当前位置:文档之家› 生物化学、分子生物课件word版

生物化学、分子生物课件word版

生物化学、分子生物课件word版
生物化学、分子生物课件word版

第六章蛋白质的生物合成

一、选择

单选

1、催化tRNA携带氨基酸的酶是

A.蛋白质合成酶

B.氨基酰-tRNA合成酶

C.氨基酰-tRNA水解酶

D.脂酶

E.ATP酶

2、原核生物的mRNA分子中和小亚基16S rRNA结合的序列是

A. SD序列

B. 起始密码子

C. 3'-端polyA尾

D. 5'-端帽子结构

E. 终止密码子

3、一个mRNA分子的部分核苷酸顺序如下,其密码编号是:

5'……GAG CUG AUU UAG AGU……3'经翻译

121 122 123 124 125

A.121个氨基酸残基

B.122个氨基酸残基

C.123个氨基酸残基

D.124个氨基酸残基

E 125个氨基酸残基

4、信号肽识别颗粒可辨认

A. 核糖体

B. 核小体

C. 信号肽酶

D. 信号肽

E. 多聚腺苷酸

5、在蛋白质分子中下列哪一种氨基酸没有相应的遗传密码

A. 酪氨酸

B. 羟赖氨酸

C. 甲硫氨酸

D. 脯氨酸

E. 谷氨酸

6、与 mRNA 中的 ACG 密码相对应的 tRNA 反密码子是

A. UGC

B. TGC

C. GCA

D. CGU

E. TGC

多选:

1、所有mRNA都含有

A.编码序列

B.5'非翻译区

C.5'端帽子

D.3'非翻译区

E.poly(A)尾

2、关于遗传密码

A.mRNA每三个相邻碱基构成一个遗传密码

B.遗传密码称为三联体密码或密码子

C.编码氨基酸的密码子有64个

D.UAA、UAG和UGA都是终止密码子

E.AUG是起始密码子

3、密码子具有以下特性:

A.密码子之间无重叠

B.密码子之间无标点

C.甲硫氨酸和色氨酸没有同义密码子

D.同义密码子包括偏爱密码子和稀有密码子

E.绝大多数已知生命都采用同一套遗传密码

4、蛋白质生物合成的延长反应包括下列哪些反应?

A.起始

B.转化

C.转位

D.成肽

E.终止

5、DNA模板可直接用于

A.转录

B.翻译

C.复制

D.引物合成

E.核苷酸合成

6、关于氨基酸负载

A.氨基酸负载是指氨基酸与tRNA连接形成氨酰tRNA

B.氨酰tRNA中的氨酰基与tRNA以高能键连接

C.氨基酸负载消耗ATP

D.负载由氨酰tRNA合成酶催化

E.每一种tRNA都有一种氨酰tRNA合成酶催化与一种氨基酸连接

7、原核生物蛋白质合成的起始阶段:

A.核糖体解离

B.30S小亚基与tRNA结合

C.30S起始复合物形成

D.70S起始复合物形成

E.核糖体通过SD序列识别起始密码子

8、原核生物蛋白质合成的延长阶段

A.氨酰tRNA从与核糖体结合到脱离核糖体,依次通过核糖体的A位点、P位点和E

位点

B.核糖体读码的方向即沿mRNA移动的方向是5'→3'

C.肽链合成的方向是N端→C端

D.肽链的N端为甲硫氨酸

E.23S rRNA催化肽键形成

9、在原核生物蛋白质合成过程中,那些因子具有GTP酶活性?

A.IF1

B.IF2

C.EF-Tu

D.EF-G

E.RF3

10、在原核生物蛋白质合成过程中,那些步骤消耗GTP?

A.氨基酸负载

B.组装核糖体复合物

C.氨酰tRNA进位

D.成肽反应

E.核糖体沿mRNA移位

11、关于真核生物的蛋白质合成

A.真核生物起始Met-tRNA i不需要甲酰化

B.真核生物mRNA帽子结构指导真核生物起始因子与mRNA结合并寻找起始密码子

C.真核生物mRNA编码序列真正的起始密码子位于称为Kozak序列中

D.eIF2与IF2功能相同

E.真核生物eRF1识别三种终止密码子

12在蛋白质翻译后加工过程中,标准氨基酸可能发生那些化学修饰?

A.乙酰化

B.羟基化

C.磷酸化

D.甲基化

E.羧化

14、关于蛋白质糖基化

A.寡糖通过N-糖苷键与天冬酰胺的酰胺基连接

B.寡糖通过O-糖苷键与丝氨酸或苏氨酸的羟基连接

C.N-糖基化始于内质网腔,在高尔基体内进一步修饰

D.分泌蛋白在高尔基体内O-糖基化

E.细胞内糖蛋白在细胞质基质内O-糖基化

15、关于蛋白质的构象

A.蛋白质的一级结构决定其折叠成何种构象

B.蛋白质在细胞内的折叠依靠蛋白伴侣的作用

C.蛋白伴侣包括分子伴侣和伴侣蛋白

D.分子伴侣的作用是防止新生肽链在未完成合成之前发生错误折叠

E.蛋白伴侣介导和辅助新生肽链的正确折叠和组装

16、蛋白质磷酸化是一个重要的修饰,发生于哪些氨基酸?

A.丝氨酸

B.苏氨酸

C.酪氨酸

D.组氨酸

E.甘氨酸

17、关于蛋白质的靶向转运

A.待转运蛋白的共同特点是都含有信号肽

B.向线粒体或内质网转运的蛋白质的信号肽在肽链N端,转运后被切除

C.向细胞核转运的蛋白质的信号肽在肽链内部,转运后不被切除

D.每种细胞器都含有信号肽受体蛋白,它们可以与信号肽结合

E.蛋白质的转运过程不可逆

二、填空

1.蛋白质合成主要在或细胞质基质内进行,真核生物内也合成少量蛋白。

2.在蛋白质合成的延长阶段,核糖体沿mRNA的方向读码,同时将各种氨酰tRNA转

运的氨基酸按照mRNA编码序列的指令连接到肽链的端。

3.所有mRNA的一级结构都含编码序列、区和区。

4.原核生物和真核生物的蛋白质合成都从氨酸开始。绝大多数生物的起始密码子都

是。

5.密码子具有以下特性:、和通用性

6.在20种标准氨基酸中,只有和酸没有同义密码子。

7.阅读框是mRNA分子上从一个到其下游一个所界定的一段编码序列。

8.每一种tRNA都有一个,它可以与mRNA相应的反向互补结合。

9.mRNA密码子的第碱基和tRNA反密码子的第碱基为摆动位置,该位置存在非

Watson-Crick碱基对。

10.完整的核糖体复合物有三个tRNA结合位点:A位点结合,P位点结合肽酰tRNA,

E位点结合。

11.氨酰tRNA合成酶具有极高的特异性,既能识别,又能识别。

12.原核生物蛋白质合成的起始阶段包括核糖体解离→→30S起始复合物形成

→。

13.大肠杆菌有三种起始因子。促进核糖体解离,与小亚基结合,以阻止其与大亚

基重新结合。

14.在蛋白质合成的延长阶段,需要延长因子和的协助。

15.移位需要延长因子与一分子形成的复合物。

16.大肠杆菌有三种终止因子。RF3不识别,具有性,与GTP结合后可以促进RF1

或RF2与核糖体的结合。

17.当原核生物及真核生物合成蛋白质时,许多核糖体会同时结合在一个分子上,形

成结构,进行翻译。

18.新生肽链不都具有生物活性,有些肽链还需要进行,才能成为有活性的成熟蛋白

质。这一过程称为。

19.蛋白质向转运的过程称为蛋白质的靶向转运或。

20.待转运蛋白的共同特点是都含有信号肽。向线粒体或转运的蛋白质的信号肽在肽

链,转运后被切除。向细胞核转运的蛋白质的信号肽在肽链内部,转运后不被切除。

21.分泌蛋白由结合在的核糖体合成,合成的分泌蛋白进入。

22.信号肽的功能是引导新生肽链,之后就被切除,所以成熟的分泌蛋白。

答案

单选

1.B

2.A

3.C

4.D

5.B

6.D

多选:

1.ABD

2.ABDE

3.ABCDE

4.CD

5.ACD

6.ACDE

7.ABCDE

8.ABCDE

9.BCDE 10.BCE 11.ABCDE 12.ABCD 14.ABCDE 15.ABCDE 16.ABCD 17.ABCDE 填空

1 内质网表面线粒体

2 5‘—3‘ C端

3 5’非翻译区 3‘非翻译区

4 甲硫氨酸 AUG

5 连续性简并性

6 甲硫氨酸色氨酸

7 起始密码子终止密码子

8 反密码子密码子

9 三一 10 氨酰tRNA 脱酰 tRNA 11 tRNA 氨基酸 12 30s小亚基与mRNA结合 70s起始复合物

形成 13 IF

1 IF

3

14 EF-TU EF-TS 15 EF-G GTP 16 终止密码子 GTPase 17 mRNA 多核糖

体 18 修饰翻译后加工 19 功能场所分选 20 内质网 N端 21内质网膜表面内质网腔22 进入内质网不含信号肽

生物化学笔记(整理版)1

《生物化学》绪论 生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。 生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。 20世纪中叶直到80年代,生物化学领域中主要的事件: (一)生物化学研究方法的改进 a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。 b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。吸附层析法分离蛋白质及其他物质。 c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。 d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。 (二)物理学家、化学家、遗传学家参加到生命化学领域中来 1. Kendrew——物理学家,测定了肌红蛋白的结构。 2. Perutz——对血红蛋白结构进行了X-射线衍射分析。 3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。 (1.2.3.都是诺贝尔获奖者) 4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。 5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。 6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。 7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。 8.Lipmann―― 发现了辅酶A。 9. Ochoa——发现了细菌内的多核苷酸磷酸化酶 10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。(9.10.获1959年的诺贝尔生理医学奖) 11.Avery―― 加拿大细菌学家与美国生物学家Macleod,Carty1944年美国纽约洛克菲勒研究所著名实验。肺炎球菌会产生荚膜,其成分为多糖,若将具荚膜的肺炎球菌(光滑型)制成无细胞的物质,与活的无荚膜的肺炎球菌(粗糙型)细胞混合 ->粗糙型细胞也具有与之混合的光滑型的荚膜->表明,引起这种遗传的物质是DNA 1 / 29

生物化学中山大学本科生笔记整理知识点汇编各章名词解释

生物化学知识点汇编 知识点: 1、各类糖分子的结构和功能;

2、脂类中与生物膜有关的物质结构与功能; 3、核酸的基本结构、相互关系与功能; 4、各类氨基酸的基本结构、特征以及蛋白的构象与功能的关系; 5、酶的分类、作用机制、抑制类型、动力学过程与调节; 6、代谢中的生物氧化过程特别是光合磷酸化过程的机理及意义; 7、代谢中的糖代谢过程; 8、核酸的生物合成、复制、转录及基因表达; 9、各种代谢过程的调控及相互关系; 10、现代生物学的方法和实验手段特别是分离、纯化、活性册顶的基本方法等; 11、生物化学研究进展; ◎●将两种旋光不同的葡萄糖分别溶与水后,其旋光率均逐渐变为+52.7°。,称为变旋现象。 ◎●羟甲基在糖环平面的上方的为D-型,在平面的下方的为L-型。在D-型中,半缩醛羟基在平面的下方的为α-型,在平面的上方的为β-型。 ◎●一切糖类都有不对称碳原子,都具旋光性。 ◎●区分酮糖、醛糖用Seliwanoff反应。 ◎●天然糖苷多为β-型。 ◎●糖醛酸是肝脏内的一种解毒剂。 ◎●自然界存在的糖胺都是己糖胺。 ◎●麦芽糖为[α-D-葡萄糖-α(1→4)-α-D-葡萄糖苷],异麦芽糖为[α-D-葡萄糖-α(1→6)-α-D-葡萄糖苷],蔗糖为[α-D-葡萄糖-α,β(1→4)-果糖苷],乳糖为[半乳糖-β(1→4)-α-D-葡萄糖苷],纤维二糖为[α-D-葡萄糖-β(1→4)α-D-葡萄糖苷]。 ◎●直链淀粉成螺旋状复合物,遇碘显紫蓝色,碘位于其中心腔内,在620——580nm有最大光吸收。支链淀粉分支平均有24——30个葡萄糖,遇碘显紫红色,在530——555nm有最大光吸收。糖原遇碘显棕红色,在430——5490nm有最大光吸收。◎●与糖蛋白相比,蛋白聚糖的糖是一种长而不分支的多糖链,即糖胺聚糖。其一定的部位上与若干肽链连接,糖含量超过95%,多糖是系列重复双糖结构。 ◎●糖蛋白是病毒、植物凝集素、血型物质的基本组成部分,Fe2+、Cu2+、血红蛋白和甲状腺素转运蛋白是糖蛋白,它们分别叫转铁蛋白、铜蓝蛋白、触珠蛋白、甲状腺素结合蛋白。参与凝血过程的糖蛋白有:凝血酶原、纤维蛋白酶原。 ◎●血型物质含75%的糖,它们是:岩藻糖、半乳糖、葡萄糖、半乳糖胺。 ◎●木糖-Ser连接为结缔组织蛋白聚糖所特有。 ◎●动植物体的不饱和脂肪酸为顺式,细菌中含脂肪酸种类少,大多为饱和脂肪酸,有的有分支。 ◎●分析脂肪酸混合物的分离用气液柱层析,即气液色谱技术。 ◎●甘油三酯、甘油单酯形成小颗粒微团,叫micelles。 ◎●烷基醚脂酰甘油含有2个脂肪酸分子和一个长的烷基或烯基链分别与甘油分子以酯键、醚键相连。 ◎●糖基脂酰甘油中,糖基与甘油分子第三个羟基以糖苷键相连。 ◎●磷脂根据所含醇类可分为甘油磷脂类和鞘氨醇磷脂类。 ◎●不饱和脂肪酸常与甘油分子的第二个碳原子羟基相连。 ◎●肝脏、心肌中的甘油磷脂多为磷脂酰肌醇,脑中的甘油磷脂多为磷脂酰肌醇磷酸、磷脂酰肌醇二磷酸。 ◎●缩醛磷脂中一个碳氢键以醚键与甘油C1羟基相连。 ◎●除了11-顺-视黄醛外,多数直链萜类的双键均为反式。 ◎●柠檬油的主要成分是柠檬苦素,薄荷油的主要成分是薄荷醇,樟脑油的主要成分是樟脑。 ◎●胆石几乎全是由胆固醇组成,它易与毛地黄核苷结合沉淀。 ◎●脊椎动物体内,胆酸能与甘氨酸、牛黄氨酸结合成甘氨胆酸、牛黄胆酸。 ◎●蟾毒不以糖苷而以酯的形式存在。 ◎●前列腺素是花生四烯酸及其他不饱和脂肪酸的衍生物。分为PGA、PGB、PGD、PGE、PGF、PGG、PGH、PGI 等八类,其功能有:平滑肌收缩、血液供应、神经传递、发炎反应的发生、水潴留、电解质去钠、血液凝结。◎●在tay-sachs病中,神经节苷脂在脑中积累。 ◎●按生理功能,蛋白质可分为酶、运输蛋白、营养和贮存蛋白、收缩蛋白运动蛋白、结构蛋白质和防御蛋白质。◎●胱氨酸、酪氨酸不溶于水。脯氨酸、羟还能溶于乙醇或乙醚中。

[考研]生物化学笔记

第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的

生物化学与分子生物学考试中山大学

一、名词解释 1、基因克隆:是指把目的基因连接到载体上,构建成重组体,再转化入宿主细胞内进行复制和表达。或:是指在体外通过酶的作用将异源DNA连接到载体上,形成重组DNA并将其导入受体细胞,从而扩增异源DNA的技术。 2、基因文库:是指整个基因组或某一细胞所表达的基因所有克隆片段的集合体,包括基因 组文库和cDNA文库。常用的从基因文库中筛选目标基因的方法:斑点杂交、扣除杂交、 免疫化学筛选法、染色体步移和差异表达基因筛选。 3、cDNA文库:是指以所有mRNA为模板,不经选择地在逆转录酶的作用下反转合成互补的双链DNA,即 cDNA,然后把cDNA与载体连接构成重组DNA,再转化入宿主细胞扩增,建立cDNA文库。 4、管家基因:是指某些基因表达产物是细胞或者整个生命过程中都持续需要而必不可少的,这类基因称之 为管家基因。如微管蛋白基因、糖酵解酶系基因与核糖体蛋白基因等 5、散弹测序法:又称鸟枪测序法,是指大分子DNA被随机地“敲碎”成许多小片段,收集这些随机小片段 并将它们全部连接到合适的测序载体,小片段测序完成后,计算机根据重叠区将小片段整合出大分子DNA序列。 6、功能基因组学:利用结构基因组学提供的信息,以高通量,大规模实验方法及统计与计算机分析为特征, 全面系统地分析全部基因及其编码蛋白的功能,包括生物学功能,细胞学功能,发育学功能。 7、限制性内切酶:是指能在特异位点(酶切位点)上催化双链DNA分子的断裂,产生相应的限制性DNA 片段,被称为分子生物学家的手术刀。 8、CDKs:即细胞周期蛋白依赖性激酶,是一类Ser/Thr蛋白激酶,与周期蛋白结合时,才具有蛋白激酶 的活性,通过使靶蛋白磷酸化而产生相应的生理效应。 9、RT-PCR:是指首先以mRNA为模板合成cDNA,然后再进行常规PCR扩增的PCR。 10、逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划) 11、荧光定量PCR:是指在PCR反应体系中加入荧光基因,利用荧光信号积累实时监测整个PCR进程,最 后通过标准曲线对未知模板进行定量分析的方法。 12、基因组:又称染色体组,是指一个物种单倍体的染色体数目,是生物体全部遗传物质的总和,主要指 真核生物的核基因组和原核生物的类核基因组。 13、基因组学:是指对生物体内所有基因进行基因组作图(遗传图谱、物理图谱、转录图谱)、核苷酸序列 分析、基因定位、基因功能分析的一门学科。 或:指从基因组水平(分子整体水平)研究遗传的学科,主要是发展和应用DNA制图、测序新技术和计算机程序,分析生命体全部基因组的结构与功能。

中山大学生命科学院生物化学试题答案与评分标准(2006秋季,A卷)

生物化学I(2006年秋季学期, A卷) I.简答题(共25小题,超过60分以60分计入总分) 1.哪些标准氨基酸含两个手性碳原子?写出它们的Fisher投影式。 2.为什么SDS变性电泳可以估算蛋白质的分子量? 3.Mass spectroscopy在生物大分子研究中有什么应用? 4.-Keratin、Collagen、Silk fibroin的二级结构和氨基酸组成有何特点?5.根据二级结构的组成和排列可将蛋白质结构分为哪些类型? 6.蛋白质in vivo条件下的折叠有哪些辅助因子? 7.蛋白质在与其他分子的相互作用中发挥作用,这种相互作用有何特点? 8.哪些因素可以导致Hemoglobin与O 2 的亲和力增加? 9.图示抗体的一般结构(包括结构域及可能的二硫键)。 10.构成肌肉粗丝和细丝的蛋白分子有哪些,各有什么功能? 11.写出蛋白质氨基酸测序的基本步骤。 12.什么是酶催化的过渡态理论?列出你所知道的支持证据? 13.酶的可逆抑制剂有几类?它们的抑制动力学各有何特点? 14.酶在体内的活性是如何受到调控的? 15.淀粉与纤维素的结构有何区别? 16.细胞膜表面的Glycoprotein和Glycolipid有哪些生物学功能? 17.细胞内的DNA可能会出现哪些异常结构,他们有什么生物学意义? 18.膜脂的分类及其结构特点 19.生物膜的功能有哪些? 20.膜蛋白以哪些方式参与生物膜的构成? 21.图示secondary active transport,uniport,symport,antiport. 22.Acetylcholine receptor通道是如何控制开关的? 23.K+离子通道是如何对通过的离子进行选择的? 24.膜电位是怎样控制Na+通道开关的(可图示并说明)? 25.Ca2+泵和Na+-K+泵的异同点。 II. You have a crude lysate sample containing a mixture of six proteins (1, 2, 3, 4, 5, and β-galactosidase). Some characteristics of these proteins are shown in the table below. Give an available procedure of purifying β-galactosidase. Protein Concentration of ammonium sulfate required for precipitation Molecular Weight (kDa) Isoelectric point (pI)

生物化学重点笔记(整理版)

教学目标: 1.掌握蛋白质的概念、重要性和分子组成。 2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。 3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。 4.了解蛋白质结构与功能间的关系。 5.熟悉蛋白质的重要性质和分类 导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质的大致含量。 每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%) 二、蛋白质的基本组成单位——氨基酸 蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。 (一)氨基酸的结构通式 组成蛋白质的20种氨基酸有共同的结构特点: 1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。 2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。天然蛋白质中的氨基酸都是L-型。 注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新形成。旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。构型与旋光性没有直接对应关系。 (二)氨基酸的分类 1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。 2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。 带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp) 带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。 蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。 (三)氨基酸的重要理化性质 1.一般物理性质 α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版 第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、组成蛋白质的元素 1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、 钴、钼,个别蛋白质还含有碘。 2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。 3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量, 就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量 ( g % )= 每克样品含氮克数× 6.25×100 二、氨基酸——组成蛋白质的基本单位 (一)氨基酸的分类 1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮 氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try) 蛋氨酸(Met) 2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨 酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr ) 3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) 谷氨酸(Glu) 4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His) (二)氨基酸的理化性质 1. 两性解离及等电点 等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等, 成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 2. 紫外吸收 (1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。 (2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸 收值是分析溶液中蛋白质含量的快速简便的方法。 3. 茚三酮反应 氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。 由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 三、肽 (一)肽 1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的 化学键。

中山大学《细胞生物学》中山大学生物化学考试试题(B卷)

中山大学生物化学考试试题(B卷) 2003-2004年度第一学期 主考老师:邓庆丽苏菁 一、填空题:(每题一分,共15分) 1.在酶的广义酸碱催化机制中,特别重要的一个氨基酸残基是__his_____,因为其侧链PK值接近生物体内的PH条件。 2.紫外分光光度法测定蛋白质的原理在于__trp__ ,Tyr,Phe这三个氨基酸残基侧链基团在280nm处有吸光性。 3.糖类除了作为能源和生物大分子碳骨架的供体之外,它还与生物大分子间的__信号____识别有关。 4.The most two common secondary structures of proteins are α螺旋and β折叠。5.Monosaccharides containing an aldehyde group are called 醛糖aldoses 。6.Both Western blotting and ELISA are used to detect proteins with 抗体antibody 。 7. NMR spectroscopy and X-Ray 衍射are both used to reveal the three dimensional structure of proteins。 8.Anomers produces an equilibrium mixture of α - and β -forms in both furanose and pyranose ring structures。 9.神经节苷脂是一类含有唾液酸的鞘糖脂。 10.DNA变性后,紫外吸收能力增强,沉降速度升高,粘度降低。11.磷脂酶A的水解产物是脂肪酸和溶血磷脂。 12.开链己糖有16 种异构体。 13.胶原蛋白的氨基酸序列是很有特征的。常见的三个氨基酸重复单位是gly-x-y 。

生物化学笔记(整理版)7

第六章维生素的机构与功能 1.概念 Vitamin 是维持生民正常生命过程所必需的一类有机物质,所需是很少,但对维持健康十分重要。其不能供给有机体热能,也不能作为构成组织的物质。功用--通过作为辅酶的成分调节由机体代谢。 如长期缺乏,会导致疾病,人体不能合成。必须从食物中摄取。所以要注意膳食平衡。 溶解度:a. 脂溶性维生素:溶于脂肪:A. D. E. K. b. 水溶性维生素:溶于水:B. C. 3.发现: a. 古代孙思邈动物肝--夜盲症谷皮汤--脚气病 b. 荷兰医生艾克曼米壳"保护因素"--神经类 c. 英国霍普金斯正常膳食处蛋白、脂类、糖类、还有必需的食物辅助因素 (Vitamin) d .美国化学学家门德尔和奥斯本发现:脂溶性vit A 水溶性Vit B 4. Vit 所具有的共同点: ①对维持生命有机体的正常生长、发育、繁殖是必需的,他们分比是某种 酶的辅酶、辅机的组分。 ②集体对他们的需要是微量的,但供应不足时,将出现代谢障碍和临床症 状。 ③集体不能合成它们,和合成两不足时,必须由外界摄取。

表3-1 重要维生素的来源、及缺乏症

第二节 Vit A 和胡萝卜素 A1--Vit A 视黄醇:﹤ A2 Vit A--存在于动物性食物中,鱼肝油含量较多 Vit A1--咸水鱼肝脏 A1动物性食物中含VitA原--β-胡萝卜素 Vit A2--淡水鱼肝脏植物性食物中不含VitA,仅含β-胡萝卜素 Vit A1、A2皆为含β-白芷酮环的不饱和一元醇分子中环的支链为两个2-甲基丁二烯和一个醇基所组成,位于支链为C9的不饱和醇。 Vit A2 是Vit A1 的3-脱氢衍生物。 区别:VitA2 在白芷酮环内C-3、C-4之间多一个双键

中山大学生化资料中山大学生命科学院生物化学试题答案与评分标准.doc

生物化学I (2006年秋季学期,A卷) 1.简答题(共25小题,超过60分以60分计入总分) 1 .哪些标准氨基酸含两个手性碳原子?写出它们的Fisher投影式。 2.为什么SDS变性电泳可以估算蛋白质的分子量? 3.Mass spectroscopy在生物大分子研究中有什么应用? 4.-Keratin、Collagen、Silk fibroin的二级结构和氨基酸组成有何特点? 5.根据二级结构的组成和排列可将蛋白质结构分为哪些类型? 6.蛋白质in条件下的折叠有哪些辅助因了? 7.蛋白质在与其他分子的相互作用中发挥作用,这种相互作用有何特点? 8.哪些因素可以导致Hemoglobin与O2的亲和力增加? 9.图示抗体的一般结构(包括结构域及可能的二硫键)。 10.构成肌肉粗丝和细丝的蛋白分子有哪些,各有什么功能? 11.写出蛋白质氨基酸测序的基本步骤。 12.什么是酶催化的过渡态理论?列出你所知道的支持证据? 13.酶的可逆抑制剂有几类?它们的抑制动力学各有何特点? 14.酶在体内的活性是如何受到调控的? 15.淀粉与纤维素的结构有何区别? 16.细胞膜表面的Glycoprotein和Glycolipid有哪些生物学功能? 17.细胞内的DNA可能会出现哪些异常结构,他们有什么生物学意义? 18 .膜脂的分类及其结构特点 19.生物膜的功能有哪些? 20.膜蛋白以哪些方式参与生物膜的构成? 21.图示 secondary active transport, uniport, symport, anti port. 22.Acetylcholine receptor通道是如何控制开关的? 23.K+离子通道是如何对通过的离子进行选择的? 24.膜电位是怎样控制Na*通道开关的(可图示并说明)? 25.Ca新泵和NaF泵的异同点。 IT. You have a crude lysate sample containing a mixture of six proteins (1, 2, 3, 4, 5, and P -galactosidase). Some characteristics of these proteins are shown in the table below. Give an available procedure of purifying B -galactosidase.

生物化学笔记 考试重点

第一章蛋白质的结构与功能 一、蛋白质的概念 蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物。 二、蛋白质的生物学意义 1.蛋白质是生物体重要的组成成分 分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质。 含量高:蛋白质是细胞内最丰富的有机分子,占人体干重的45%。 2. 蛋白质有重要的生物学功能 1)作为生物催化剂(酶);2)代谢调节作用;3)免疫保护作用;4)物质的转运和储存;5)运动与支持作用;6)参与细胞间信息传递。 第一节蛋白质的分子组成 1.蛋白质的元素组成 主要含有碳、氢、氧、氮及硫。有些蛋白质还含有磷、铁、铜、锌、锰、钴及钼等。 2.蛋白质元素组成的特点 蛋白质的含氮量接近,平均为16%。测定生物样品含氮量可推算出蛋白质大致含量。100克样品中蛋白质的含量(g%)=每克样品含氮克数×6.25 ×100 3.蛋白质的基本组成单位 氨基酸是蛋白质的基本组成单位。自然界存在300余中氨基酸,组成蛋白质的氨基酸仅有20种,且均为L- α- 氨基酸(除甘氨酸外)。 4.氨基酸的分类 1). 非极性疏水性氨基酸2). 极性中性氨基酸3). 酸性氨基酸4). 碱性氨基酸 5.非极性疏水性氨基酸:甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸苯丙氨酸脯氨酸 中性极性氨基酸:色氨酸丝氨酸酪氨酸半胱氨酸甲硫氨酸蛋氨酸天冬酰胺苏氨酸谷胺酰胺 酸性氨基酸:天冬氨酸谷氨酸 碱性氨基酸:赖氨酸精氨酸组氨酸 6.氨基酸的理化性质 1)两性解离及等电点 氨基酸是两性电解质,其解离方式及带电状态取决于其所处溶液的酸碱度。 等电点:在某一pH条件下,氨基酸解离成阳离子和阴离子的数量相等,分子呈电中性,此时溶液的pH称为该氨基酸的等电点。 2)氨基酸的紫外吸收 酪氨酸、色氨酸含有共轭双键,具有吸收紫外光的特性,在280nm处有最大吸收峰。蛋白质在280nm处的紫外吸收与浓度成正比,可用于蛋白质的定量分析。 7.氨基酸与多肽 氨基酸通过肽键相连接的形成多肽链。 1)肽键:一分子氨基酸的α-羧基与另一分子的α-氨基,脱水缩合形成的酰胺键(-CO-NH-)称为肽键。 肽键是蛋白质中的主要化学键 一条多肽链含有2个游离的末端(氨基末端羧基末端) 多肽链的序号从N端计算,书写时将N端写于左侧,用H2N-或H-表示;C端用-COOH 或-OH表示。 氨基酸残基:肽链中的氨基酸分子因形成肽键失去部分基团,称为氨基酸残基。

王镜岩《生物化学》笔记(整理版)第一章

导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白 质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953 年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的 生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含 量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋 白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能 来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多 数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生 物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学 的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质 的大致含量。

生化笔记(完整版)

生化笔记 第一章糖类 1.糖类是地球上数量最多的一类有机化合物。 2.葡萄糖——烯醇式——果糖和甘露糖 3.异头体通过直链结构互变 4.所有醛糖都是还原糖,部分酮糖也是还原糖,例如果糖。 5.Fehling试剂盒Benedict试剂可以作为氧化剂与还原糖反应,可定性,不可定量。 6.缓冲的溴水溶液能氧化醛糖为醛糖酸,与酮糖不反应。 7.鉴定酮糖:羟甲糠醛与间二苯酚——红色——Swliwanoff实验 8.鉴定戊糖:戊糖脱水生成的糠醛+间苯三酚(地皮酚)——朱红色——间苯三酚实验 9.鉴定戊糖:戊糖脱水生成的糠醛+甲基间苯二酚(地衣酚)——蓝绿色——Bial反应——测定RNA含量 10.鉴定糖类:糠醛+α-萘酚——红紫色——Molisch实验 11.测总糖量:糠醛+蒽酮——蓝绿色——蒽酮反应 12.高碘酸:测定糖类呋喃型还是吡喃型、测平均相对分子质量、非还原末端残基数、多糖的分支数目。 13.单糖分子中一个羟基被氨基取代的称为氨基糖,胞壁酸和神经氨酸是氨基糖的衍生物,称为酸性氨基糖。前者是细菌细胞壁的结构多糖的构件之一。后者中,有三种神经氨酸统称为唾液酸。唾液酸是动物细胞膜上的糖蛋白和糖脂的重要成分。 14.N-乙酰神经氨酸 = 唾液酸; NAG = N-乙酰葡糖胺; NAM = N-乙酰胞壁酸 15.糖苷:乌本苷是Na+-K+—ATP酶的抑制剂;毛地黄毒苷(强心苷) 16.所有二糖至少有一个单糖的异头碳参与成键(糖苷键) 17.糖苷键在多数情况下只涉及一个单糖的异头碳,另一个单糖的异头碳是游离的。

18.二糖中还原糖:乳糖β1-4、麦芽糖α1-4、纤维二糖β1-4 19.二糖中非还原糖:蔗糖、海藻糖 20.淀粉:直链:α1-4,一个还原端1’,一个非还原端4’ 分支:分支处α1-6,直链处α1-4。一个还原端1’,多个非还原端4’ α淀粉酶:随机作用于淀粉内部α1-4 β淀粉酶:专一从非还原端α1-4 脱支酶:α1-6,分支处 21.糖原:α1-4和α1-6 22.纤维素:β1-4,自然界最丰富的多糖 23.壳多糖:几丁质,自然界第二个最丰富的多糖 24.肽聚糖:NAG + NAM NAG=N-乙酰葡糖胺;NAM=N-乙酰胞壁酸 25.粘多糖:基本结构为己糖醛酸和己糖胺的二糖单位组成的长链多聚物。即糖胺聚糖(国际多用)、氨基多糖、酸性多糖,主要有透明质酸、硫酸软骨素、肝素(抗凝血)26.葡萄糖在水溶液中D-吡喃型存在。 第二章脂质 1.1g油脂产生37kJ(9kcal)的能量,1g糖类产生17kJ(4kcal)的能量。有机体不必携带像贮存多糖那样的结合水,因为三酰甘油是疏水的。 2.天然脂肪酸多是偶数碳,双键位置在9和10之间,多数为非共轭系统,多数为顺式结构 3.脂肪酸: ①烃链越长,溶解度越低,熔点越高; ②不饱和越多,熔点越低;

中山大学中山医学院历年生物化学考博试题 (1)

中山大学1998年生物化学考博试题 一、名词解释 1、纤维蛋白酶原 2、基因转化 二、问答 1、DNA核酸内切酶作用位点 2、RNA聚合酶真核与原核的区别 3、举例说明蛋白水平酶的作用 4、cAMP的转录调控 5、Hb与Mb的不同 6、真核生物mRNA的修饰与剪切 7、脂肪酸的分解过程为何称β-氧化

中山医科大学博士入学考试试题生物化学2004年 一、名词解释(10*3) 1.分子伴侣、 2.随从链、 3.尿素循环、 4.基因诊断、 5.基因重组、 6.底物水平磷酸化、 7.一碳单位、 8.生物转化、 9.KLENOW 片段、10.邻近效应 二、简答题(8*5) 1、a-螺旋的特点 2、DNA双螺旋的类型及结构特点 3、遗传密码的特点 4、红细胞糖代谢的特点 5、mRNA的加工修饰包括哪些内容 6、真核基因组的结构特点 7、如果一酶与底物作用的反应曲线成“S”型,解释其原因

8、NADPH参加反应的类型 三、论述题(3*10) 1、人类基因组计划已经完成,今后分子生物学的工作重点应该是什么? 2、为什么在缺氧的条件下,糖酵解反应能够持续进行? 3、如果要用基因工程方法生产胰岛素,如何获得胰岛素基因? 中山大学2005年生物化学考博试题 一、名词解释 1、分子病 2、Km 3、mRNA 4、酮体 5、分子筛层析 6、氧化磷酸化 7、Tm 8、鸟氨酸循环 9、分子杂交 10、端粒酶 二、简答 1、谷胱甘肽结构功能 2、竞争性抑制作用举例 3、tRNA 结构意义 4、DNA双螺旋结构遗传学意义 5、NADPH代谢中作用 6、VB12致巨幼红细胞贫血的原因 7、DNA复制的保留遗传特点 8、举例细胞膜受体介导细胞信号传导 三、问答 蛋白质一级结构特点功能举例 TCA循环是三物质代谢枢纽,为什么/有何意义 限制性内切核酸酶是基因工程手术刀。为什么? 中山大学2006年生物化学考博试题 名词解释 同工酶 协同调节 胆汁酸肠肝循环

中山大学生物化学(一)真题

中山大学生物化学(一)真题 一、填空题(每空1分,共30分),答案请标明每题的序号。 1、生化教材中氨基酸结构通式常用兼性离子形式表示,意为_________条件下的结构。 2、含全部标准氨基酸的蛋白质,强酸下完全水解后,检测不到的氨基酸是_________。 3、某蛋白质在280 nm处有强的吸收,其最可能含(一种氨基酸)_________。 4、肌红蛋白中不存在的二级结构有_________。 5、粗肌丝中的肌球蛋白分子是_________聚体。 6、纤维素是D-葡萄糖单体通过_________糖苷键连接而成的聚合物。 7、剧烈运动较长时间后,体内T状态的血红蛋白比例_________。 8、任何蛋白质在细胞内折叠都需要的一类辅助蛋白是_________。 9、联合多糖包括脂多糖、糖脂、糖蛋白和_________。 10、如果柱床体积和密度相同,则上样体积小,洗脱流速慢的常用柱层析是_________。 11、目前,测定蛋白质分子量最准确的方法是_________。 12、某肚不含Pro, Arg和Lys且rza酶不能水解,则此肤可能是_________。 13、酶的特殊基团的催化作用是指酸碱催化、共价催化和_________。 14、酶在体内的活性调节方式主要有共价修饰调节和_________。 15、抑制剂的浓度增加,测得的Km和V-,同比例减小,则属于_________。 16、细胞合成ATP的手段包括光合磷酸化、氧化磷酸化和_________磷酸化。 17、真核细胞的TCA循环在_________中进行。 18、脂肪酸进行β-氧化前先进行活化,其活化形式为_________。 19、酮体包括丙酮酸、乙酞乙酸和_________三种成分。 20、脂肪酸合成的基本原料为乙酞CoA,脂肪酸合成的前体为_________。 21、绝大多数转氨酶以_________作为氨基的受体。 22、完整的尿素循环仅存在于_________细胞。 23、为尿素循环直接提供N的氨基酸是_________。 24、胸着酸是在胸昔酸合成酶的催化下,由_________甲基化而合成的。 25、大肠杆菌的DNA聚合酶!具有5'-3`的聚合酶,5'-3`的外切核酸酶和_________活性。 26、真核细胞mRNA的3、端含有一段多聚腺营酸序列尾巴,这是在转录后添加上去的。最重要的加尾信号的一致序列为_________。 27、翻译时氨基酸的活化形式为_________。 28、端粒酶的蛋白质部分具有_________活性。 29、尿素循环和嗯咙核昔酸生物合成的共同代谢中间产物是_________。 30、痛风是由_________过量产生或排泄不畅引起。 二、是非题(每题1分,共30分),答案请标明每题的序号。 1、生物体内的甘油醛和3-磷酸甘油醛的构型不同。 2、共价修饰调节的过程中,酶的构象不发生变化。 3、溶菌酶的镜像蛋白不能催化肚聚糖的水解。 4、以螺旋和p折叠都能使蛋白分子内氢键的数目倾向于最大。 5、阳离子交换层析介质表面带负电荷。 6、蛋白质A与B的进化具有协同性,说明他们可能在结构和(或)功能上具有相互依赖关系。 7、阮病毒是一种易于被诱导发生构型变化的蛋白质。

相关主题
文本预览
相关文档 最新文档