当前位置:文档之家› PeakFit介绍

PeakFit介绍

PeakFit介绍
PeakFit介绍

各位虫友

大家好,我是虫友rabbit_he. 今天,我做的语音教程是关于软件PeakFit的入门教程---因为我是学催化专业的,之后会带来它实战XRD、XPS、IR峰的应用语音教程,就没在深究它在其它方面的应用了。

具体大家看我的操作(语音可能不太清楚,又是新手做教程,敬请大家原谅,海涵啊^-^),

我先给大家介绍一下peakfit到底能干什么?

Peakfit -------- 最佳自动分离、拟合与分析非线性数据软件

第一名的非线性尖峰曲线套配软件

Peakfit 色层分析及光谱研究软件使用非线性曲线的适当峰值可让您侦测、测定及分析隐藏在未解决峰值数据中的峰值,使用可在屏幕上管控的图形分析方式,省略复杂的数学积分技巧。

在光谱(XRD XPS IR=其它一些光谱数据,据我所知现在有很多人用xpspeak分析xps数据,大家学了这个,你不觉得没有必要单独学它了,嘿嘿),层析,电泳分析时,我们常需要非线性曲线套配,以找出合理的峰值.

以前要花许多时间的资料分析工作,现在只要几分钟即可,不管是复杂或噪声多的资料,都有办法帮您处理。

--------------------------------------------------------------------------------

欢迎访问SYSTAT美国网站:https://www.doczj.com/doc/8a9715301.html,/ ,您可以获得更详尽的信息。

点击下载详细手册:SYSTA T_PDF文件-----它主页的pdf没啥用,就四页,我上传的附件中带了一个从程序中提取出来后的帮助文档,pdf格式,295页,有兴趣的虫友多研究研究。

安装时先正常安装peakfit.exe 安完后,启动程序时会有一界面,上有三个按钮update -----continue-----exit,点击update,之后启动keygen.exe输入注册码就ok啦!!!

不注册的话,它有三十天的使用期限,期限一到,你就不能使用了。

----------------------------------------------------------------------------------------------------------------------

大家没兴趣的话都不用看这个英文介绍,到实战的时候,我会具体而详细的都讲一下,下面简要的挑几个概念讲一下

Peakfit's state - of -the - art nonlinear curve fitting is essential for accurate peak analysis and conclusive findings. PeakFit separates and analyzes nonlinear peak data better, more accurately and more conveniently than your lab instrument. Nonlinear curve fitting is by far the most accurate way to reduce noise and quantify peaks.

PeakFit uses three procedures to automatically place hidden peaks, while each is a strong solution, one method may work better with some data sets than the others. The three Procedures are... Residuals - initially places peaks by finding local maxima in a smoothed data stream

Second Derivative - searches for local minima within a smoothed second derivative data stream Deconvolution - uses a Gaussian response function with a Fourier deconvolution/ filtering algorithm.

PeakFit helps you separate overlapping peaks by statistically fitting numerous peak functions to one data set, which can help you find even the most obscure patterns in your data. The background can be fit as a separate polynomial(多项式), exponential, logarithmic, hyperbolic(双曲线)or power model. This fitted baseline is then subtracted before peak characterization data (such as areas) is calculated, which gives much more accurate results.

PeakFit is the automatic choice for Spectroscopy, Chromatography or Electrophoresis. AI Experts throughout the smoothing options and other parts of the program automatically help you to set many adjustments.PeakFit can even deconvolve your spectral instrument response so that you can analyze your data without the smearing that your instrument introduces. By Using 82 nonlinear peak models to choose from, you're almost guaranteed to find the best equation for your data.

PeakFit includes 18 different nonlinear spectral application line shapes, including the Gaussian, the Lorentzian, and the V oigt, and even a Gaussian plus Compton Edge model for fitting Gamma Ray peaks. As a product of the curve fitting process, PeakFit reports amplitude (intensity), area, center and width data for each peak. Overall area is determined by integrating the peak equations in the entire model.

T

he V oigt function is a convolution of both the Gaussian and Lorentzian functions. Most analysis packages that offer a V oigt function use an approximation with very limited precision. PeakFit actually uses a closed-form solution to precisely calculate the function analytically. PeakFit has four different Voigt functions, so you can fit the parameters you're most interested in, including the individual widths of both the Gaussian and Lorentzian components, and also the amplitude and area of the Voigt function. PeakFit's precise calculation of the V oigt function is crucial to the accuracy of your analysis.

Features

Nonlinear Curve Fitting

Full Graphical Placement of Peaks

Highly Advanced Baseline Subtraction

PeakFit Saves You Precious Research Time

Publication-Quality Graphs and Data Output

PeakFit Offers Sophisticated Data Manipulation

PeakFit Automatically Places Peaks in Three Ways

Data Input

Data Preparation

Peak Autoplacement

Non - Linear Curve Fitting

Output and Export Options

Fitting Multiple Simultaneous Gaussian Functions

SYSTEM REQUIREMENTS

486 Processor or higher

Windows 95 and above

8 MB RAM required (12 MB or more recommended)

5MB hard disk space

TOPICS

Why Should You Use Nonlinear Curve Fitting?

PeakFit Offers Sophisticated Data Manipulation

Highly Advanced Baseline Subtraction

Full Graphical Placement of Peaks and...

Publication-Quality Graphs and Data Output

PeakFit Saves You Precious Research Time

PeakFit Automatically Places Peaks in Three Ways

Why Should You Use Nonlinear Curve Fitting?

Nonlinear curve fitting is by far the most accurate way to reduce noise and quantify peaks. Many instruments come with software that only approximates the fitting process by simply integrating the raw data numerically. When there are shouldered, or hidden peaks, a lot of noise, or a significant background signal, this can lead to the wrong results. (For example, a spectroscopy data set may appear to have a peak with a 'raw' amplitude of 4,000 units -- but may have a shoulder peak that distorts the amplitude by 1,500 units! This would be a significant error.)

PeakFit helps you separate overlapping peaks by statistically fitting numerous peak functions to one data set, which can help you find even the most obscure patterns in your data. The background can be fit as a separate polynomial, exponential, logarithmic, hyperbolic or power model. This fitted baseline is then subtracted before peak characterization data (such as areas) is calculated, which gives much more accurate results. And any noise (like you get with electrophoretic gels or

Raman spectra) that might bias raw data calculations is filtered simply by the nonlinear curve fitting process. Nonlinear curve fitting is essential for accurate peak analysis and accurate research.

PeakFit Offers Sophisticated Data Manipulation

With PeakFit's visual FFT filter, you can inspect your data stream in the Fourier domain and zero higher frequency points -- and see your results immediately in the time-domain. This smoothing technique allows for superb noise reduction while maintaining the integrity of the original data stream. PeakFit also includes an automated FFT method as well as Gaussian convolution, the Savitzky-Golay method, and the Loess algorithm for smoothing. AI Experts throughout the smoothing options and other parts of the program automatically help you to set many adjustments. And, PeakFit even has a digital data enhancer, which helps to analyze your sparse data. Only PeakFit offers so many different methods of data manipulation.

Click to View Larger Image

Highly Advanced Baseline Subtraction

PeakFit's non-parametric baseline fitting routine easily removes the complex background of a DNA electrophoresis sample. PeakFit can also subtract eight other built-in baseline equations, or it can subtract any baseline you've developed and stored in a file.

Click to View Larger Image

Full Graphical Placement of Peaks

If PeakFit's auto-placement features fail on extremely complicated or noisy data, you can place and fit peaks graphically with only a few mouse clicks. Each placed function has "anchors" that adjust even the most highly complex functions, automatically changing that function's specific numeric parameters. PeakFit's graphical placement options handle even the most complex peaks as smoothly as Gaussians.

Publication-Quality Graphs and Data Output

Every publication-quality graph (see above) was created using PeakFit's built-in graphic engine -- which now includes print preview and extensive file and clipboard export options. The numerical output is customizable so that you see only the content you want.

PeakFit Saves You Precious Research Time

For most data sets, PeakFit does all the work for you. What once took hours now takes minutes –with only a few clicks of the mouse! It’s so easy that novices can learn how to use PeakFit in no time. And if you have extremely complex or noisy data sets, the sophistication and depth of

PeakFit’s data manipulation techniques is unequaled.

PeakFit Automatically Places Peaks in Three Ways

PeakFit uses three procedures to automatically place hidden peaks; while each is a strong solution, one method may work better with some data sets than the others.

The Residuals procedure initially places peaks by finding local maxima in a smoothed data stream. Hidden peaks are then optionally added where peaks in the residuals occur.

The Second Derivative procedure searches for local minima within a smoothed second derivative data stream. These local minima often reveal hidden peaks.

The Deconvolution procedure uses a Gaussian response function with a Fourier deconvolution/ filtering algorithm. A successfully deconvolved spec-trum will consist of “sharpened” peaks of equivalent area. The goal is to enhance the hidden peaks so that each represents a local maximum. Built-In Nonlinear Functions (83 total)

Spectroscopy (18): Gauss Amp(高斯), Gauss Area, Lorentz Amp, Lorentz Area, V oigt Amp, V oigt Area, Voigt Amp Approx, V oigt Amp G/L, Voigt Area G/l, Gauss Cnstr Amp, Gauss Cnstr Area, Pearson VII Amp, Pearson VII Area, Gauss+Lor Area, Gauss*Lor, Gamma Ray, Compton Edge.

Chromatography (8): HVL, NLC, Giddings, EMG, GMG, EMG+GMG, GEMG, GEMG 5-parm.

Statistical (31): Log Normal Amp, Log Normal Area, Logistic Amp, Logistic Area, Laplace Amp, Laplace Area, Extr V alue Amp, Extr Value Area, Log Normal-4 Amp, Log Normal-4 Area, Eval4 Amp Tailed, Eval4 Area Tailed, Eval4 Amp Frtd, Eval4 Area Frtd, Gamma Amp, Gamma Area, Inv Gamma Amp, Inv Gamma Area, Weibull Amp, Weibull Area, Error Amp, Error Area, Chi-Sq Amp, Chi-Sq Area, Student t Amp, Student t Area, Beta Amp, Beta Area, F Variance Amp, F Variance Area, Pearson IV.

General Peak (12): Erfc Pk, Pulse Pk, LDR Pk, Asym Lgstc Pk, Lgstc pow Pk, Pulse pow Pk, Pulse Wid2 Pk, Intermediate Pk, Sym Dbl Sigmoid, Sym Dbl GaussCum, Asym Dbl Sigmoid, Asym Dbl GaussCum.

Transition (14): Sigmoid Asc, Sigmoid Desc, GaussCum Asc, GaussCum Desc, LorentzCum Asc, LorentzCum Desc, LgstcDose Rsp Asc, LgstcDoseRsp Desc, LogNormCum Asc, LogNormCum Desc, ExtrValCum Asc, ExtrValCum Desc, PulseCum Asc, PulseCum Desc.

User Defined Functions

Up to 10 Parameters per function.

Up to 15 UDF's active during fit.

Estimates can contain formulas and constraints.

Extensive mathematical, statistical, Bessel, and logic functions.

Baseline Fit and Subtract

Automatic detection of baseline points by constant second derivatives.

Real-time Fitting in conjunction with data point selection, deselection.

Background Functions (10): Constant, Linear, Progressive Linear, Quadratic, Cubic, Logarithmic, Exponential, Power, Hyperbolic and Non-Parametric.

Graphical Review

Component and Sum Curve graphs.

Residuals Graphs, including Distribution and Stabilized Normal Probability Plots.

Confidence and Prediction Intervals.

Peak Labels (Amplitude, Center, or Area).

Numerical Review

Peak Characterization data: Center, Amplitude, Integrated Area, Analytical Area, FWHM, FW10, FWBASE, Asymmetry at HM, Asymmetry at 10 percent, First and Second Moments, Column Efficiency and Resolution, Percentage Areas, Overlap Areas.

Parameter Statistics: Parameter Values, Confidence Limits (90, 95, 99 percent), t-values, Standard Errors.

Fit Statistics: Analysis of Variance, F-statistic, Overall Standard Error, r2 value(回归系数平方和---以后我们使用时重点关注的参数,它值在0-1之间,越接近于1,你的拟合效果越好).

Data Statistics: Residual Values, Predicted Y-values, Confidence/Prediction Intervals.

PeakFit Offers Sophisticated Data Manipulation

Highly Advanced Baseline Subtraction

PeakFit Automatically Places Peaks in Three Ways

PeakFit Automatically Places Peaks in Three Ways

Single Channel Analysis Fitting Multiple Simultaneous Gaussian Functions

Single Channel Analysis Fitting Multiple Simultaneous Gaussian Functions

Single Channel Analysis Fitting Multiple Simultaneous Gaussian Functions

Single Channel Analysis Fitting Multiple Simultaneous Gaussian Functions

下面,我们着重看一下程序界面。

哈哈,这期教程就到这,老鸟不要见怪水平低,大

X

R

D

X

P

S

I

R

I

D

R

a

b

b

i

t

_

h

e

QQ: 283965121

谢谢大家观看。

主要基团的红外特征吸收峰

主要基团的红外特征 吸收峰

主要基团的红外特征吸收峰 基团振动类型波数(cm-1)波长 (μm)强 度 备注 一、烷烃类CH伸 CH伸(反 称) CH伸(对 称) CH弯(面内) C-C伸3000~2843 2972~2880 2882~2843 1490~1350 1250~1140 3.33~ 3.52 3.37~ 3.47 3.49~ 3.52 6.71~ 7.41 8.00~ 8.77 中、 强 中、 强 中、 强 分为反称与对 称 二、烯烃类CH伸 C=C伸 CH弯(面内) CH弯(面外) 单取代 双取代 顺式 反式3100~3000 1695~1630 1430~1290 1010~650 995~985 910~905 730~650 980~965 3.23~ 3.33 5.90~ 6.13 7.00~ 7.75 9.90~ 15.4 10.05~10.15 10.99~11.05 13.70~15.38 10.20~10.36 中、 弱 中 强 强 强 强 强 C=C=C为 2000~1925 cm-1 三、炔烃类CH伸 C≡C 伸 CH弯(面内) CH弯(面外) ~3300 2270~2100 1260~1245 645~615 ~3.03 4.41~ 4.76 7.94~ 8.03 15.50~16.25 中 中 强 四、取代苯类CH伸 泛频峰 骨架振动 (C C= ν) CH弯(面内) CH弯(面外)3100~3000 2000~1667 1600±20 1500±25 1580±10 1450±20 1250~1000 910~665 3.23~ 3.33 5.00~ 6.00 6.25±0.08 6.67±0.10 6.33±0.04 6.90±0.10 8.00~ 10.00 10.99~15.03 变 弱 强 三、四个峰, 特征 确定取代位置

红外出峰位置

因为官能团特征吸收是解析谱图的基础。 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 我以前本科上谱学导论时老师给过公式,但字母都被我改了:F、T、O 分别是英文4,3,1的首字母,这样我记起来就不会忘了:)。 举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好 为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界:高于3000cm^-1为不 饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm^-1一般为饱 和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在 2250~1450cm^-1频区,分析不饱和碳碳键的伸 缩振动吸收特征峰,其中: 炔 2200~2100 cm^-1

烯 1680~1640 cm^-1 芳环 1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即 1000~650cm^-1的频区 ,以 确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物 的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都 有比较详细的介绍的,这里就不唠叨了。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm^-1) C-H弯曲振动(1465-1340cm^-1) 一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm^-1) C=C伸缩(1675~1640 cm^-1) 烯烃C-H面外弯曲振动(1000~675cm^1)。

红外光谱特征吸收峰

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;-

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰 基团振动类型波数(cm-1)波长(μm)强度备注 一、烷烃类CH伸 CH伸(反称) CH伸(对称) CH弯(面内) C-C伸3000~2843 2972~2880 2882~2843 1490~1350 1250~1140 3.33~3.52 3.37~3.47 3.49~3.52 6.71~ 7.41 8.00~8.77 中、强 中、强 中、强 分为反称与对称 二、烯烃类CH伸 C=C伸 CH弯(面内) CH弯(面外) 单取代 双取代 顺式 反式3100~3000 1695~1630 1430~1290 1010~650 995~985 910~905 730~650 980~965 3.23~3.33 5.90~ 6.13 7.00~7.75 9.90~15.4 10.05~10.15 10.99~11.05 13.70~15.38 10.20~10.36 中、弱 中 强 强 强 强 强 C=C=C为 2000~1925 cm-1 三、炔烃类CH伸 C≡C 伸 CH弯(面内) CH弯(面外) ~3300 2270~2100 1260~1245 645~615 ~3.03 4.41~4.76 7.94~8.03 15.50~16.25 中 中 强 四、取代苯类CH伸 泛频峰 骨架振动( C C= ν) CH弯(面内) CH弯(面外)3100~3000 2000~1667 1600±20 1500±25 1580±10 1450±20 1250~1000 910~665 3.23~3.33 5.00~ 6.00 6.25±0.08 6.67±0.10 6.33±0.04 6.90±0.10 8.00~10.00 10.99~15.03 变 弱 强 三、四个峰,特征 确定取代位置 单取代 邻双取代 间双取代 对双取代 1,2,3,三取代 1,3,5,三取代1,2,4,三取代 ﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) CH弯(面外) 770~730 770~730 810~750 900~860 860~800 810~750 874~835 885~860 860~800 860~800 860~800 865~810 ~860 12.99~13.70 12.99~13.70 12.35~13.33 11.12~11.63 11.63~12.50 12.35~13.33 11.44~11.98 11.30~11.63 11.63~12.50 11.63~12.50 11.63~12.50 11.56~12.35 ~11.63 极强 极强 极强 中 极强 强 强 中 强 强 强 强 强 五个相邻氢 四个相邻氢 三个相邻氢 一个氢(次要) 二个相邻氢 三个相邻氢与间 双易混 一个氢 一个氢 二个相邻氢 二个相邻氢 一个氢 一个氢 一个氢

最新总结-红外光谱频率与官能团特征吸收峰分析

红外波谱 分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。 整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500 处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900 波数范围内常常出现力常数大的三件、累积双键如:- y, - gN, -C=C=C-,-C=C=O,-N=C=O等的伸缩振动吸收带。在1900以下的波数端有 -C=C-, -C=O, -C=N-, -C=O 等的伸缩振动以及芳环的骨架振动。 1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰, 因此光谱非常复杂。该区域各峰的吸收位置受整体分子结构的影响较大, 分子结构稍有不同, 吸收也会有细微的差别, 所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱 C伸缩振动,S面内弯曲振动,丫面外弯曲振动 一、烷烃 饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。烷烃有下列四种振动吸收。 1、(T C-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称 伸缩振动 2、S C-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的(T as,后者归因于甲基C-H的(T s。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。 异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1 1 1 1 叔丁基1380 cm 裂分1395 cm 、1370cm两个峰,后者强度差不多是前者 的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。 3、(T C-C在1250—800 cm-1范围内,因特征性不强,用处不大。 4、丫C-H分子中具有一(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。 二、烯烃 烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。 1、(T C=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢 \ 1 zC=CH 2 在3075—3090 cm 有强峰最易识别。 2、(T C=C吸收峰的位置在1670—1620 cm-1。随着取代基的不同,c C=C吸收峰的位置有所不同,强度也发生变化。 3、S C=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000- 700 cm-1范围内,该振动对结构敏感,其吸收

红外吸收光谱特征峰特别整理版

表15.1 典型有机化合物的重要基团频率(/cm-1) asCH asCH sCH sCH asCH CH sCH CH CH CH C=C CH CH CH C=C CH CH C≡C CH CH C=C CH OH OH

CO OH OH C=C OH CO CO C=O CH C=O OH C=O OH CO CO C=O C=O 泛频C=O C=O COC NH2NH CN CN NH NH CN CN asNH C=O CN

sNH NH NH2 NH CN+NH C=O NH+CN C=O C=O C≡N NO2NO2 CN NO2NO2 CN 吡啶类 CH C=C及C=N CH CH 嘧啶类 CH C=C及C=N CH CH *表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。 官能团区 官能团区(或称基团频率区)波数范围为4000~1300cm -1 , 又可以分为四个波段。 ★ 4000~2500cm -1 为含氢基团x —H (x 为O 、N 、C )的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收 ● 醇、酚中O —H :3700~3200cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合的O —H 在低 一侧, 峰形宽钝, 强度为s ● 羧基中O —H : 3600~2500 cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合可延伸至2500 cm -1 ,峰非常宽钝, 强度为s ● N —H : 3500~3300 cm -1 , 伯胺有两个H ,有对称和非对称两个峰, 强度为s—m 叔胺无H ,故无吸收峰 ● C —H : <3000 cm -1 为饱和C : ~2960 cm -1 ( ),~2870 cm -1 ( ) 强度为m-s ~2925 cm -1 ( ),~2850 cm -1 ( ) 强度为m-s ~2890 cm -1 强度为w >3000 cm -1 为不饱和 C : (及苯环上C-H)3090~3030 cm -1 强度为m ~3300 cm -1 强度为m ● 醛基中C —H :~2820及~2720两个峰 强度为m-s

相关主题
文本预览
相关文档 最新文档