当前位置:文档之家› 陶瓷材料复习题

陶瓷材料复习题

陶瓷材料复习题
陶瓷材料复习题

1、分别以Al2O3、ZrO

2、Si3N4为例,从结合键的角度分析这上述陶材料的切削加工性。

2、分别根据鲍林第一、第二、第三规则,分析CsCl、NaCl、CaF2、TiO2晶体结构的稳定性。

3、分别分析纤锌矿结构(wurtzite型,ZnS型)、β-方石英结构的特点。

4、分析刚玉型结构的特点。

5、硅酸盐晶体结构有哪些特点

6、分析绿宝石Be3A12(Si6O18)结构的归类、结构特点,标出六节环结构。

7、分析透辉石的结构特点,标出链状结构。

8分析蒙脱石的结构特点,讨论其插层原理。

9根据XRD原理,解释晶态、非晶态XRD谱线的区别。

10根据TEM原理,分析非晶、晶态结构衍射花样差异的原因。

11非晶态材料有何结构特点可采用哪些方法进行表征论述其表征机理。

12 (1) 绘出典型非晶材料的示差扫描量热(DSC)曲线, 标出玻璃转变温度(Tg)、晶化温度(Tx)及过冷液态区(ΔTx)。(2) 阐述非晶材料在Tg,Tx温度点所发生的物理性质变化规律。(3) 非晶态材料在过冷液态区有哪些特殊性质,利用该性质可以作哪些应用,举例说明。

13 根据下图,选择适于制备耐火材料的成分,并据此成分,分析其冷却析晶过程。

14 根据上图,分析30% Al2O3含量组分的冷却析晶过程。

15 分析下图中,M1,M2,M3的冷却析晶过程。

16 根据下图:

1)分析图中不同成分熔体冷却时的析晶图。

2)为什么水泥烧成后总是采用急速冷却的办法

CS—CaO·SiO2(偏硅酸钙或硅灰石)

C3S2—3CaO·2SiO2(二硅酸三钙)

C2S—2CaO·SiO2(硅酸二钙)

C3S—3CaO·SiO2(硅酸三钙)

17 分别分析以下系列相图中,M点的冷却析晶过程。

18 分别分析固相、液相烧结过程中的物质传输方式及机理。

19论述几类陶瓷材料增韧方法(相变增韧、微裂纹增韧、显微增韧、裂纹偏转)的机理

20、什么是断裂韧性,研究陶瓷材料断裂韧性的意义是什么

21、裂纹尖端应力有哪两种因素决定

22、应力场强度因子与断裂韧性的区别是什么

23、用B=30mm的标准三点弯曲试件测断裂韧性,线切割尺寸为a’=30mm。

试验测得 P Q=56kN, P max = ;裂纹尺寸a1-a5测量结果分别为:, , , , ;若已知材料的σ=905MPa,试确定其K IC。

24、分别阐述氧化铝(Al2O3)、氮化硅(Si3N4)、碳化硅(SiC)、增韧氧化物陶瓷的结构特点、性能及应用;

陶瓷材料的应用与前景

陶瓷材料的应用与前景 作者:李倩 单位:辽宁工程技术大学 一、陶瓷材料发展历史及其概念的内涵 陶瓷是人类生活和生产中不可缺少的一种材料。陶瓷产品的应用范围遍及国民经济各个领域。它的发展经历了从简单列复杂、从粗糙到精细、从无油到施釉、从低温到高温的过程。随着生产力的发展和技术水平的提高.各个历史阶段赋予陶瓷的涵义和范围也随之发生变化。 原来的陶瓷就是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。这时得到陶瓷称为传统陶瓷。后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。 接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。 陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。(这个概念把玻璃也纳入了陶瓷的范围) 现代陶瓷材料具有高新技术内涵。与传统材料相比.主要具有以下三个特点: (1)以现代科技发展的要求为背景.是现代科技发展的产物,为高新技术产品。 (2)制造工艺复杂,需要现代科技成果的指导.因而为技术知识密集型产品。 (3)具有优异的威特殊的性能,能满足商新技术产业的要求。 二、陶瓷材料的分类 研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。

浅析精密陶瓷

浅析精密陶瓷 摘要:系统地阐述了精密陶瓷的发展历史及研究状况,和碾压具体方式精密陶瓷的发展趋势和发水平及存在的问题,提出了未来精密陶瓷的发展趋势及产业化应重点解决的问题。 关键词:精密陶瓷、研磨加工、发展、趋势 A nalysis of Precision Ceramics SONGMeiXin (QiqiharUniversity161000) Abstract: Systematic exposition of the history and research status of fine ceramics, and rolling trends specific ways of fine ceramics and send levels and problems, put forward for the future development trend of fine ceramics and industrialization should be focused on solving problems. Keywords: Precision ceramic;grinding;development;trends 1 引言 传统的陶瓷制品,如日用瓷、陈设瓷、建筑卫生瓷等产品都是大家所熟悉的。然而,随着科学技术的飞速发展,而今的陶瓷已逐渐进入许多尖端科学技术领域,并越益显示出巨大的生命力。在所有重要产业部门中,陶瓷作为仅次于金属和塑料的第三种材料,日益获得人们的普遍关注。如果说微电子技术和生物工程技术是新技术革命的两大支柱,那么新材料则是建设和构筑未来高技术社会和信息社会的基础要素。从历史来看如果没有陶器的发明,人类的文明就不会发生从狩猎时代进入农耕时代的变革,同样没有精密陶瓷的发明,微电子技术,宇航技术和其它技术也不可能产生划时代的革新。许多科学家断言:精密陶瓷这种新材料的普遍开发和应用,将使人类由“重厚长大”的钢铁时代进入“轻薄短小”的新陶瓷时代。 精密陶瓷在廿一世纪科学技术的发展中,必定会占有十分重要的地位。同时,这种新型陶瓷材料对我国国民经济建设将发挥重要的作用。 陶瓷的工业应用出现于19世纪末,在20世纪中后期,随着科学技术快速发展对新型陶瓷材料的应用需求不断扩大而获得了非常迅速的发展。到2010年中国精密工业陶瓷产品产值约400亿元,全球精密工业陶 瓷市场销售额约1500亿美元。目前精密陶瓷己经广泛应用于电子信息、航天航空、新能源、生物医学、半导体、机械、工业设备、消费电子等领域。而精密陶瓷的定义是采用严格控制配料及特定工艺制成不经机械研磨加工,就具有表面光滑平整,公差尺寸合乎要求的陶瓷。主要用于制作电路基片、线圈骨架、电子管插座、高压绝缘瓷、火箭的前锥体等。也可制成用于浇制合金的高气孔率精密铸造型芯。还可用作抗震性好的高温材料。 2精密陶瓷制品种类 2.1结构陶瓷 包括高温结构陶瓷、耐磨陶瓷、高韧性陶瓷、高(超)硬陶瓷、纳米结构陶瓷、多孔陶瓷、陶瓷超滤膜等; 2.2功能陶瓷 包括磁性陶瓷、敏感陶瓷、光学陶瓷、生物陶瓷和超导陶瓷等;

陶瓷的研究现状与发展展望分析

陶瓷的研究现状与发展展望 陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料.它具有高熔点、高硬度、高耐磨性、耐氧化等优点.可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料. 分类: 普通陶瓷材料 采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟.这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等. 特种陶瓷材料 采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要.根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能.本节主要介绍特种陶瓷. 编辑本段性能特点力学性能 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上.陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差. 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料.同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性. 电性能 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件.铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等.少数陶瓷还具有半导体的特性,可作整流器. 化学性能 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力. 光学性能 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等.磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途. 编辑本段常用特种陶瓷材料 根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷. 1.结构陶瓷 氧化铝陶瓷主要组成物为Al2O3,一般含量大于45%.氧化铝陶瓷具有各种优良的性能.耐高温,一般可要1600℃长期使用,耐腐蚀,高强度,其强度为普通陶瓷的2~3倍,高者可达5~6倍.其缺点是脆性大,不能接受突然的环境温度变化.用途极为广泛,可用作坩埚、发动机火花塞、高温耐火材料、热电偶套管、密封环等,也可作刀具和模具. 氮化硅陶瓷主要组成物是Si3N4,这是一种高温强度高、高硬度、耐磨、耐腐蚀并能自润

自洁功能陶瓷浅谈

摘要:简要介绍了自洁功能陶瓷的概念、分类及国内外研究概况,分别阐述了三大自洁功能材料的自洁机理及其制作工艺,提出了目前自洁功能陶瓷存在的问题。 关键词:自洁功能材料自洁功能陶瓷自洁机理 随着工业的发展和人类的各种活动日益频繁,由此而滋生的疾病也越来越多。要解决这一问题,必须走可持续发展之路:一方面解决污染源,另一方面要提高家居环境的抗污染能力,即研制相应的抗污染材料及其制品。对于陶瓷行业而言,这一抗污染材料和制品就是自洁功能陶瓷[1]。 1、自洁功能陶瓷的概念和分类 1.1 概念 自洁功能陶瓷由陶瓷基体和自洁功能材料两大主要部分构成,它是指在陶瓷制品表面或釉层中加入一种或几种具有抗菌、杀菌、防污、除臭和具有净化大气功能的材料,这些功能材料必须以较强的结合力附着在陶瓷上或者与陶瓷本身结为一体,同时对人体不产生任何危害,这样制得的多功能陶瓷称为自洁陶瓷。 1.2 分类 主要分为两大类:一类是有机材料,另一类是无机材料。有机材料多用于塑料、橡胶、纺织行业等,无机材料则多用于无机非金属行业,尤以玻璃和陶瓷行业应用较广。现在所见报导的无机自洁功能材料分三类:一类是含金属离子的无机化合物,如AgNO3、CuO等,另一类是光催化半导体化合物,如TiO2、ZnO等,第三类是具有远红外辐射功能的自洁材料,如锰及其氧化物。另外,有人还提出用稀土复合磷酸盐无机抗菌材料按一定比例添加到陶瓷中制备抗菌功能陶瓷材料。 2、自洁原理 2.1 含金属离子的自洁功能材料 含金属离子的自洁功能材料其杀菌作用主要依赖金属离子中不稳定电子的迁移,这些电子在迁移的过程中阻碍微生物的呼吸和代谢,破坏其蛋白质。以Cu2+离子为例,Cu2+离子失去外围一至两个电子时,具有强烈的氧化性,这种氧化性阻碍了周围的微生物的呼吸。同时,还可氧化分解周围有机物。由此可见,金属离子的杀菌和抗污主要是由强氧化性来完成的。金属离子按其抗菌效果依次为:Ag>Co>Al>Cu>Zn>Fe>Mn>Sn>Ba>Mg>Ca。而其杀菌效果则有变化,为:Ag>Cu>Fe>Sn>Al>Zn>Co,这主要是因为抗菌作用与原子的电子云磁场有关,而杀菌作用则与其氧化作用的大小有关。一般情况下,常用的金属离子有Ag+、Zn2+和Cu2+,分别以其化合物的形式带入。 2.2 光催化半导体自洁功能材料 物质根据其电性可以分为导体、半导体和绝缘体。在半导体材料中,有这样一族材料,它们能够被光子激活,从而实现电子流动,这一族材料称为光催化半导体材料。[4]其中经常应用的光催化半导体材料有:TiO2、ZrO2、V2O3、ZnO、CaS、Se、GaP、SiC等,在自洁陶瓷的研究中应用较多的为:TiO2、ZrO2和ZnO。 2.3 远红外线自洁功能材料 远红外线自洁功能材料包括锆(Zr)、钴(Co)、镍(Ni)锰(Mn)其及氧化物,这类材料的杀菌自洁与其所放出的远红外线射线有关。但这类材料的杀菌效果是有限的,它必须和以上两类自洁功能材料配合使用才有更好的应用价值。 2.4 添加稀土复合磷酸盐抗菌功能陶瓷材料 将稀土复合磷酸盐无机抗菌材料按一定比例添加到陶瓷中制备抗菌功能陶瓷材料[2]。结果表明:在陶瓷中加入稀土复合磷酸盐无机抗菌材料不会降低陶瓷表面质量,且对金黄色葡萄球菌的6h杀抑率可达94.8%。[3]将复合磷酸盐无机抗菌材料、陶瓷熔块、粘土、添加物、

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.doczj.com/doc/882817261.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

日用陶瓷材料的应用及其发展

日用陶瓷材料的应用与发展 法学092 刘婷09437105 陶瓷材料是人类应用时间最早,并且应用领域最广的材料之一。它是一种天然或人工合成的粉状合成物,经过成型或高温烧结,由金属元素和非金属的无机化合物构成的固体材料。 陶瓷具有耐高温、耐腐蚀、耐磨损、原料丰富、成本低廉等诸多优点。现在,最受关注的三大固体材料是金属材料、高分子材料,以及陶瓷材料。按照其用途的不同,通常可将陶瓷材料分为工业、艺术和日用陶瓷三大类。其中工业陶瓷是指应用于各种工业的陶瓷制品,包括建筑陶瓷、化工陶瓷、电子陶瓷和特种陶瓷几大类;艺术陶瓷主要指花瓶、雕塑等以陈列欣赏和美化环境为主要作用的陶瓷;而日用陶瓷主要是指如餐具、茶具、洁具等日常生活中应用的陶瓷制品。本文主要研究日用陶瓷的应用形式及其发展趋势。 陶瓷材料与其他材料 相对而言,金属材料具有良好的延展性和可塑性,具有良好的热传导性,可是其耐温性和耐腐蚀性较差。高分子材料具有耐腐蚀性和可加工性,色彩丰富,但是其机械强度,耐高温性和耐磨性较差。陶瓷具有高硬度、耐磨、耐酸、耐碱、耐热、耐冷等优越的性能,肌理富于变化,色彩丰富而且不褪色,造型可塑性强,在丰富人们的物质和精神生活,美化环境,以及提升生活品质等方面可达到作用,是其他材料不可替代的。陶瓷致命的缺点在于高脆性和韧性差,这是材料结构所决定的。在室温下,陶瓷材料分子结构几乎不会产生滑移和位错运动,材料处于受力状态时无法通过塑性变形来松弛应力[2]。但是随着生产技术的发展和陶瓷新品种的开发,必然可在其原有基础上逐步改善其容易碎裂的不足,满足相应的产品设计要求。 现在,金属材料和高分子材料越来越多的应用于餐具,容器等日用产品,走

浅谈多孔陶瓷

浅谈多孔陶瓷 08化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节 能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学科的高度关注。 关键词:多孔陶瓷制备应用发展 0.引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400 孔/ 2. 54 cm ×2. 54 cm 的规格。美国与日本已研制出了600 孔/ 2. 54 cm ×2. 54 cm、900 孔/ 2.54 cm ×2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm ×2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。其工艺流程为: 原料合成+ 水+ 有机添加剂→混合练混→挤出成型→干燥→烧成→制品。这种工艺的优点在于, 可根据实际需要对孔形状和大小进行精确设计; 缺点是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4] 。 1. 2 颗粒堆积成孔工艺法 颗粒堆积工艺是在骨料中加入相同组分的微细颗粒, 利用微细颗粒易于烧结的特点, 在高温下液化, 从而使骨料连接起来。骨料粒径越大, 形成的多孔陶瓷平均孔径就越大, 并呈线性关系。骨料颗粒尺寸越均匀, 产生的气孔分布也越均匀, 孔径分布也越小。另外, 添加剂的含量和种类, 以及烧成温度对微孔体的分布和孔径大小也有直接关系。如Yang 等[ 5]用Yb2O3 作为助剂制备了多孔氮化硅陶瓷, 通过加入Yb2O3 后, 使氮化硅微孔陶瓷孔的分布更加均匀, 经烧结后使孔隙率达到很好的要求。另外, 孔隙率可通过调整颗粒级配对孔结构进行控制, 制品的孔隙率一般为20% ~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂, 高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单, 制备强度高; 不足之处在于气孔率低。

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

浅谈多孔陶瓷

浅谈多孔陶瓷 08 化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学 关键词:多孔陶瓷制备应用发展 0. 引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的 比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料 和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1 多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。 美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型 的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T 烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点 是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。 1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如 Yang 等[ 5] 用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

浅谈陶瓷工业的现状与发展趋势

2013届毕业论文 浅谈陶瓷工业的现状与发展趋势 系部:材料与化学工程系 学生姓名:唐前锋 指导教师:谢和平 职称:副教授 专业:材料工程技术 班级:材料1001班 学号: 10700930115 2013年5月

摘要 本文介绍了陶瓷材料的发展历史,并根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。并从陶瓷的晶体结构、陶瓷的成型与烧结、陶瓷的韧化等几个方面详细的介绍了陶瓷材料。通过对陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 This paper introduces the history and development of ceramic materials, and according to the different characteristics and application of ceramic materials were more accurate classifications of its, and application of various kinds of ceramics were summarized. And from several forming crystal structure, ceramic and ceramic sintering, toughening, detailed introduction of the ceramic materials. The ceramic characteristics and application of summary, made a new prospect for the development of ceramic materials in the future, reveals the application direction of ceramic materials and the development trend. 关键字:陶瓷材料结构成型烧结前景

陶瓷材料科学论文

学号: 1004230213 专业素质教育 2012 ~ 2013 学年秋季学期 学院:材料学院 专业班级:无机10—02班 姓名:宋海彬 透明陶瓷的研究现状与发展展望 摘要:陶瓷具有广大的发展前景,透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:性能透明材料前景组成陶瓷透光性制备工艺应用 前言:1962年RLC首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用。 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。 透明陶瓷的制备工艺 透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

几种功能陶瓷材料的研究与发展现状

几种功能陶瓷材料的研究与发展现状 摘要 功能陶瓷作为一种新型的无机非金属材料,以其优越的性能正越来越多地应用到社会生活中来,同时对于它的研究也仍在不断的深入与发展。由于功能陶瓷材料的种类繁多,本文主要介绍了目前涉及比较广泛的铁电压电陶瓷材料,半导体陶瓷材料以及微波介质陶瓷材料的研究概况与进展。 关键词:铁电陶瓷压电陶瓷半导体陶瓷微波介质陶瓷 前言 功能陶瓷主要是指那些利用电磁、声、光、热、力等直接效应及其耦合效应所提供的先进陶瓷(现代陶瓷)。功能陶瓷的发展经历了电介质陶瓷、压电铁电陶瓷、半导体陶瓷、快离子导体陶瓷、高温超导陶瓷等等一系列的过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。功能陶瓷的不断开发,对科学技术的发展起了巨大的促进作用,其应用领域也随之更为广泛。[1]目前主要用于电、磁、光、声、热和化学等信息的检测、转换、传输、处理和存储等,并已在电子信息、集成电路、计算机、能源工程、超声换能人工智能、生物工程等众多近代科技领域显示出广阔的应用前景。当前功能陶瓷正朝着复合化,多功能化,低维化,智能化和设计、材料、工艺一体化的方向进一步的发展。 一、铁电压电陶瓷材料的研究进展 [2]近年来,随着电子器件微型化、智能化的发展,各种性能优良、能满足制备体积更小电子器件的新型材料成为材料科学界的研究热点之一。铁电压电材料因其具有独特的电学、光学和光电子学性能,在现代微电子、信息存储等方面有着广泛的应用前景,已经成为当前新型功能材料研究的热点之一,其主要可以分为以下几大类。 1、弛豫铁电体 弛豫铁电体是指顺电—铁电转变,属弥散相变的铁电材料,一般为复合型化和物或固溶体。由于弛豫型铁电体具有很高的介电常数,相对低的烧结温度和“弥散相变”得到的较低容温变化率、大的电致伸缩系数和几乎无滞后的特点,使其在多层陶瓷电容器及新型电致伸缩器件方面有着巨大的应用前景。 近年来,弛豫铁电陶瓷的研究一直是人们关注的热点。[3]铌镁酸铅—钛酸铅单晶可

生活中的陶瓷材料及其应用

生活中的陶瓷材料及其应用 【摘要】陶瓷材料在我们的生活中早已应用到了各个方面,比如塑料、木材、水泥三大传统基本材料,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。随着社会的进步,人们对材料的要求也越来越高,这种表现不仅表现在对科学研究领域,也表现在人们的日常生活当中。材料的进步很大程度上推动了社会的进步,而社会的需求反过来也有力的推进了材料科学的发展。拿陶瓷材料来说,陶瓷材料已经贯穿了人类的历史,并且随着历史不停的发展,在材料科学领域崭露头角。 【关键字】陶瓷材料应用发展 陶瓷材料分为普通陶瓷材料和特种陶瓷材料,普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。其特点有力学性能、热性能、电性能、化学性能、光学性能,根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。 而我们专业是地理信息系统与其陶瓷材料的联系真的不多,所以在这里就不详细的指出了。陶瓷材料在工程上的应用要数工程塑料了目前,主要的工程塑料制品已有10多种,其中聚酸胺、聚甲醛、聚磷酸酯、改性聚苯酸和热塑性聚酯被称为五大工程塑料.它们的产量较大.价格一般为传统通用塑料的2—6倍.而聚摧硫酸等特种工程塑料的价格为通用塑料的5一10倍。以塑料代替钢铁、木材、水泥三大传统基本材料,可以节省大量能源、人力和物力。陶瓷材料也可合成橡胶的开发利用,由于生产合成橡胶的原料丰富,其良好的性能又可以满足当代科技发展对材料提出的某些特殊要求,所以合成橡胶出现几十年来,品种已很丰富,一般可将其分为通用合成橡胶和特种合成橡胶两类。通用合成橡胶性能与天然橡胶相似,用于制造一般的橡胶制品,如各种轮胎、传动带、胶管等工业用品和雨衣、胶鞋等生活用品。特种合成橡胶具有耐高温、耐低温耐酸碱等优点,多用于特殊环境和高科技领域,如航空、航天、军事等方面。陶瓷材料在合成纤维的开发利用方面合成纤维的品种有几十种,但最常见的是六大种:聚酸胺纤维、涤纶、腈纶、丙纶、维纶、氨纶。高分子合成材料具有质量小、绝缘性能好等特点,所以发展很快,但又都有先天不足,即它们都在不同程度上对氧、热和光有敏感性。但是,随着高技术的迅速发展,高分子合成材料的大军必将在经济生活中扮演举足轻重的角色。陶瓷材料中已崛

相关主题
文本预览
相关文档 最新文档