当前位置:文档之家› SPC竞赛试题教案资料

SPC竞赛试题教案资料

SPC竞赛试题教案资料
SPC竞赛试题教案资料

学习资料

SPC竞赛试题A

一、必答题

1. 请选择以下哪个是计量型数据。(c)

A:某天FOL白班出勤人员个数b)—个lot内DA41的缺陷个数

C: SMT锡膏厚度d)某班B1WB133的报警次数

2. 只要没超过控制限就表示制程正常。(X)

3. —般认为控制(b)对改善及控制制程更为有效

A:输出b.输入C.输入与输出d.输入或输出都行

4. 样本是从总体中提取的部分用来对总体作出估计(V)

5.规格界限:是由产品设计要求和部门内部自定。(X)

应由自客户要求而定

6.S PC的特征是在大量生产结束时才量测,判断工艺是否稳定。(X

7.下面哪个数据不是计量型数据。(A

A,IC的管脚数B,齿轮的直径C体重D,锡膏厚度

8.S PC图形要点为均值,上下控制限和上下规格限

9. 连续25点在控制线内则判定为稳态(V

10. 在抽样调查中,无法避免的误差是()

A:登记性误差(B)系统性误差(C)抽样误差(D)偏差

11. 影响过程的因素包括人,机,料,法,环,测

12. 控制图中的上下控制限可以由产品的公差带压缩而来(V)

13. 在控制图应用中,我们要尽量把输入的信息收集完整,因为这样有利于 找出报警点的根本原因 (V )

14.1,2,3,4,5 的均值是-3

15.S PC 要求对输入做监控,如果对输入的因子做好监控,那么输出也就稳 定了-对

16.S PC 能科学的区分出生产过程中产品质量的必然波动和偶然波动,从而

对生产过程的异常及时报警,以便采取措施,消除异常,恢复过程的稳定 -对

17. Mean (均值),mode (众数),median (中位数)都是用来描述中心趋势的-错

18.

没有超出控制限的点,过程就是稳定的,就不会报警(例如公司的

MCS 系统) -错

19.西格玛是指 :

A:方差(B )极差C 标准差(D )公司标志

20.在分析控制图中,如果过程持续稳定,SPC 的上下限会随着样本量的增 加而A )变宽(B )不变C )变窄(D )

A .7

B .8C. 7.5D.7.2

A.标准差

B.均值

C.标准差与均值

D.不确定

23.

二、抢答题

1.

在测量系统中,测量仪器的至少应能测出上下规格限间距的( b )

不确定 21.若一组数据为4、5、6、7、

8、9其中中位数是:(

22.如果说连续九点在中心限的一侧 ,说明什么发生了变化 :

A: 1/5b) 1/10c)1/50d) 1/100

2.SPA共有(8)大判异准则,RF B一般使用其中的(3)项。请列出?

3 .控制图是休哈特在哪年首先提出的。(A

A, 1924B, 1928C,1931 D,1942

4.S PC从内容上主要分为两个方面:利用控制图分析过程的稳定性,对过程存在的异精品文档

学习资料

常因素进行(预警)。计算过程能力指数分析稳定的过程能力满足技术要求的

程度,对过程质量进行(评价。

5. 一个期望的可接受的过程应该是:()

A:输出特性在技术规范之内B)消除了普通原因变差C:消除了特殊原因变差D)只存在普通原因变差,且能力指数符合顾客要求

6. 两个总体平均数不等,但标准差相等,则()

A;平均数小者代表性大(B)平均数大者代表性大C;两个平均数代表性相同(D)无法判断

7. 基板的轻微翘曲属于

A:不良(B)拒收C:缺陷(D)正常

8. 在控制图中的报警点可以分为局部措施和系统措施,这两部分的可以纠正的问题比例分别为15%和85%

9. 在日常工作中,将x-bar 和些列那个图经常联合起来使用会方便而且有效)

A)P 图(B)U 图C)R 图(D)I 图

10.S PC收集的数据应该是()

A)收集令顾客满意的数据(B)随机收集数据C)在统计过程处于稳定状态下地

数据(D)只记录好的,理想的数据

11. 控制图是

A )用于控制成本的图(

B )根据上级下达指标设计的因果图

C )用于监控 过程质量是否处于统计监控状态的图(

D )利用公差控制过程的图

12. 计量值管制图每组样本数若超过 10个时,则必须使用 : ()

A.X-Rbar 图

B.Xbar-S 图

C.Xbar-R 图

D.X-Rm 图 E 」图

13. 生产部Sorting50K 的产品时,使用快速检测夹具检测产品的长度及宽 度,应该使用什么控制图

A .Xbar-RB.NPC. CD. Xbar-S

14. 当出现以下原因时 ,需要重新计算控制限

A.班次更换

B.机器更换C 机器大修D.人员更换

15. 最常用的计量值管制图有 :均值极差图 ;均值标准差图 ;中位数极差图 ;单值 移动极差图

16.SPC 经历的三个阶段:统计;制程和管制

17.U-Chart 的用途为:缺点之管控,但其样本不相同 00C 应该从人,机,料,

法,环及测等方面去分析,并找到

三、选答题 1. 直方图是用一系列等宽不等高的长方形表示宽度表示在给定隔数据出现的 数,变化的高度表示数据的分布情况。左图是我们一段工序的 4 台机器实测数 据直方图,从图形上看哪机器的性能最佳。 (D )

A.1

B.2

C.3

D.4

2. 左图是一个 X-bar 图,红圈内的那个点表明( D )

18.如果某个工序出现 一场的根本原因

19.按照数据类型来分 ,控制图分为计量控制图和计数控制图

20.分析Xbar-R 图时, 先分析R 图,然后分析Xbar 图

A.该组数据里一定有超过规格限的点

B.该组数据里一定有超过控制限的点

C该组数精品文档

学习资料

据平均值超过规格限D.该组数据平均值超过控制限

3. 我们的在生产中会看到各种各样的图表数据,它们都表达着各自相应的信息,他们也有着各自不同的属性要求,左面的图中要求数据呈正态分布的有几个(2)

A.1

B.2

C.3

D.4

均值极差图散布图柏拉图单值进程图

4. 每间隔6 个小时连续抽样5 个,测量其强度并记录其数值。用什么控制

图?为什么?--30 分

5. 实施SPC成功的关键()

A:如果控制点是输出(Y)那么需要把控制点有输出转化成为输入(x)B:找出并且控制关键的输入因子(X1,X2…)C针对关键的输入因子做改进,使其稳定,从而提高过程的稳定性

6.

SPC竞赛试题B

四、必答题

1.如分析过程中每周产出的合格产品的百分比应选用以下哪个控制图。(aA: P 图b) NP 图c) C图d) U 图

2. 过程的3 要素是:输入,输出,方法。

3. 质量管理最为经典的持续改进管理模式及思维方式是(c )

最新世界十大发明家及其发明资料

亚历山大·贝尔(英国) 最著名的发明:电话 “你能听到我讲话吗?” “是的!” 我们能听到对方讲话,多亏了亚历山大·贝尔发明的电话。 现在有那么多的电话提供商,但正是亚历山大·贝尔的功劳造就了世界第一个(也是实力最强的)电话公司——贝尔电话公司。贝尔并不只是个单打一的奇才,他的研究思想涉及空调(实际上他在自己屋里就搞了原始的空调系统)、水翼船及信息磁存概念(该概念导致生前从未见到的创新发明——电脑)等。 托马斯·爱迪生(美国) 最著名的发明:灯泡 再没有比灯泡更能代表创新的发明了。事实上,爱迪生的发明对世界造成如此深远的影响,以至于被戏称为所有伟大思想的象征。 人们一想到爱迪生很容易把目光聚到灯泡上(他实际改进并使之可行的一个发明设计),其实他真正的意图是给灯泡通电让其发光。1882年,爱迪生创建了世界第一个输电公司,将电送往曼哈顿区的59家消费者。

莱特兄弟 最著名的发明:飞机 像鸟儿一样在天空飞翔,自古以来就是人类的梦想。为了它 的实现,人们付出了多年坚持不懈的努力,甚至许多先驱者生 命的代价。终于在1903年1 2月17日,世界上第一架载人动 力飞机在美国北卡罗来纳州的基蒂霍克飞上了蓝天。这架飞机被叫做“飞行者—1号”,它的发明者就是美国的威尔伯·莱特和奥维尔·莱特兄弟。莱特兄弟的第一次有动力的持续飞行,实现了人类渴望已久的梦想,人类的飞行时代从此拉开了帷幕。 莱昂纳多·达·芬奇(意大利) 最著名的发明:计算器 提到达·芬奇和他的发明时,你最好问这样的问题:“什么东西不是他发明的?”因为他发明的东西实在太多了。达·芬奇的工作日志里绘有许多东西的设计图,但其中最值得一提的就是计算器的设计。试想如果缺少简单的复杂的数学运算,那科学将会是什么样子。 达·芬奇堪称文艺复兴开山鼻祖,他能画(比如杰作《蒙娜丽莎》),能雕塑,也能发明。他那至今令全世界着迷的日记,描绘勾勒了从人体到直升机和坦克的很多事物。

一个经典的SPC应用的例子

从网上看到一个经典的SPC应用的例子,与大家共赏: 俗话说宴无好宴。朋友邀我去他家做客吃晚饭,进了门迎面遇上他焦急无辜的表情,才知道主题是咨询。起因是朋友最近回家的时间越来越晚,罪证就在他家门口玄关的那张纸上——朋友的太太是一家美商独资企业的QC主管,在家里挂了一张单值-移动极差控制图,对朋友的抵家时间这一重要参数予以严格监控:设定的上限是晚七点,下限是晚六点,每天实际抵家时间被记录、描点、连线——最近连续七天(扣除双休日)的趋势表明,朋友抵家的时间曲线一路上扬,甚至最近两天都是在七点之后才到家的,证据确凿——按照休哈特控制图的原则和美国三大汽车公司联合编制的SPC(Statistical Quality Control,统计过程控制)手册的解释,连续7点上升已绝对表明过程发生了异常,必须分析导致异常的原因并做出必要的措施(比如准备搓衣板),使过程恢复正常。显然,我可能给出的合理解释成了朋友期待的救命稻草,而这顿晚饭就是他在我面前挂着的胡萝卜。 显然,朋友的太太比我们绝大多数的企业家更专业(当然,作为同类,我想这也许就是导致我们只能成为管理工具的原因),她清楚地认识到:预防措施,永远比事后的挽救更重要。 顺便说一句,朋友太太厨艺很优秀,属于那种下得厨房上得厅堂的模范太太——当然,对朋友的在意程度更是显而易见的,否则不会选择抵家时间作为重要的过程特性予以控制——这个过程参数,在她眼里,无疑昭示着忠诚度。饭后上了红酒,席间的谈话就从过程异常的判定开始。 “我们先来陈述一下控制图的判异准则:第一,出现任何超出控制限的点;第二,出现连续7点上升或者下降或者在中心线的一边;第三,出现任何明显非随机的图形。显然,目前该过程已经符合其中第一和第二项,确实出现了异常。作为过程控制的责任者,你打算怎么分析呢?” “还是我们传统的分析方法:因果图。” “那么,我们寻找的还是这五个方面的原因了:人、机、料、法、环?” “是的。” “好。在我们开始分析之前,我想顺便问一下,你是从哪里学会控制图的?” “除了公司的培训之外,讲述统计过程控制的书籍不计其数,作为在质量领域被广泛应用的技术,以Statistical Quality Control为题的书籍虽说不是汗牛充栋,也已经目不暇接。最近从亚马逊书店邮购的这两本,McGraw-Hill Series in Industrial Engineering and Management的Statistical Quality Control,还有Douglas C. Montgomery的Introduction to Statistical Quality Control。再比如这本STATISTICS: Methods and Applications,国内比较好的专著,我喜欢孙静的这本《接近零不合格过程的有效控制:实现六西格玛质量的途径》。不过这些书也很难给出太多新的理论,因为SPC已经足够成熟,找来新书也不过看看不断翻新的新的应用范例,或者结合新的技术之后会是什么样子,比如,有没有研发出功能强大的新软件。” “呵呵,也没必要采用如此先进的控制技术吧?”朋友插嘴道。 “你错了,统计学应用于过程控制,不过代表着上个世纪二十年代最先进的质量管理水平。我们采用的控制图方法,一般称为休哈特控制图(Shewhart Control Chart),最早是在1924年,由美国贝尔电话实验室休哈特(W.A.Shewhart)博士提出的。当时这一方法并未得到企业的普遍采纳,仅仅在小范围内得到应用。后来,两个意外的机遇使它在全世界名声大噪:一是二战期间的1942年,美国国防部邀请包括休哈特博士在内的专家组解决军需大生产的产品质量低劣、交货不及时等问题,专家们制定了战时质量控制制度,统计质量控制(SQC) 被强制推行,并在半年后大获成效。二是休哈特博士的同事,伟大的戴明(W.Edwards

SPC案例

SPC的作用 第一部分问题分析 F集团是国内一家大型摩托车民营企业集团,已经有10年的历史。集团下属摩托车发动机公司、摩托车整车公司、摩托车研究开发中心等二十几家公司,遍布国内外。集团年销售总额已经达到47亿元。 F集团期望通过第二个十年的发展,成为中国摩托车行业的领袖,并在世界摩托车行业确立比较领先的地位。 对于国内摩托车市场的激烈竞争,集团总裁Z先生认为:只有打破低层次上的同质化价格竞争,才有可能走出困境,实现发展的抱负。因此,Z非常重视产品的质量,极力强调质量在差异化战略中的特殊重要地位。 1999年,在Z总裁的强行推动下,集团下属的主要公司都已经通过了ISO 9000质量体系认证,并且根据Z的要求,这些公司广泛地使用了SPC方法。但是时间到了2001年,Z发现,这些公司的质量问题仍然很多,最使Z不能容忍的是以前发生的问题总是在重复发生。Z请来一位质量专家G,让G帮助解决这个难题。 Z提出了两个问题: 一是为什么我推行了两年多的SPC,却看不到效果呢? 二是SPC到底有没有用? G先采取了调查的方法。他在发动机公司了解情况,质量部部长拿出资料,显示了各种产品的合格率,并解释说:“今年的指标是94%,您看,虽然实际的合格率有一些波动,但是平均已经达到了95%还多一点。”质量经理面带困惑地打断他说:“是呀,指标没问题,可是客户的抱怨不断,我天天都是焦头烂额!”G问道:“那么,合格率是怎么统计出来的?”部长说生产部门有统计资料。 于是他们一起来到生产部,那里的看板上贴满了各种统计数据表和直方图、柱图、饼图,而且全部都是电脑打印出来的彩色的图片,就如下面这张图一样: 生产部长给G展示,他们为了应用SPC方法,已经配备了3台电脑、2名统计员和1名分析员。分析员是一位聪明伶俐的女孩子,当她知道G对她的工作内容很感兴趣的时候,显得略为紧张,不过更多的是兴奋(后来她告诉G,除了统计结果,他的部长从不曾关注过她的工作内容),G问她:“那些图表用来做什么?知道为什么要这样做吗?”她说:“这个我知道,是为了统计合格率,因为质量部要求我们上报这个数据,每个月还要考核呢。”G问质量部长:“是这样吗?”质量部长说:“是的。因为集团质量管理部门就是这样要求我们的。”G查阅了分析员的电脑,发现她的电脑里面保存了完整的质量问题数据,比如,测试部每天分类汇总的测试过程发现的各个型号发动机的漏油、碰划伤问题,生产线上的巡检员每天分类汇总的各种装配问题。G对质量经理和质量部长问道:“这些数据谁收集?除了分析员这里,还需要报给哪个部门或人员?你们知道这些数据吗?”他们回答说:“有文件规定测试

水翼船与机翼理论

水翼船与机翼理论 1. 引论 水翼船在翼载状态通常有良好的耐波性,所产生的余波小,由于入射波引起的速度损失也小。对于全浸式水翼系统,这些优点尤为显著。水翼的设计工况一般是亚空泡状态,然而,空泡产生的可能性仍然是一个重要的问题。讨论中,架设水翼无空泡。 Johnston指出,在选择全浸式水翼系统中的水翼和支柱的结构布局时,有如下一些重要的方面: (1)保持航向稳定性和横摇稳定性。 (2)当水翼露出水面时,能够稳定的恢复到浸没状态。 (3)恶劣海况下航行性能温和的趋向恶化。 (4)安全性。 设计者力图使水翼的升阻比和空泡初生时的航速最大化。而满足结构要求的条件下,必须实现支柱—水翼系统质量的最小化。 以下首先描述水翼船的主要特征和重要的物理特性。其次是对机翼理论进行详细讨论。想用数值方法预报水翼船在波浪中以及在启航和操纵过程中的定常特性和非定常特性,机翼理论是一个必要的基础。机翼理论的描述,将从介绍基于源,汇和偶极分子的边界元方法开始;这个方法可以考虑非线性理论,三维流动,水翼和支柱的相互作用以及自由表面效应。再次讨论线性理论,线性理论的优越性是,可以更容易地看出攻角,拱度,襟翼和三维流动,如何影响水翼的升力和阻力。此外,还要讨论自由表面和水翼的相互作用如何影响水翼的定常

升力和阻力;这项分析有实验结果的论证。最后讨论由于入射波浪引起的非定常情况;这将用于计算一个翼载状态的水翼船,在遭遇迎浪规则波或规则波时的垂荡和纵摇运动。

2.水翼船的主尺度 图1.1还给出了一个带襟翼的全浸型水翼系统的例子:前支柱用于转向操纵,喷水推进则和后翼布置组合在一起。喷水系统有一个喷压式的入水口,内部的管道经过内支柱,然后水从船尾喷到空气中,许多现有的水翼船都装有襟翼,它们用于控制纵倾和图1.2给出了各种类型的水翼布局。 表1.1和表1.2分别给出了单体划割自由面型和全浸型水翼船的主要尺度。 3.物理特征 3.1 水翼航行状态的静态平衡 在翼载状态下,船的重量由水翼系统提供的定常升力来平衡。对于

造船用钢材料

1、造船用钢 建造民用或军用船舶的钢铁材料,都称之为造船用钢。有钢板、型材、管材、铸锻件等等。但习惯上造船用钢仅指船舶壳体用的钢板,有一般强度造船钢板、高强度造船钢板和海军舰艇壳体用钢板三大类别。 2、造船用钢的技术要求 ①对强度的要求。较高的强度可以减少船体的重量,减少焊接工作量,增大承载能力。高强度钢的采 用又受到船体刚性和耐蚀性的制约。 ②船体线形较为复杂,有多类型的单曲线或双曲面,要采用冷、热弯及矫正等多种成形操作,要求钢 材对造船工艺的适应性,还包括在焊接和修补。 ③对塑性和韧性的要求足以补偿由于建造过程中各种操作的加工硬化和热循环对材质的影响。对于艏 柱、船体纵弯应力最大的部位、船底及舷部止裂板等重要部位,要求高的抗裂性,要求在低温条件下具有较低的延一脆性转变温度和足够的冲击吸收功。 ④耐海水腐蚀性。 3、造船用钢的需求 进入90年代,国际海运量的增长高于运力的增量,船舶市场新船建造和旧船成交活跃,头5年新船交易达3200万排水吨位。我国仅船舶工业总公司系统共造船676万吨,后5年可再造350—400万吨。 占世界造船量1/10. 我国造船业已能建造28万吨级油轮、15万吨级散货轮、1200吨钻井平台、4200m3LPG船、3000m3液化气船及全程自控高速水翼船。 包括泰州造船在内,国内涉及造船的船舶公司、交通部和农业部的造船能力在600万吨左右。可为冶金、电力、石化、水电、煤炭、城建及轻工等行业建造24大类数千种非船舶产品。但生产能力略低于日本的1400万吨和韩国的1300万吨。 目前造船钢材年需量在200万吨,其中造船钢板在100—120万吨左右。国内基本可以生产四个钢材品种、五个级别的船板。240Mpa级一般强度船板需求仍是主要的,450、600Mpa级高强度船板亦能生产。 路透首尔10月15日电---造船用钢板可能是明年钢铁市场中罕见的亮点,供给可能依旧紧俏,即便是运费率下滑,以及金融危机迫使船运业者砍掉部分订单. 分析师表示,在经济看衰下,商用钢品前途惨淡,汽车销售早已惨跌,造船用钢板价格在未来六个月却可望持坚,甚至逆势上扬.即便是造船业者未来景气低迷,尤其是韩国这个全球最大的造船国. "钢铁业景气已触顶,新订单较去年已锐减40%,受到信用紧俏的影响,我想可能还会有更多砍单,可能有5%已下订的订单被取消,"早安新韩证券分析师Lee Jong-whan表示."但砍单对主要造船厂和钢铁需求几无影响,因为其未交货订单已排到超过三年以後. 拜中国等新兴市场需求强劲所赐,钢价今夏冲上纪录高位;但之後钢铁价格较今年高点已滑 落逾两成.鉴于汽车厂商、营建业者和家电业者需求不振,钢铁厂商莫不考虑减产以提振价格. 尽管钢价不振,但造船业依然是个亮点.韩国东国制钢(001230.KS: 行情)9月将造船用钢板价格上调12%,为年内第四次提价,主要就是因为原材料价格居高不下而且需求强劲.

高性能船舶船型介绍

高性能船舶船型介绍 发布: 2010-3-11 18:07 | 作者: lowellzhu | 来源: 龙de船人 [i=s] 本帖最后由lowellzhu 于2010-3-11 18:27 编辑 接触高性能船舶时一直不太理解什么是高性能船以及高性能船舶船型的分类,经过翻阅各类书籍及论文,总结一下,供船人参考,并希望专业人士斧正! 当前,高性能船舶的研发与推广应用备受国内外造船界的青睐,其船型更是国际著名学者机构研究的热点。这类船舶种类繁多,新船型层出不穷,日新月异,在各类船舶中是新思想最丰富、最有创新、也最有活力的领域;其高航性、优良的耐波性、低物理场辐射特征、舒适安全性、良好的经济性等性能受到军事和民用领域的极大关注,拥有良好的发展前景 依据支持船重的方式和作用原理的差异对高性能船舶船型进行分类,并分别介绍各类船型。 1 高性能船舶的分类 高性能船舶按其特性可分为气垫船,水翼船,小水线面双体船,多体船,地效翼船,高速单体船等各式各样的显著不同于常规船舶的船型。而按照支承船重的方式和作用原理差异,把高性能船舶分为:浮力支承型、静态气垫升力支承型、动态升力支承型、复合型。本文将按照后者分类方式分别对各种高性能船舶的船型进行介绍。 2 船型介绍 2.1

浮力支承型 1)高速深V型船 船首部横剖面呈深V形,并突出到船体基线的下方,其V形断面比U形断面的船体可以更好的满足适航性的要求。深V船型具有两种基本的舯剖面形式,即单折角线或双折角线(见下图)。当要求设计艇有较大内部容积和较低的相对航行速度(低傅氏数)时采用双折线型,而单折角线型的艇则更适合于要求较低的排水量和较高的相对航行速度(较高傅氏数)的情况。然而,对船舯剖面形式的选择不存在确定性的规则,因为其它的参数也起重要作用。所以双折角线型也可以应用于快艇,反之亦然。 1.jpg 2) 小水线面双体船 小水线面双体船基本上由三大部分组成,即水下体(提供浮力)、桥体结构(生活与工作平台)、支柱(星双凸流线形截面,作为前二者之联结体)。 小水线面双体水下体(如图)有两个深置水下承受大部分浮力的鱼雷状下潜体,它的宽敞的船体高出水面,船体和鱼雷状下潜体之间由狭长的流线型支柱连接。 小水线面双体船有几种形式:下图所示的为“单体单支型”,还有“单体双支柱型”(即一个潜体用前后两个支柱连接),或者“双体双支柱型”(每一侧有前后两个潜体,每个潜体各有一个支柱)。下潜体后端安装有两个螺旋桨,内侧装有前后各两个稳定鳍,前小后大[5]。

翼型理论

第十二章机翼理论 课堂提问:雁群迁徙时为什么呈”人字形”飞行? 机翼理论:研究支持飞机升空,水翼船飞腾的机翼理论。 在航空,舰船等工程上应用最多,舵、螺旋桨,减摇鳍、水翼、扫雷展开器,研究船舶的操纵性时可以把船体的水下部分看作是一个机翼(短翼)。此外在风扇,鼓风机,压缩机,水上运动器械如帆板,脚蹼等都与机翼理论有关。 本章内容: 1. 几何特性 2. 流体动力特性 3. 有限翼展机翼(三元机翼) 本章重点: 1. 机翼几何特性。 2. 机翼几何特性对流体动力特性的影响。 3. 下洗速度形成的概念及计算,自由涡、附着涡形成的概念。 4.升力线理论的概念。 5. 诱导阻力的概念,诱导阻力的计算。 6. 展弦比换算的思路及计算。 本章难点: 1. 机翼几何特性对流体动力特性的影响。 2. 升力线理论的概念。 3. 展弦比换算。 §12-1机翼的几何特性 一、翼型(profile) 翼剖面的重要参数: 中线(center line),翼弦(chord)b,拱度(camber)f,相对拱度f/b,展长l,厚度t,相 对厚度t/b,(thicheness),攻角(angle of attach)α,翼型面积S,展弦比λ等。根据 工程应用的需要,机翼的平面形状多样。 展弦比 2 l S λ=

对于矩形机翼S lb =, 所以 2l l lb b λ= = 无限翼展机翼:12λ=∞: 短翼:?<2, 大展弦比机翼:λ?2 船用舵0.5 1.5λ=:, 水翼57λ=: 战斗机24λ=:,轰炸 机712λ =:,风洞试验一般采用标 准机翼56λ =:。 机翼的攻角又分为: 几何攻角?:来流速度0U 与弦线之间的夹角。 基本形状: 后缘总是尖的(产生环量) 圆前缘:减小形状阻力 尖前缘:减小压缩性所引起的激波阻力或自由 表面所引起的兴波阻力 翼型:几种常见的翼型 NACA翼型(美国国家航空咨询委员会(National Advisori committee for Aeronautics ,简称NACA )设计发表的) 目前在舰船的舵、螺旋桨上用得较多的是NACA 翼型系列。 NACA 四组翼型: 1)NACA 四位数字翼型 ) ()] 2)21[() 1() ()2(222f f f f f f f f f x x x x x x x f y x x x x x x f y >-+--=≤-?== (12-2) 该翼型系列的厚度表达式为 4325075.04215.17580.16300.08485.1(x x x x x t y t -+--= (12-3) 翼型系列的30=t x % ,40 %,前缘半径,1019.12t r =前。翼型系列有九种相对厚度:6%, 8%, 9%, 10% 12%, 15%, 18%, 21%, 24%;有三种相对拱度:0, 1%, 2%。 2)NACA 五位数字翼型 五位数字翼型的厚度分布仍与四位数字翼型相 同,都是(12-3)式,相对厚度有12%,15%, 18%, 21%, 24%五种; f x 都是15%;设计

SPC控制图应用指导书

有限公司作业文件 文件编号:版号:A/0 (SPC)控制图应用指导书 批准: 审核: 编制: 受控状态:分发号: 2010年11月15日发布2010年11月15日实施

(SPC)控制图的应用指导书 1目的 用于使(工序)过程保持稳定状态,预防不合格发生。 2适用范围 适用公司对特殊特性与关键工序的控制。 3职责 3.1技术科 负责识别并确定特殊特性与关键工序,并确认需要控制的质量特性值。3.2检验科 1)负责采集和记录控制图所需要的产品实物测量数据,并确定采用的控制图的种类。 2)负责对现场操作人员进行控制图作业的培训和指导。 3.3生产车间 负责控制或管理控制图的打点、判别、不合格的纠正。 4控制图的基本形式、种类及适用场合 4.1控制图的基本形式如图1 抽样时间或样本序号 图1控制图的基本形式 4.2控制图的分类 4.2.1按照用途分类 1)分析用控制图 主要用于分析过程是否处于稳态,过程能力是否适宜。如果发生异常就应找出其原因,采取措施,使过程达到稳定。过程处于稳定后,才 可以将分析用的控制线,延长作为控制用控制图。 2)控制(管理)用控制图

用于使过程保持稳态,预防不合格的发生。控制用控制图的控制线来自分析用控制图,不必随时计算。当影响过程质量波动的因素发生变化或质量水平已有明显提高提高时,应使用分析用控制图计算新的控制线。 4.2.2按数据的性质分类,表1列出常用控制图的种类及适宜场合 4.3控制图的应用范围 1)诊断:评估过程的稳定性。 2)控制:决定某过程何时需要调整,何时需要保持原有状态。 3)确认:确认某一过程的改进。

4.4绘制控制图 1)选定质量特性:选定控制的质量特性应是影响产品质量的关键特性。这些特性应能够计算(或计数)并且在技术上可以控制。 2)选定控制图的种类。 3)收集数据:应收集近期的,与目前工序状态一致的数据。收集的数据个数参见表2 表2控制图的样本数与样本大小 4)计算有关参数 各控制图有关参数的计算步骤及公式(见表3)

轮船构造用具设施知识

轮船分类 民用运输航行区域航行状态动力装置推进器形式常见类型客船海船排水量船蒸汽动力装置船螺旋桨船钢质船 货船内河船滑行艇内燃机动力装置 船 平旋推进器船内燃机动力船 渡船港湾船水翼船核动力船喷水推进器船螺旋桨推进船驳船气垫船电力推进船喷气推进器船 冲翼艇螺杆艇 明轮船 构造 构造船舶由许多部分构成,按作用和用途可分为以下几部分。 ①船体。又可分为主体部分和上层建筑部分。主体部分一般指上甲板以下的部分,由船壳(船底及船侧)和上甲板围成的具有特定形关的空心体,是保证船舶具所需浮力、航海性能和船体强度的关键部分,一般用于布置动力装置、装载货物、储存燃料和淡水,以及布置其他各种舱室。上层建筑位于上甲板围成、主要用于布置各种用途的舱室(如工作舱室、生活舱室、贮藏舱室、仪器设 轮船 备舱室等)。船体结构为由板材和型材组合的板架结构,可分为纵骨架式结构和横骨架式结构以及混合骨架式结构。 ②船舶动力装置。又可分为推进装置和辅助装置。推进装置是提供推进动力的成套动力设备,由主机(如蒸汽机、汽轮机、柴油机、汽油机、燃汽轮机等)、主锅炉、传动装置、轴系、推进器、各种仪表和辅助设备等组成。辅助装置是为船舶的正常运行、作业、生活杂用等提供各种能量的成套动力设备,一般由船舶电站、辅助锅炉和废气锅炉装置以及其他辅助装置等组成。 ③船舶舾装。包括舱室内装结构(内壁、天花板、地板等)、家具和生活设施、门窗、梯、栏杆、桅杆、舱口盖等。 ④其他装备。如锚与系泊设备、舵与操舵设备、救生与消防设备、通信与导航设备、照明与信号设备、通风与空调和冷藏设备、压载水系统、舱底水疏干系统、液体舱的测深和透气系统、海水和生活用淡水系统、船舶电气设备等。构成船舶的零件有成千上万种,所用材料品种多、数量大,而以钢材用量最大。其中船体结构用的材料主要是碳素钢和低合金高强度钢。船舶的主要技术特征有船舶排水量、船舶主尺度(如船

SPC案例分析

统计过程控制(SPC )案例分析 一. 用途 1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。 2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品 产生。 3.查明生产设备和工艺装备的实际精度,以便作出正确的技术 决定。 4.为评定产品质量提供依据。 二、控制图的设计原理 1. 正态性假设:绝大多数质量特性值服从或近似服从正态分 布。 2. 3σ准则:99。73%。 3. 小概率事件原理:小概率事件一般是不会发生的。 4. 反证法思想。 四. 控制图的种类 1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~ ,) (2)计数值(p ,pn ,u ,c 图)。 2. 按控制图的用途分:(1)分析用控制图;(2)控制用控制 图。 五. 控制图的判断规则 1. 分析用控制图: 规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况);

规则2 判异准则-----排列无下述现象(8种情况)。 2.控制用控制图: 规则1 每一个点子均落在控制界限内。 规则2 控制界限内点子的排列无异常现象。 [案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量

要求为平均不合格率≤2%。 解:一.收集收据 在5M1E 充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示: 某无线电元件不合格品率数据表 二.计算样本中不合格品率:k i n k p i i i ,.....,2,1,==,列在上表. 三.求过程平均不合格品率:

%14017775/248=== ∑∑i i n k p 四.计算控制线 p 图:i i n p p p UCL n p p p UCL p CL /)1(3/)1(3% 140--=-+=== 从上式可以看出,当诸样本大小i n 不相等时,UCL,LCL 随i n 的变化而变化,其图形为阶梯式的折线而非直线.为了方便,若有关系式: 2 /2min max n n n n ≥≤ 同时满足,也即i n 相差不大时,可以令n n i =,,使得上下限仍为常数,其图形仍为直线. 本例中,711=n , 诸样本大小i n 满足上面条件,故有控制线为: p 图:% 08.0/)1(3/)1(3%72.2/)1(3/)1(3% 140=--=--==-+=-+===n p p p n p p p UCL n p p p n p p p UCL p CL i i 五.制作控制图: 以样本序号为横坐标,样本不合格品率为纵坐标,做p 图. 六.描点:依据每个样本中的不合格品率在图上描点. 七.分析生产过程是否处于统计控制状态

spc基础培训资料

第一章节重新认识SPC 在QS-9000附属参考手册中,有一本“SPC手册”是专门规定SPC统计方法的:内容主要有:过程的概念;过程变差; 过程能力分析; 计量型控制图(X—R图,X—S图等); 计数型控制图(p图,np图,c图,u图等);

第二章节SPC应用的基础 .百分率:单项数据与所有数据总和的商的百分值。 累计百分率:顺序排列中,第1项的累计百分率,等于前 数据的分层 1.概念:将数据依照使用目的,按其性质,来源,影响等进行分类,把性质相同,在同一 生产条件下收集到的质量特性数据归并在一起的方法; 2.作用:分层的目的是为有利于查找生产质量问题的原因。

2.2频数分布表 作频数分布表时要确定组距、组数和组的边界值。 例:某零件的一个长度尺寸的测量值(mm )共100个,测量单位为0.01mm ①从数据中选出最大值和最小值,这时应去掉相差悬殊的异常数据. 最大值为42.44,最小值为42.27 ②用测量单位的1、2、5倍除以最大值与最小值之差(极差),并将所有得值取整数. 极差 =42.44-42.27=0.17mm 已知测量单位为0.01mm,为了求出组距,可用0.01mm 的1、2、5的倍数除以极差0.17mm. 0.17÷0.01=17 0.17÷0.02=8.5(取整数为9) 0.17÷0.05=3.4(取整数为3) 数据为④确定分组组界时,可把数据中的最小值分在第一组的中部,并把分组组界定在最小测量单位的1/2处,以避免测量值恰好落在边界上。这样就确定了第一组的下界,然后依次加上组距,直至确定它包括最大值的未一组的上界为止。

地效翼船

11.1掠海地效翼船发展背景 掠海地效翼船是一种能够贴着水面飞行,航速大于150kn的特殊船型。它比飞机有更大的升阻比,气动效率高。可以在海上随时起落,安全性高,具有飞机无法达到的载重量。掠海地效翼船在贴近地面(地效区内)飞行时,具有一般舰艇不可比拟的耐波性和高航速。从1897年法国人最早提出“地面效应飞行”概念至今,人类对地效翼船的理论研究和实验已有了上百年的历史。20世纪20年代初,一些水翼艇和飞机专家分别从船舶和飞机技术延伸,开始对掠海地效翼船进行研究,如1923年,苏联科学家、世界上首批直升机设计者——尤里耶夫发表了“地面对水翼空气动力特性影响”的论文。1935年,芬兰工程师卡里奥成功地实验了一种小展弦比的地效翼船。3年后,瑞典工程师特罗因格研制了“飞翼”型地效翼船模型。但此后由于地效翼船的一些关键技术问题,如纵向稳定性等没有得到很好地解决,因而进展迟缓,直到20世纪50年代之前,掠海地效翼船的发展进程不大。 从20世纪50年代,被誉为俄罗斯水翼船之父的P.E.阿列克塞耶夫及其高速船设计群体,成功地开发并批量生产了“火箭”号、“流星”号和“海燕”号等世界知名的水翼船型号,其航速高达60-100km/h,曾被广泛地用于内河、湖泊、水库等水域的交通运输中。但是,高速航行时水翼上出现的空泡现象制约了水翼船航速的进一步提高,120km/h这一数值成了该型船航速的实际极限。 1959年,P.E.阿列克塞耶夫提出了将不受空泡干扰的气动机翼用于高速船的设想。经过几年的探索研究,这一科学设想催生出了一个新的高速船型,即地效翼船。1966年,最大起飞质量544t、最大航速500km/h的“里海怪物”号多用途艇等多个型号的舰艇,并正式编入俄海军服役。其用途之一是作为超高速导弹攻击艇,以对付航空母舰编队。

SPC介绍资料(新)

S t a t i s t i c s P r o c e s s C o n t r o l 统计过程控制

目录 第一章项目背景 (3) 1.1项目背景 (3) 1.2行业术语对照 (5) 第二章系统方案介绍 (6) 2.1SPC品质过程管理 (6) 2.2SPC功能介绍 (8) 2.2.1 MDAN-SPC介绍 (8) 2.2.2 MDAN-SPC功能模块介绍 (8) 2.2.2.1 数据采集模块 (8) 2.2.2.2过程监控模块 (9) 2.2.2.3数据分析模块 (10) 2.2.2.4 专业分析、统计报表 (11) 2.2.3 MDAN-SPC系统特点: (12) 2.2.4 MDAN-SPC应用示例 (13) 2.3SPC的培训与辅导 (15) 2.4系统运行平台与资源 (16)

第一章 项目背景 1.1 项目背景 21世纪的制造企业面临着日益激烈的国际竞争,要想赢得市场、赢得用户 就必须全面提高企业的技术(Technology)、质量(Quality)、服务(Server)和执行效率(Execulate)以及降低成本(Cost)。 当前的各行业也是处在市场价格波动、客户对产品的质量要求更加严格的激烈市场竞争中,产品利润空间逐渐减少,综多的问题都体现在管理者的面前: 如何提高产品合格率,降低生产成本,提高企业效益? 如何提高顾客满意度,增强企业长期发展能力? 如何实时监控企业的过程质量状况达到产品质量的稳定 如何利用大量的检验数据以及过程工艺数据,有效开展工序质量分析与评价,并进行持续质量改进? …… 什么是SPC? SPC(Statistical Process Control)统计过程控制,简称SPC,是美国休哈特博士在二十世纪二十年代所创造的理论。是一种借助数理统计方法的过程控制工具。在企业的质量控制中,可应用SPC对质量数据进行统计、分析,从而区分出生产过程中产品质量的正常波动与异常波动,以便对过程的异常及时提出预警,提醒管理人员采取措施消除异常,确保过程的稳定性,从而提高产品的质量。

船舶分类

船舶的种类(Types of Ships) 船舶的种类很多,通常可根据其用途进行划分,有时也根据需要按不同的要求进行划分。 按航区划分,可将船舶分为极区船、远洋船、沿海船和内河船。 按航行状态划分,可将船舶分为排水型船和动力支撑型船。 按机舱位置划分,可将船舶分为中机型船、艉机型船和中艉机型船。 按甲板的层数划分,可将船舶分为单甲板船和多层甲板船。 按上层建筑划分,可将船舶分为三岛型船和平甲板型船等。 下面主要按船舶的用途分类介绍一些主流船舶。 1.1 货船 货船(cargo ship)一般称为运输船舶,是按用途及承运的货物的种类进行区分的。 (1)杂货船(general cargo vessel) 主要从事各种包装或无包装的非大宗货物运输的船舶,又称为普通货船,这是最基本的一种货船船型。该类型船的货舱一般分为两层或多层,货舱口处设有起货设备,此类船舶的优点是对货物种类和码头条件的适应性强,但缺点是装卸效率不高。杂货的批量受到货源的限制,此类船舶的载重量一般在1万~2万吨左右 (2)固体散货船(solid bulk cargo carrier) 专门从事大宗固体散装货物,如谷物、矿砂、水泥和饲料等运输的船舶。这类船舶多为单甲板尾机型船。根据运输货物的种类和船舶结构形式的不同,此类船舶又可进一步分为通用型散货船、专用型散货船和自卸式散货船。此类船舶一般有固定的航线,在国际海上货物

运输中占较大的比例(见下图)。 (3)液体散货船(liquid bulk cargo carrier) 专门从事大宗液体散装货物的运输船舶。按液体性质不同,此类船舶又分为油船(专门运输原油或成品油的船舶,见图a)、液化气船(专门运输液化石油气或液化天然气的船舶,见图b)和液体化学品船(见图c)。此类船舶多为单甲板尾机型船。液体散货船在数量和运量上占世界海运中相当大的比例。 图a 图b

SPC培训心得

SPC培训心得 SPC好多年前就开始说这个名词了,但说使用除了外审的时候向审核老师提供检查外,目前公司还没有真的运用起来。外审提供给审核老师的资料就是一两个人做的,大家平时接触SPC的机会确实不多。但并不是说SPC就真的没用,作为TS16949的五大工具之一,世界上各国家的各种企业都在使用。只能说目前公司可能还没达到这样的管理水平。公司组织SPC的学习为我们将来工作中使用SPC做了前期的铺垫。 SPC统计过程控制,利用统计的方法来监控制程的状态,确定生产过程在管制的状态下,以降低产品品质的变异,是对过程进行控制和持续改进的工具。通过对统计数据的分析、维护、改进,按PDCA的过程计划、实施、研究、措施的方式不断改善产品质量达到产品质量受控的目的。通过对SPC的运用可以降低品质变异,及时发现问题,在问题发生前提前预知的目的。SPC需要大量的统计数据,数据可分为计量型数据“可以连续取值,也称连续型数据。如:零件的尺寸、强度、重量、时间、温度等;和计数型数据:不可以连续取值,也称离散型数据(计数型)。如:废品的件数、缺陷数。SPC统计后主要以控制图的形式体现,按数据类型的不同,如果是计量型数据就采用了-R图,如果收集的数据为计数型数据侧采用P图来表示。不管采用-R图或是P图,其中的计算过程较复杂,在设计给出的上规格界限:USL;下规格界限:LSL后作为生产控制还需要计算出上控制界限(UCL) 、下控制界限(LCL) ,最终计算出CPK值。如CPK>1.33我们认为过程稳定,可转入控制用图。除了看数据外图型的直观性也充分体现,如果数据是连续7点上升或下降,也需要及时找出发生的原因及时纠正。 分析用控制图是根据样本数据计算出控制图的中心线和上、下控制界限,画出控制图,以便分析和判断过程是否处于稳定状态。如果分析结果显示过程有异常波动时,首先找出原因,采取措施,然后重新抽取样本、测定数据、重新计算控制图界限进行分析。控制用控制图是经过分析用控制图分析证实过程稳定并能满足质量要求,此时的控制图可以用于现场对日常的过程质量进行控制。 SPC中最重要的就是合理使用控制图,能供操作者使用以对过程进行持续的控制,有助于过程表现一致并可预测,使过程达到更高的质量、更低的单位成本、更高的有效能力。生产实践证明,无论用多么精密的设备和工具,多么高超的操作技术,甚至由同一操作工,在同一设备上,用相同的工具,生产相同材料的同种产品,其加工后的尺寸总是有差异,这种

SPC培训试题(答案)

SPC培训考试 部门:姓名:分数: 一﹑填空题﹕(每空0.5分﹐共25分) 1.SPC是英文Statistical Process Control的前缀简称,即统计过程控制,也称为统计制程管制。 2.CL表示_管制中心限_; UCL表示_上控制界限__ ; LCL表示下控制界限。 3.Ca表示__准确度__ ;Cp表示__精密度_ ;CPK表示制程能力。 4.PPM是指制程中所产生之百万分之不良数﹐DPM是指制程中所产生之百万分之缺点 数。Defect Per Million pcs 卖出的产品中发生故障的百万分比 5.品管七大手法分别是查检表﹑柏拉图﹑特性要因图﹑散布图﹑管制图﹑ ﹑直方图﹑层别法。 6.实施SPC能够帮助企业在质量控制上真正作到“事前”预防和控制。 7.控制图的基本类型按数据类型分为计量值控制图和计数值控制图。 8.直方图是以一组无间隔的直条图表现频数分布特征的统计图,能够直观地显示出数据的分布情况。 9.如过程历史数据计算的AVERAGE=5, σ =0.2, 过程目标值=5.1,则LCL是 4.4 ,CL是 5.0 ,UCL 是 5.6 。 10.使用控制图,对数据进行分组的基本原则是组内变异小、组间变异大。 11.一般企业的瑕疵率大约是3到4个西格玛,以4西格玛而言,相当于每一百万个机会里,有 6210 次 误差。如果企业不断追求品质改进,达到 6 西格玛的程度,绩效就几近于完美地达成顾客要求,在一百万个机会里,只找得出3.4个瑕疪。 12.计算CP,CPK时数据量不得少于 25组。 13.影响过程的主要因素有人、机、料、法、环、测。 14.对于普通原因的波动通常需要采取系统措施。 15.日常工作中,將 X-Bar 控制图与 R控制图联合使用,较为方便有效。 16.当过程处于受控状态时,过程只受普通因素的影响,过程特性的波动具有统计规律性。当过程处 于失控状态时,过程受到特殊因素的影响;波动偏离原来的规律。 17.日常生产和服务中常见的波动分布有正态分布、二项分布、泊松分布。 18.若直方图符合正态分布,说明过程处于稳定受控状态。 19.若直方图出现孤岛型、偏向型等非正态分布,说明过程中有异常因素作用,应查明原因。 20.当X-MR图中有连续9个点落在中心线同一侧时,说明过程处于失控状态。 21.当控制图中有连续14点交替升降时,说明过程处于失控状态。 22.当控制图中有连续6点上升或下降时,说明过程处于失控状态。 23.“σ”指标准差,是用来衡量一个总数里标准误差的统计单位。 24.在“3σ”原则下,控制点落在μ-3σ到μ+3σ之间的概率是 99.73% 。 25.SPC执行成功的最重要条件是 Action ,即针对变差的特殊原因和普通原因分别采取措施。二﹑选择题﹕(每题1分﹐共15分)

SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析 1.SPC控制特性的定义 T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。产品实现的过程也可以用框图简单地描述为下图: 上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。 输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然 针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的 生产能力及控制能力的需要来决定的。因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。 PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量; (1) 从产品特性要求判断,是否为产品关键特性; 如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。产品的关键特性在产品设计阶段己确定。 (2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得 到立即的改正及预防的作用。 例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而 起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。 (3) 客户的特殊要求: 客户的特殊要求可以针对产品的固有特性要求,如封装外观尺寸要求,针对p8AGBdoysize35*35的产品, 要求产品的允收范围在35+-0.sm。另外客户的特殊要求也可以针对1艺参数,如Wire Bo nd的Wire Pull和Ballshear。 封装企业的新产品导入初期阶段,在制定产品生产的控制计划时,SPC的控制特性就是其中必须定义的 一个部分。特殊特性的定义主要来源于行业规范,客户的特殊要求以及通过生产经验的累积,总结出来的关键的过程参数计量型的控制图应用在如下的特性,见下表: 计量型控制图的应用工序及抽样计划

SPC生活应用案例

工具讲解 | 老婆竟用SPC监控我|SPC统计过程控制应用经典案例分析 俗话说宴无好宴。朋友邀我去他家做客吃晚饭,进了门迎面遇上他焦急无辜的表情,才知道主题是咨询。起因是朋友最近回家的时间越来越晚,罪证就在他家门口玄关的那张纸上:朋友的太太是一家美商独资企业的QC主管,在家里挂了一张单值-移动极差控制图,对朋友的抵家时间这一重要参数予以严格监控:设定的上限是晚七点,下限是晚六点,每天实际抵家时间被记录、描点、连线——最近连续七天(扣除双休日)的趋势表明,朋友抵家的时间曲线一路上扬,甚至最近两天都是在七点之后才到家的,证据确凿——按照休哈特控制图的原则和美国三大汽车公司联合编制的SPC(Statistical Quality Control,统计过程控制)手册的解释,连续7点上升已绝对表明过程发生了异常,必须分析导致异常的原因并做出必要的措施(比如准备搓衣板),使过程恢复正常。显然,我可能给出的合理解释成了朋友期待的救命稻草,而这顿晚饭就是他在我面前挂着的胡萝卜。 显然,朋友的太太比我们绝大多数的企业家更专业(当然,作为同类,我想这也许就是导致我们只能成为管理工具的原因),她清楚地认识到:预防措施,永远比事后的挽救更重要。 顺便说一句,朋友太太厨艺很优秀,属于那种下得厨房上得厅堂的模范太太—当然,对朋友的在意程度更是显而易见的,否则不会选择抵家时间作为重要的过程特性予以控制—这个过程参数,在她眼里,无疑昭示着忠诚度。饭后上了红酒,席间的谈话就从过程异常的判定开始。 “我们先来陈述一下控制图的判异准则: 第一,出现任何超出控制限的点; 第二,出现连续7点上升或者下降或者在中心线的一边; 第三,出现任何明显非随机的图形。 显然,目前该过程已经符合其中第一和第二项,确实出现了异常。作为过程控制的责任者,你打算怎么分析呢?” “还是我们传统的分析方法:因果图。” “那么,我们寻找的还是这五个方面的原因了:人、机、料、法、环?” “是的。” “好。在我们开始分析之前,我想顺便问一下,你是从哪里学会控制图的?” “除了公司的培训之外,讲述统计过程控制的书籍不计其数,作为在质量领域被广泛应用的技术,以Statistical Quality Control为题的书籍虽说不是汗牛充栋,也已经目不暇接。不过这些书也很难给出太多新的理论,因为SPC已经足够成熟,找来新书也不过看看不断翻新的应用范例,或者结合新的技术之后会是什么样子,比如,有没有研发出功能强大的新软件。”

相关主题
文本预览
相关文档 最新文档