当前位置:文档之家› 反激变压器设计原理

反激变压器设计原理

反激变压器设计原理
反激变压器设计原理

反激变压器设计原理.txt我这人从不记仇,一般有仇当场我就报了。没什么事不要找我,有事更不用找我!就算是believe中间也藏了一个lie!我那么喜欢你,你喜欢我一下会死啊?我又不是人民币,怎么能让人人都喜欢我?反激变压器设计原理

默认分类 2008-01-21 11:16 阅读273 评论1 字号:大大中中小小一节. 概述.

反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.

一、反激式转换器的优点有:

1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.

2. 转换效率高,损失小.

3. 变压器匝数比值较小.

4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在85~265V间.无需切换而达到稳定输出的要求.

二、反激式转换器的缺点有:

1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.

2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.

3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.

第二节. 工作原理

在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:

当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.

由图可知,导通时间 ton的大小将决定Ip、Vce的幅值:

Vce max = VIN / 1-Dmax

VIN: 输入直流电压 ; Dmax : 最大工作周期

Dmax = ton / T

由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.

开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip亦可用下列方法表示:

Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率

公式导出如下:

输出功率 : Po = LIp2η / 2T

输入电压 : VIN = Ldi / dt设 di = Ip,且 1 / dt = f / Dmax,则:

VIN = LIpf / Dmax 或 Lp = VIN*Dmax / Ipf

则Po又可表示为 :

Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp

∴ Ip = 2Po / ηVINDmax

上列公式中 :

VIN : 最小直流输入电压 (V)

Dmax : 最大导通占空比

Lp : 变压器初级电感 (mH)

Ip : 变压器原边峰值电流 (A)

f : 转换频率 (KHZ)

图2 反激式转换器波形图

由上述理论可知,转换器的占空比与变压器的匝数比受限于开关晶体管耐压与最大集电极电流,而此两项是导致开关晶体成本上升的关键因素,因此设计时需综合考量做取舍.

反激式变换器一般工作于两种工作方式 :

1. 电感电流不连续模式DCM (Discontinuous Inductor Current Mode)或称 " 完全能量转换 ": ton时储存在变压器中的所有能量在反激周期 (toff)中都转移到输出端.

2. 电感电流连续模式CCM ( Continuous Inductor Current Mode) 或称 " 不完全能量转换 " : 储存在变压器中的一部分能量在toff末保留到下一个ton周期的开始.

DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.实际上,当变换器输入电压VIN 在一个较大范围内发生变化,或是负载电流 IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在 CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 " 右半平面零点 "引起的不稳定. DCM和CCM在小信号传递函数方面是极不相同的,其波形如图3.

图3 DCM / CCM原副边电流波形图

实际上,当变换器输入电压VIN在一个较大范围内发生变化,或是负载电流 IL在较大范围内变化时,必然跨越着两种工作方式.因此反激式转换器要求在DCM / CCM都能稳定工作.但在设计上是比较困难的.通常我们可以以DCM / CCM临界状态作设计基准.,并配以电流模式控制PWM.此法可有效解决DCM时之各种问题,但在CCM时无消除电路固有的不稳定问题.可用调节控制环增益编离低频段和降低瞬态响应速度来解决CCM时因传递函数 " 右半平面零点 "引起的不稳定.

在稳定状态下,磁通增量ΔΦ在ton时的变化必须等于在"toff"时的变化,否则会造成磁芯饱和.

因此,

ΔΦ = VIN ton / Np = Vs*toff / Ns

即变压器原边绕组每匝的伏特/秒值必须等于副边绕组每匝伏特/秒值.

比较图3中DCM与CCM之电流波形可以知道:DCM状态下在Tr ton期间,整个能量转

移波形中具有较高的原边峰值电流,这是因为初级电感值Lp相对较低之故,使Ip急剧升高所

造成的负面效应是增加了绕组损耗(winding lose)和输入滤波电容器的涟波电流,从而要求

开关晶体管必须具有高电流承载能力,方能安全工作.

在CCM状态中,原边峰值电流较低,但开关晶体在ton状态时有较高的集电极电流值.

因此导致开关晶体高功率的消耗.同时为达成CCM,就需要有较高的变压器原边电感值Lp,在

变压器磁芯中所储存的残余能量则要求变压器的体积较DCM时要大,而其它系数是相等的.

综上所述,DCM与CCM的变压器在设计时是基本相同的,只是在原边峰值电流的定义

有些区别 ( CCM时 Ip = Imax - Imin ).

第三节 FLYBACK TANSFORMER DESIGN

一、FLYBACK变压器设计之考量因素:

1. 储能能力. 当变压器工作于CCM方式时,由于出现了直流分量,需加AIR GAP,使磁化曲线

向 H 轴倾斜,从而使变压器能承受较大的电流,传递更多的能量. Ve: 磁芯和气隙的有效体积.

or P = 1/2Lp (Imax2 - Imin2)

式中Imax, Imin ——为导通周期末,始端相应的电流值.

由于反激式变压器磁芯只工作在第一象限磁滞回线,磁芯在交、直流作用下的B.H效果与

AIR GAP大小有密切关联,如图4.在交流电流下气隙对ΔBac无改变效果,但对ΔHac将大大增

加,这是有利的一面,可有效地减小CORE的有效磁导率和减少原边绕组的电感.

在直流电流下气隙的加入可使CORE承受更加大的直流电流去产生HDC,而BDC却维

持不变,因此在大的直流偏置下可有效地防止磁芯饱和,这对能量的储存与传递都是有利的.

当反激变压器工作于CCM时,有相当大的直流成份,这时就必须有气隙.

外加的伏秒值,匝数和磁芯面积决定了B轴上ΔBac值; 直流的平均电流值,匝数和

磁路长度决定了H轴上HDC值的位置. ΔBac对应了ΔHac值的范围.可以看出,气隙大ΔHac

就大. 如此,就必须有足够的磁芯气隙来防止饱和状态并平稳直流成分.

图 4 有无气隙时返驰变压器磁芯第一象限磁滞回路

2. 传输功率 . 由于CORE材料特性,变压器形状(表面积对体积的比率),表面的热幅射,允许

温升,工作环境等的不特定性,设计时不可把传输功率与变压器大小简单的作联系,应视特定

要求作决策.因此用面积乘积法求得之AP值通常只作一种参考. 有经验之设计者通常可结合

特定要求直接确定CORE之材质,形状,规格等.

3. 原,副边绕组每匝伏数应保持相同.设计时往往会遇到副边匝数需由计算所得分数匝取整,

而导致副边每匝伏数低于原边每匝伏数. 如此引起副边的每匝伏秒值小于原边,为使其达到

平衡就必须减小 ton时间,用较长的时间来传输电能到输出端. 即要求导通占空比D小于0.5.

使电路工作于DCM模式.但在此需注意: 若 Lp太大,电流上升斜率小,ton时间又短(<50%),

很可能在"导通"结束时,电流上升值不大,出现电路没有能力去传递所需功率的现象. 这一现

象是因系统自我功率限制之故.可通过增加AIR GAP和减小电感Lp,使自我限制作用不会产

生来解决此问题.

4. 电感值Lp . 电感Lp在变压器设计初期不作重点考量. 因为Lp只影响开关电源的工作

方式. 故此一参数由电路工作方式要求作调整. Lp的最大值与变压器损耗最小值是一致的.

如果设计所得Lp大,又要求以CCM方式工作,则刚巧合适. 而若需以DCM方式工作时,则只能用增大AIR GAP,降低Lp来达到要求,这样,一切均不会使变压器偏离设计.

在实际设计中通过调整气隙大小来选定能量的传递方式(DCM / CCM) . 若工作于DCM方式,传递同样的能量峰值电流是很高的. 工作中开关Tr,输出二极体D以及电容C产生最大的损耗,变压器自身产生最大的铜损(I2R). 若工作于CCM方式,电感较大时,电流上升斜率低虽然这种状况下损耗最小,但这大的磁化直流成分和高的磁滞将使大多数铁磁物质产生磁饱和. 所以设计时应使用一个折衷的方法,使峰值电流大小适中,峰值与直流有效值的比值比较适中. 只要调整一个合适的气隙,就可得到这一传递方式,实现噪音小,效率合理之佳况.

5. 磁饱和瞬时效应. 在瞬变负载状况下,即当输入电压为VINmax而负载电流为Iomin时,若Io突然增加,则控制电路会立即加宽脉冲以提供补充功率. 此时,会出现VINmax和Dmax并存,即使只是一个非常短的时间,变压器也会出现饱和,引起电路失控. 为克服此一瞬态不良效应,可应用下述方法:

变压器按高输入电压(VINmax),宽脉冲(Dmax)进行设计. 即设定低的ΔB工作模式,高的原边绕组匝数,但此方法之缺点是使变压器的效率降低.

例 : 60watts ADAPTER POWER MAIN X'FMR

INPUT : 90 ~ 264 Vac 47 ~ 63 HZ ;

OUTPUT : DC 19V 0 ~ 3.16A ; Vcc = 12 VDC 0.1A

η≧ 0.83 ; f s = 70KHZ ; Duty cylce over 50%

△t ≦40o (表面) @ 60W ; X'FMR限高 21mm.

CASE Surface Temperature ≦ 78℃ .

Note : Constant Voltage & Current Design (UC3843AD)

Step1. 选择CORE材质,确定△B

本例为ADAPTER DESIGN,由于该类型机散热效果差,故选择CORE材质应考量高Bs,低损耗及高μi材质,结合成本考量,在此选用Ferrite Core, 以TDK 之 PC40 or PC44为优选, 对比TDK DATA BOOK, 可知 PC44材质单位密度

相关参数如下: μi = 2400 ± 25% Pvc = 300KW / m2 @100KHZ ,100℃

Bs = 390mT Br = 60mT @ 100℃ Tc = 215℃

为防止X'FMR出现瞬态饱和效应, 此例以低△B设计.

选△B = 60%Bm, 即△B = 0.6 * (390 - 60) = 198mT ≒0.2 T

Step2 确定Core Size和 Type.

1> 求core AP以确定 size

AP= AW*Ae=(Pt*104)/(2ΔB*fs*J*Ku)

= [(60/0.83+60)*104]/(2*0.2*70*103*400*0.2) = 0.59cm4

式中 Pt = Po /η +Po 传递功率;

J : 电流密度 A / cm2 (300~500) ; Ku: 绕组系数 0.2 ~ 0.5 .

2> 形状及规格确定.

形状由外部尺寸,可配合BOBBIN, EMI要求等决定,规格可参考AP值及形状要求而决定, 结合上述原则, 查阅TDK之DATA BOOK,可知RM10, LP32/13, EPC30均可满足上述要求,但RM10和EPC30可用绕线容积均小于LP32/13,在此选用LP32/13 PC44,其参数如下:

Ae = 70.3 mm2 Aw = 125.3mm2 AL = 2630±25% le = 64.0mm

AP = 0.88 cm4 Ve = 4498mm3 Pt = 164W ( forward )

Step3 估算临界电流 IOB ( DCM / CCM BOUNDARY )

本例以IL达80% Iomax时为临界点设计变压器.

即 : IOB = 80%*Io(max) = 0.8*3.16 = 2.528 A

Step4 求匝数比 n

n = [VIN(min) / (Vo + Vf)] * [Dmax / (1-Dmax)] VIN(min) = 90*√2 - 20 = 107V = [107 / (19 + 0.6)] *[0.5 / (1- 0.5)]

= 5.5 ≒ 6

匝比 n 可取 5 或 6,在此取 6 以降低铁损,但铜损将有所增加.

CHECK Dmax:

Dmax = n (Vo +Vf) / [VINmin + n (Vo + Vf)]= 6*(19 + 0.6) /[107 + 6*(19 + 0.6)] = 0.52

Step5 求CCM / DCM临

ΔISB = 2IOB / (1-Dmax) = 2*2.528 / (1-0.52) = 10.533

Step6 计算次级电感 Ls 及原边电感 Lp

Ls = (Vo + Vf)(1-Dmax) * Ts / ΔISB = (19+0.6) * (1-0.52) * (1/70000) / 10=12.76uH

Lp = n2 Ls = 62 * 12.76 = 459.4 uH ≒ 460

此电感值为临界电感,若需电路工作于CCM,则可增大此值,若需工作于DCM则可适当调小此值.

Step7 求CCM时副边峰值电流Δisp

Io(max) = (2ΔIs + ΔISB) * (1- Dmax) / 2 ΔIs = Io(max) / (1-Dmax) - (ΔISB / 2 )

ΔIsp = ΔISB +ΔIs = Io(max) / (1-Dmax) + (ΔISB/2) = 3.16 / (1-0.52) + 10.533 / 2=11.85A

Step8 求CCM时原边峰值电流ΔIpp

ΔIpp = ΔIsp / n = 11.85 / 6 = 1.975 A

Step9 确定Np、Ns

1> Np

Np = Lp * ΔIpp / (ΔB* Ae) = 460*1.975 / (0.2*70.3) = 64.6 Ts

因计算结果为分数匝,考虑兼顾原、副边绕组匝数取整,使变压器一、二次绕组有相同的安匝值,故调整 Np = 60Ts OR Np = 66Ts

考量在设定匝数比n时,已有铜损增加,为尽量平衡Pfe与Pcu,在此先选 Np = 60 Ts.

2> Ns

Ns = Np / n = 60 / 6 = 10 Ts

3> Nvcc

求每匝伏特数Va Va = (Vo + Vf) / Ns = (19+0.6) / 10 = 1.96 V/Ts

∴Nvcc = (Vcc + Vf) / Va =(12+1)/1.96=6.6

Step10 计算AIR GAP

lg = Np2*μo*Ae / Lp = 602*4*3.14*10-7*70.3 / 0.46 = 0.69 mm

Step11 计算线径dw

1> dwp

Awp = Iprms / J Iprms = Po / η / VIN(min) = 60/0.83/107 = 0.676A

Awp = 0.676 / 4 J取4A / mm2 or 5A / mm2

= 0.1 (取Φ0.35mm*2)

2> dws

Aws = Io / J = 3.16 / 4 (Φ1.0 mm)

量可绕性及趋肤效应,采用多线并绕,单线不应大于Φ0.4, Φ0.4之Aw= 0.126mm2, 則 0.79 / 0.126 = 6.27 6 (即Ns采用Φ0.4 * 6)

3> dwvcc Awvcc = Iv / J = 0.1 /4

上述绕组线径均以4A / mm2之计算,以降低铜损,若结构设计时线包过胖,可适当调整J之取值.

4> 估算铜窗占有率.

0.4Aw ≧Np*rp*π(1/2dwp)2 + Ns*rs*π(1/2dws)2 + Nvcc*rv*π(1/2dwv)2

0.4Aw ≧60*2*3.14*(0.35/2)2+10*6*3.14+(0.4/2)2+7*3.14*(0.18/2)2

≧ 11.54 + 7.54 + 0.178 = 19.26

0.4 * 125.3 = 50.12

50.12 > 19.26 OK

Step12 估算损耗、温升

1> 求出各绕组之线长.

2> 求出各绕组之RDC和Rac @100℃

3> 求各绕组之损耗功率

4> 加总各绕组之功率损耗(求出Total值)

如 : Np = 60Ts , LP32/13BOBBIN绕线平均匝长 4.33cm

则 INP = 60*4.33 = 259.8 cm Ns = 10Ts

则 INS = 10*4.33 = 43.3 cm

Nvcc = 7Ts

則 INvc = 7 * 4.33 = 30.31cm

查线阻表可知 : Φ0.35mm WIRE RDC = 0.00268Ω/cm @ 100℃

Φ0.40mm WIRE RDC = 0.00203 Ω/cm @ 100℃

Φ0.18mm WIRE RDC = 0.0106 Ω/cm @ 100℃

R@100℃ = 1.4*R@20℃

求副边各电流值. 已知Io = 3.16A.

副边平均峰值电流 : Ispa = Io / (1-Dmax ) = 3.16 / (1- 0.52) = 6.583A

副边直流有效电流 : Isrms = √〔(1-Dmax)*I2spa〕 = √(1- 0.52)*6.5832 = 4.56A 副边交流有效电流 : Isac = √(I2srms - Io2) = √(4.562-3.162) = 3.29A

求原边各电流值 :

∵ Np*Ip = Ns*Is

原边平均峰值电流 : Ippa = Ispa / n = 6.58 / 6 = 1.097A

原边直流有效电流 : Iprms = Dmax * Ippa = 1.097 * 0.52 = 0.57A

原边交流有效电流 : Ipac = √D*I2ppa = 1.097*√0.52 = 0.79A

求各绕组交、直流电阻.

原边 : RPDC = ( lNp * 0.00268 ) / 2 = 0.348Ω

Rpac = 1.6RPDC = 0.557Ω

副边 : RSDC = ( lNS*0.00203 ) /6 = 0.0146Ω

Rsac = 1.6RSDC = 0.0243Ω

Vcc绕组 : RDC =30.31*0.0106 = 0.321Ω

计算各绕组交直流损耗:

副边直流损 : PSDC = Io2RSDC = 3.162 * 0.0146 = 0.146W

交流损 : Psac = I2sac*Rsac = 3.292*0.0234 = 0.253W

Total : Ps = 0.146 + 0.253 = 0.399 W

原边直流损 : PPDC = Irms2RPDC = 0.572 * 0.348 = 0.113W

交流損 : Ppac = I2pac*Rpac = 0.792*0.557 = 0.348W

忽略Vcc绕组损耗(因其电流甚小) Total Pp = 0.461W

总的线圈损耗 : Pcu = Pc + Pp = 0.399 + 0.461 = 0.86 W

2> 计算铁损 PFe

查TDK DATA BOOK可知PC44材之△B = 0.2T 时,Pv = 0.025W / cm2 LP32 / 13之Ve = 4.498cm3

PFe = Pv * Ve = 0.025 * 4.498 = 0.112W

3> Ptotal = Pcu + PFe = 0.6 + 0.112 = 0.972 W

4> 估算温升△t

依经验公式△t = 23.5PΣ/√Ap = 23.5 * 0.972 / √0.88 = 24.3 ℃估算之温升△t小于SPEC,设计OK.

Step13 结构设计

查LP32 / 13 BOBBIN之绕线幅宽为 21.8mm.

考量安规距离之沿面距离不小于6.4mm.

为减小LK提高效率,采用三明治结构,其结构如下 :

X'FMR结构 :

Np #1 3.2 / 3.2 2 -- A Φ0.35 * 2 30 1L

SHI #2 3.2 / 3.2 SHI- 4 2mils * 12 1 3L

Ns #3 3.2 / 3.2 8.9 - 6.7 Φ0.4 * 6 10 3L

SHI #4 3.2 / 3.2 SHI- 4 2mils * 12 1 1L

Np #5 3.2 / 3.2 A -- 1 Φ0.35 * 2 30 1L

Nvcc #6 3.2 / 3.2 3 -- 4 Φ0.18 7 2L

#7 连结两 A 点2L

变压器的工作原理讲课教案

第三章变压器 第一节变压器的工作原理、分类及结构 一、结构 1.铁心 如图,分铁心柱、磁轭两部分。 材料:0.35mm的冷轧有取向硅钢片,如:DQ320,DQ289,Z10,Z11等。 工艺:裁减、截短、去角、叠片、固定。 2.绕组 分同心式和交叠式两大类。 交叠式如右图。 同心式包括圆筒式、连续式、螺旋式等,见上图。 材料:铜(铝)漆包线,扁线。 工艺:绕线包、套线包。 3.其它部分 油箱(油浸式)、套管、分接开关等。

4.额定值 额定容量S N 额定电压U 1N U 2N 额定电流I 1N I 2N 对于单相变压器,有N N N N N I U I U S 2211== 对于三相变压器,有N N N N N I U I U S 221133== 注意一点:变压器的二次绕组的额定电压是指一次绕组接额定电压的电源,二次绕组开路时的线电压。 [讨论题]一台三相电力变压器,额定容量1600kV A ,额定电压10kV/6.3kV ,Y ,d 接法,求一次绕组和二次绕组的额定电流和相电流。 自己看[例3-1]。

总结:熟悉变压器额定值的规定。 二、变压器的工作原理 按照上图规定变压器各物理量的参考方向,有 dt d N e dt d N e φ φ2 211,-=-= 定义变比 2 121N N E E k == 工作原理: (1) 变压器正常工作时,一次绕组吸收电能,二次绕组释放电能; (2) 变压器正常工作时,两侧绕组电压之比近似等于它们的匝数之比; (3) 变压器带较大的负载运行时,两侧绕组的电流之比近似等于它们匝数的反比; (4) 变压器带较大的负载运行时,两侧绕组所产生的磁通,在铁心中的方向相反。 总结:牢记变压器的四条原理。 第二节 单相变压器的空载运行 一、空载运行时的物理情况 如图,变压器一次绕组接额定电压,二次绕组开路,称为变压器空载运行。此时,变压器一次绕组流过一个很小的电流,称为空载电流i 0,大约占额定电流的2%~5%,因此空载时变压器的铜损耗是很小的。为什么? 又, 11144.4N f E U m Φ=≈

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六 -变压器设计实例 已知条件: 输入电压:DC:380V~700V 输出电压:1) 5V/0.5A 2) 12V/0.5A 3) 24V/0.3A PWM控制论芯片选用UC2842, 开关频率:50KHz 效率η:80% 取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W 计算步骤: 1、确定变比N N=Np/Ns VoR = N(VO+VD) N=VoR/(VO+VD) VoR取210V N=210/(12+1)=16.1 取16 2.计算最大占空比Dmax 3、选择磁芯 计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f) =2.51×103 (mm4) 通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2 4、计算初级匝数Np

5、初级峰值电流:Ip 6、初级电感量L

7、次级匝数 1) 、12V取样绕组Ns: Ns=Np/N =250/16 =15.625 取16匝 2)、计算每匝电压数Te: Te=(Uo+Ud)/Ns =(12+1)/16 =0.8125 3)、7.5V匝数: N7.5V=U/Te =(7.5+0.5)/0.8125 =9.84取10匝 4)、24V匝数 N24V=U/Te =(24+1)/0.8125 =30.7取31匝 5)、辅助绕组15V N15V=U/Te =(15+1)/0.8125 =19.7取20匝 8、计算初级线径: 1)、计算电流有效值I

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

反激变压器设计实例(二)

反激变压器设计实例(二) 目录 反激变压器设计实例(二) (1) 导论 (1) 一.自跟踪电压抑制 (2) 2. 反激变换器“缓冲”电路 (4) 3. 选择反击变换器功率元件 (5) 3.1 输入整流器和电容器 (5) 3.2 原边开关晶体管 (5) 3.3 副边整流二极管 (5) 3.4 输出电容 (6) 4. 电路搭接和输出结果 (6) 总结 (7) 导论 前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑 图2.开关管电压、输出电压、输出电流 首先由输出情况可以看出,变压器的设计还是满足要求的。查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。 在反激变换器中,有两个主要原因会引起高开关应力。这两个原因都与晶体管自带感性负载关断特性有关。最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。 一.自跟踪电压抑制 当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。 在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。 考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。当晶体管Q关断

CCM反激变压器设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 图二(a)

12v电子变压器工作原理

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4 构成整流桥 把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻 R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。此电子变压器电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电子变压器电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

反激变换器拓扑的电路设计

反激变换器拓扑的电路设计 1.介绍反激变换器拓扑在5W到150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参考资料的叙述中,由于同时涉及电路和磁路的设计,容易造成设计过程中的混乱,反激变换器电路本身的一些特性却没有得到应有的体现。在文中,介绍了反激变换器的基本工作原理,对不连续模式反激变换器的设计过程,各参数之间的决定关系作了简练而准确的描述。由于电路设计和磁路设计分别介绍,对读者掌握反激变换器的设计有很好的帮助。 2.不连续模式反激变换器的基本原理反激变换器在开关管导通期间,变压器储能,负载电流由输出滤波电容提供。在开关管关断期间,储存在变压器中的能量转换到负载,提供负载电流,同时给输出滤波电容充电,并补偿开关管导通期间损失的能量。 图1a是反激变换器的基本拓扑。图中有两个输出电路,一个主输出和一个从输出。负反馈闭合环路采样主输出电压V om。V om的采样值与参考值比较,输出的误差信号放大信号控制Q1的导通时间脉冲,使得V om的采样值在电网和负载变化时等于参考电压,从而稳定输出电压。从输出跟随主输出得到相应的调节。 电路的工作过程如下:当Q1导通,所有线圈的同名端(带)相对于非同名端(不带)是负极性。输出整流二极管D1和D2反向偏置,输出负载电流由输出滤波电容C1和C2提供。 在Q1导通期间,Np上施加了一个固定的电压(Vdc-1)(这里假设开关管的导通压降是1V),并且流过以斜率dI/dt=(Vdc-1)Lp线性上升的电流,这里Lp是原边的磁化电感。在导通时间的最后,原边电流上升到Ip=(Vdc-1)Ton/Lp。这个电流代表电感上储存的能量为 (1) 这里E单位焦耳,Lp单位亨,Ip单位安培 当Q1关断,磁性电感上的电流强制使所有线圈上的极性反向。假设这时没有从次级绕组,

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

反激式变压器设计原理

反激式变压器设计原理 绿色节能PWM控制器CR68XX CR6848低功耗的电流模PWM反激式控制芯片 成都启达科技有限公司联系人:陈金元TEL: 电话/传真:-218 电邮:; MSN: 概述:CR6848是一款高集成度、低功耗的电流模PWM控制芯片,适用于离线式AC-DC反激拓扑的小功率电源模块。 特点:电流模式PWM控制低启动电流低工作电流 极少的外围元件片内自带前沿消隐(300nS) 额定输出功率限制 欠压锁定(12.1V~16.1V) 内建同步斜坡补偿PWM工作频率可调 输出电压钳位(16.5V) 周期电流限制 软驱动2000V的ESD保护过载保护 过压保护(27V)60瓦以下的反激电源SOT23-6L、DIP8封装 应用领域:本芯片适用于:电池充电器、机顶盒电源、DVD 电源、小功率电源适配器等60 瓦以下(包括60 瓦)的反激电源模块。 兼容型号: SG6848/SG5701/SG5848/LD7535/LD7550/OB2262/OB2263。 原生产厂家现货热销!-218,。 CR6842兼容SG6842J/LD7552/OB2268/OB2269。 绿色节能PWM控制器AC-DC 产品型号功能描述封装形式兼容型号 CR6848 低成本小功率绿色SOT-26/DIP-8 SG6848/SG5701/SG5848 节能PWM控制器LD7535/LD7550 OB2262/OB2263 CR6850 新型低成本小功率绿色SG6848/SG5701/SG5848 节能PWM控制器SOT-26/DIP-8 LD7535/LD7550 SOP-8OB2262/OB2263 CR6851 具有频率抖动的低成本SOT-26/DIP-8 SG6848/SG5701/SG5848 绿色节能PWM控制器SOP-8 LD7535/LD755 OB2262/OB2263 CR6842 具有频率抖动的大功能DIP-8 兼容SG6842J/LD7552

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

反激变压器设计实例(一)

反激变压器设计实例(一) 目录 1.导论 (1) 2.磁芯参数和气隙的影响 (1) 2.1 AC极化 (2) 2.2 AC条件中的气隙影响 (2) 2.3 DC条件中的气隙影响 (2) 3. 110W反激变压器设计例子 (3) 3.1 步骤1,选择磁芯尺寸 (3) 3.2 步骤2,选择导通时间 (5) 3.3 步骤3,变换器最小DC输入电压的计算 (5) 3.4 步骤4,选择工作便宜磁通密度 (5) 3.5 步骤5,计算最小原边匝数 (6) 3.6 步骤6,计算副边匝数 (6) 3.7 步骤7,计算附加匝数 (7) 3.8 步骤8,确定磁芯气隙尺寸 (7) 3.9 步骤9,磁芯气隙尺寸(实用方法) (8)

3.10 步骤10,计算气隙 (8) 3.11 步骤11,检验磁芯磁通密度和饱和裕度 (9) 4 反激变压器饱和及暂态影响 (10) 1.导论 由于反激变换器变压器综合了许多功能(储存能量、电隔离、限流电感),并且还常常支持相当大的直流电流成分,故比直接传递能量的正激推挽变压器的设计困难得多、以下变压器设计例子中没选择过程使用反复迭代方法,无论设计从哪里开始没开始时须有大量近似的计算。没有经验工程师的问题是要得到对控制因数的掌握。特别的,磁芯大小、原边电感的选择、气隙的作用、原边匝数的选择以及磁芯内交流和直流电流(磁通)成分的相互作用常常给反激变压器设计带来挑战。 为使设计者对控制因数有好的感觉,下面的设计由检查磁芯材料的特性和气隙的影响开始,然后检查交流和直流磁芯极化条件,最后给出100W变压器的完整设计。 2.磁芯参数和气隙的影响 图1表示一个铁氧体变压器在带有和不带气隙时典型的B/H(磁滞回归线)环。 注意到虽然B/H环的磁导率(斜率)随气隙的长度变化,但磁芯和气隙结合后的饱和磁通密度保持不变。进一步,在有气隙的情况下,磁场强度H越大,剩磁通密度B r越低。这些变化对反激变压器非常有用。

变压器的工作原理及结构

变压器工作原理: 当一个交流电压U1接到初级绕组的线圈时,由于交流电的强度和极性是不停地正、负交替变化,因此初级绕组的线圈所产生的磁力线数目也不停改变。由于磁场强度的不断变化,促使缠绕在同一铁芯上的另一端线圈产生感应电动势U2 .变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 理想变压器: 不计一次、二次绕组的电阻和铁耗, 其间耦合系数K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,则有不计铁芯损失,根据能量守恒原理可得由此得出一次、二次绕组电压和电流有效值的关系令K=N1/N2,称为匝比(亦称电压比) U1/U2=N1/N2 ,即对同一变压器的任意两个线圈,都有电压和匝数成正比。P入=P出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和. https://www.doczj.com/doc/882735054.html,/view/30130.htm https://www.doczj.com/doc/882735054.html,/s/blog_4876e83b0100ru0s.html 变压器(transformer)是一种电磁设备,其功能大致可分为以下作用:Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 1可以随意把交流电压值或电流值增加或减少Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 2用作阻抗匹配的设备:变压器可用来匹配不平衡的阻抗。例如某个放大器的输出阻抗是20欧,而接往4欧的扬声器,这时必须用一个变压器以正确的匝数比率来匹配此二个阻抗。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 3用做信号传输,有些信号要求有电的隔离,这时用变压器就有用了。Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 4用与振荡电路作反馈元件Rkf838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 变压器就是利用线圈的互感原理把电压改变。事实上一个电感器的磁场变化可以促使在近距

85W反激变压器设计实例

85W反激变压器设计的详细步骤 1. 确定电源规格. 1).输入电压范围Vin=90—265Vac; 2).输出电压/负载电流:Vout1=42V/2A, Pout=84W 3).转换的效率?=0.80 Pin=84/0.8=105W 2. 工作频率,匝比, 最低输入电压和最大占空比确定. Vmos*0.8>Vinmax+n(Vo+Vf) 600*0.8>373+n(42+1) 得n<2.5 Vd*0.8>Vinmax/n+Vo 400*0.8>373/n+42 得n>1.34 所以n取1.6 最低输入电压 Vinmin=√[(Vacmin√2)* (Vacmin√2)-2Pin(T/2-tc)/Cin =(90√2*90√2-2*105*(20/2-3)/0.00015=80V 取:工作频率fosc=60KHz, 最大占空比Dmax=n(Vo+Vf)/[n(Vo+Vf)+Vinmin]= 1.6(42+1)/[1.6(42+1)+80]=0.45 Ton(max)=1/f*Dmax=0.45/60000=7.5us

3. 变压器初级峰值电流的计算. Iin-avg=1/3Pin/Vinmin=1/3*105/80=0.4A ΔIp1=2Iin-avg/D=2*0.4/0.45=1.78A Ipk1=Pout/?/Vinmin*D+ΔIp1=84/0.8/80/0.45=2.79A 4. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt,得: Lp= Vinmin*T on(max)/ΔIp1 =80*0.0000075/1.78 =337uH 取Lp=337 uH 5.变压器铁芯的选择. 根据式子Aw*Ae=Pt*1000000/[2*ko*kc*fosc*Bm*j*?],其中: Pt(标称输出功率)= Pout=84W Ko(窗口的铜填充系数)=0.4 Kc(磁芯填充系数)=1(对于铁氧体), 变压器磁通密度Bm=1500 Gs j(电流密度): j=4A/mm2; Aw*Ae=84*1000000/[2*0.4*1*60*103*1500Gs*4*0.80] =0.7cm4 考虑到绕线空间,选择窗口面积大的磁芯,查表: ER40/45铁氧体磁芯的有效截面积Ae=1.51cm2

变压器的工作原理是什么

一.变压器的工作原理 变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件 1.变压器 ---- 静止的电磁装置 变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能 电压器的主要部件是一个铁心和套在铁心上的两个绕组。 变压器原理图(图3.1.2) 与电源相连的线圈,接收交流电能,称为一次绕组 与负载相连的线圈,送出交流电能,称为二次绕组 设 一次绕组的二次绕组的 电压相量 U1 电压相量 U2 电流相量 I1 电流相量 I2 电动势相量 E1 电动势相量 E2 匝数 N1 匝数 N2 同时交链一次,二次绕组的磁通量的相量为φm ,该磁通量称为主磁通 请注意图3.1.2 各物理量的参考方向确定。 2.理想变压器 不计一次、二次绕组的电阻和铁耗, 其间耦合系数 K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化, 则有

不计铁心损失,根据能量守恒原理可得 由此得出一次、二次绕组电压和电流有效值的关系 令 K=N1/N2,称为匝比(亦称电压比),则 二.变压器的结构简介 1.铁心 铁心是变压器中主要的磁路部分。通常由含硅量较高,厚度为 0.35 或 0.5 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成 铁心分为铁心柱和铁轭俩部分,铁心柱套有绕组;铁轭闭合磁路之用 铁心结构的基本形式有心式和壳式两种 心式变压器结构示意图(图3.1.6) 2.绕组 绕组是变压器的电路部分, 它是用纸包的绝缘扁线或圆线绕成 变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如上图):当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44f N?m 式中:E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值 由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

反激变压器设计步骤及变压器匝数计算教学内容

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. .输入电压范围Vin=85—265Vac; .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; .变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V). 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dm ax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A

相关主题
文本预览
相关文档 最新文档