路程。 其它运动中,“位移大小”小于路程 三,速度:是描述物体运动快慢的物理量 1,定义式:(发生位移与所用时间的比值) 比值定义:V等于位移与时间的比值,和单独的位移或时间没有关系的! 2,矢量:速度方向就是运动方向 3,分类:平均速度:一段时间内的速度,只能粗略反映运动快慢 瞬时速度:某一时刻、某一位置的速度,能精确反映物体运动 4,瞬时速率:瞬时速度的大小,简称“速率” 平均速率:路程与所用时间的比值 5注意:平均速度、瞬时速度都是矢量, 瞬时速率、平均速率都是标量 平均速率不是平均速度的大小! 匀速直线运动中,平均速度等于瞬时速度

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

自由落体,平抛运动公式总结

一、基础知识 1、匀变速直线运动:基本规律: 加速度a= 速度公式:位移公式 几个重要推论: (1) 速度——位移公式 (2) A B段中间时刻的瞬时速度: A C B (3) AB段位移中点的瞬时速度: 初速为零的匀加速直线运动,在1s 、2s、3s……ns内的位移之比为 在第1s 内、第 2s内、第3s内……第ns内的位移之比 为 在第1米内、第2米内、第3米内……第n米内的时间之比 为

初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: (a--匀变速直线运动的加速度 T--每个时间间隔的时间) 2、自由落体运动(以竖直向下为正方向) 初速度Vo=末速度Vt= 下落高度h=(从Vo位置向下计算)推论Vt = (1)自由落体运动是初速度的运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3、竖直上抛运动(以竖直向上为正方向) 位移s=末速度Vt =(g=9.8m/s2≈10m/s2) 上升最大高度Hm= (抛出点算起) 往返时间t=(从抛出落回原位置的时间) (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为,向下 为,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。

平抛运动运动规律 1、定义:将物体以一定的初速度沿抛出,不考虑空气阻力,物体只在作用下所做的运动. 2、性质:加速度为重力加速度g的运动,运动轨迹是抛物线. 3、基本规律:以为原点,水平方向(初速度v0方向) 为轴, 方向为y轴,建立平面直角坐标系,则: (1)水平方向:做运动,速度vx=,位移x = . (2)竖直方向:做运动,速度vy=,位移y = . (3)合速度:v= ,方向与水平方向的夹角为θ,则tan θ= = . (4)合位移:s= ,方向与水平方向的夹角为α,tan α= = .

高一上学期物理基础公式总结

高一上学期物理基础公式总结如下: 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论V t2-V o2=2as 3.中间时刻速度V t/2=V平=(V t+V o)/2 4.末速度V t=V o+at 5.中间位置速度V s/2=[(V o2+V t2)/2]1/2 6.位移s=V平t=V o t+at2/2=V t/2t (初速度为零) 7.加速度a=(V t-V o)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(V o):m/s;加速度(a):m/s2;末速度(V t):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 2)自由落体运动 1.初速度V o=0 2.末速度V t=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论V t2=2gh (3)竖直上抛运动 1.位移s=V o t-gt2/2 2.末速度V t=V o-gt (g=9.8m/s2≈10m/s2) 3.有用推论V t2-V o2=-2gs 4.上升最大高度H m=V o2/2g(抛出点算起) 5.往返时间t=2V o/g (从抛出落回原位置的时间) 三、力(常见的力、力的合成与分解) 1)常见的力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μF N{与物体相对运动方向相反,μ:摩擦因数,F N:正压力(N)} 4.静摩擦力0≤f静≤f m(与物体相对运动趋势方向相反,f m为最大静摩擦力) 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:F x=Fcosβ,F y=Fsinβ(β为合力与x轴之间的夹角tgβ=F y/F x) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:F N>G,失重:F N

中考物理知识点复习专题运动学

2011中考物理复习专题《运动的世界》 一:课标要求 1.能用实例解释机械运动以及物体运动和静止的相对性。 2.能跟据日常经验或自然现象粗略估测长度和时间,并会使用适当的工具正确测量长度和时间。 3.能用速度描述物体的运动情况,能利用速度公式进行简单的计算。 4.知道世界处于永不停息的运动之中,能举例说明生命在自然界中存在多种多样的运动形式。 二:知识点总汇 1.物体运动的描述: (1)参照物:要描述物体的运动情况,事先必须选择一个物体作为参照标准,人们把这个作为参照标准的物体叫做参照物。 注意:1.参照物是可以任意选择的,任何物体都可以选做参照物。一般情况下要研究在地面附近的物体的运动情况,往往选择地面为参照物。 2.判断一个物体的运动情况,不能选它本身作为参照物。) (2)运动和静止的相对性:对同一个物体而言,如果选择的参照物不同,得出的物体的运动情况可能不同,这就是运动和静止的相对性。因此在描述物体的运动情况是要特别说明是以什么物体作为参照物的。 例题:小红坐在一辆由东向西行驶的列车上,则她相对于路边的大树是________的,相对于坐在她身旁的乘客是________的,相对于从她身边走过的乘务员是_________的。 解析:根据所选参照物判断物体的运动情况,就看该物体相对于所选参照物的位置是否改变,如果位置改变了,则该物体相对于所选参照物是运动的:如果没改变,则该物体相对于所选参照物是静止的。 答案:运动、静止、运动 练习题: 1.“两岸青山相对出,孤帆一片日边来”的诗句中先后选择的参照物是和。 2. 航天员杨利伟乘坐“神舟五号”飞船返回舱返回地球时,返回舱相对于地

相关主题
文本预览
相关文档 最新文档