当前位置:文档之家› 轻质与重质的区别

轻质与重质的区别

轻质与重质的区别
轻质与重质的区别

轻质氧化镁与重质氧化镁的区别

氧化镁分类:分轻质氧化镁(轻烧粉)和重质氧化镁(轻烧粉)两种。

轻质体积蓬松,为白色无定形粉末。无嗅无味无毒。密度3.58g/cm3。难溶于纯水及有机溶剂,在水中溶解度因二氧化碳的存在而增大。能溶于酸、铵盐溶液。经高温灼烧转化为结晶体。遇空气中的二氧化碳生成碳酸镁复盐。

重质体积紧密,为白色或米黄色粉末。与水易化合,露置空气中易吸收水分和二氧化碳。与氯化镁溶液混合易胶凝硬化。

应用领域

轻质氧化镁(轻烧粉)主要用作制备陶瓷、搪瓷、耐火坩锅和耐火砖的原料。也用作磨光剂粘合剂url]涂料]和纸张的填料,氯丁橡胶和氟橡胶的促进剂和活化剂。与氯化镁等溶液混合后,可制成氧化镁(轻烧粉)水调。医药上用作抗酸剂和轻泻剂,用于胃酸过多和胃二指肠溃疡病.化学工业中用作催化剂和制造镁盐的原料。也用于放璃、染粕、酚醛塑料等的制造。重质氧化镁(轻烧粉)碾米工业中用于烧制粉磨和半滚筒。建筑工业用于制造人造化学地板人造大理石防热板隔音板塑料工业用作填充料。还可用于生产其他镁盐。主要用于配制内服药剂以中和过多的胃酸。常用的制剂有:镁乳——乳状液;镁盖片——每片含MgO0.1g,;制酸散——氧化镁(轻烧粉)和碳酸氢钠混合制成的散剂等。

生产工艺:轻氧化镁一般是由氯化镁、硫酸镁、或碳酸氢镁,变成溶于水的产品再通过化学法变成不溶于水的产品,再煅烧成氧化镁。生产出来产品堆积密度很小的,一般为(g/ml)0.2,而重质氧化镁一般是由菱镁矿、水镁石矿直接煅烧而成,堆积密度一般为(g/ml)0.5。

乙烯生产中绿油分离方法的比较

乙烯生产中绿油分离方法的比较 绿油是在乙烯装置和其它石化生产装置中所有C2、C3和C4加氢反应器中形成的一种低聚物。绿油是一种含约90%脂肪族二烯烃和10%烯烃及烷烃的C4~C20不饱和反应成分的混合物。 在C2乙炔加氢反应器中(乙炔被加氢产生乙烯和乙烷),最常用的催化剂是载在氧化铝 (AL2O3)载体上的钯(Pd)。绿油聚合物是通过加氢反应本身的副反应形成的,它是不可完全避免的。该聚合物形成始于乙炔与氢气二聚生成丁二烯,继之以乙炔分子连续加成低聚生成一种吸附在Pd表面的主链分子。该绿油的低相对分子质量馏分蒸发成为气体物流,同时部分重质馏分沉积在催化剂的小孔中。其余的重质馏分以大部分小于5微米的细小液滴随气体被带走,因此气体中绿油的浓度大约100ppmv至1000ppmv,这取决于操作温度、催化剂使用寿命、CO含量、H2 /乙炔比等等。 离开加氢反应器的气体被冷却,且更多的绿油冷凝成细小液滴,它们沉积在下游热交换器、脱水器底部及在C3加氢反应器床层内部、乙烯/丙烯精馏塔内面。这些沉积的细小液滴是由聚合体组成的,并引起设备结垢,因而可能导致昂贵的非计划停工来清扫这些沉积的绿油。用于脱水剂再生的燃料气体除去沉积在分子筛上绿油;该燃料气体因而被绿油污染。然后这种被污染的燃料气体可能引起炉子的低NOx烧嘴的结垢而导致较低炉效率及更加频繁和昂贵的燃烧器喷 嘴清洗。 所评估的用于从加氢反应器废气流中分离绿油的各种工业方法包括: ·在汽提塔中用液态乙烯物流洗涤来自反应器的湿气物流, ·湿气通过填料床的撞击, ·经在气液分离器中的网垫分离, ·采用带有特殊配方和设计的滤介体的高效气液凝聚过滤器——Pall液体/气体凝聚过滤器。 研究的分离方案中,发现Pall高效液体/气体凝聚过滤器将是最具成本效率的方案,它实现从乙烯一乙烷物流中分离绿油的适当优化程度。 引言 在石化蒸汽裂解装置中,炔烃(乙炔、甲基乙炔)是乙烯和丙烯产物中的杂质。由于它们的挥发度接近乙烯和丙烯,这些炔烃不能通过分馏法从乙烯和丙烯产物中分离;因而,炔烃通常是通过选择性加氢反应生成烯烃或非选择性加氢反应生成烷烃被除去的。重点除去乙炔来满足通常乙烯产品中乙炔含量小于lppmv的要求,该乙炔加氢反应器或者被置于裂解气(CG)压缩系统(前加氢)或者被置于后脱乙烷塔和乙烯分馏塔之间的下游(后加氢)。多数用于乙炔加氢的催化剂是载于Al203上的Pd,它将选择性地把乙炔加氢生成乙烯而不是乙烷,即使在高H2分压下。 前加氢 在乙烯压缩系统和裂解气(CG)干燥器的下游中,一台前脱乙烷塔(DC2)用于裂解气体原料的装置中,或一台前脱丙烷塔(DC3)用于裂解液体原料的装置中。含CG轻质组分的DC2或13(23塔顶馏分被输送到气相乙炔加氢装置(C2 Hydrog),图示略。 后加氢 该乙炔加氢装置处理后DC2的塔顶馏分,它含有乙烷、乙烯和大约0.5~2.5%乙炔。在此配置中,由于CG中存在的所有H2在激冷(或深冷)系统和回流罐(DC2)上游的脱甲烷塔(DC1)中被除去了,不得不添加H2,图示略。 绿油形成 绿油聚合物是由乙炔通过Pd催化剂加氢生成乙烯和乙烷的副反应形成的。由于乙炔二聚生成丁二烯继之与乙炔连续加成低聚产生一连串吸附在Pd表面上的分子而发生。这种绿油是一种

洗油精细加工现状与绿色分离过程开发

广东化工2011年第5期· 40 · https://www.doczj.com/doc/881783595.html, 第38卷总第217期洗油精细加工现状与绿色分离过程开发 何选明,张连斌,潘琛,彭宏杰,吴梁森,陈康,潘叶 (武汉科技大学化学工程与技术学院,湖北武汉 430081) [摘 要]煤焦油洗油中分离产物在农药、医药、染料、加工助剂及工程塑料等领域有着广泛的应用。目前分离洗油中α-甲基萘、β-甲基萘、喹啉、联苯、吲哚、苊及芴等普遍采用精馏重结晶方法,该方法耗能大、污染大,因此研究探讨洗油加工中的绿色分离过程是十分有必要的。 绿色分离过程的主要绿色分离方法有反应精馏、绿色溶剂流体萃取及膜过程。开发绿色分离工艺对于洗油深加工方面具有一定的科研价值和工业前景。 [关键词]洗油组分;精细加工;绿色分离 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2011)05-0040-02 Production Process and Development of Green Separation of Fine Chemicals in Wash Oil He Xuanming, Zhang Lianbin, Pan Chen, Peng Hongjie, Wu Liangsen, Chen Kang, Pan Ye (College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China) Abstract: The products separated from wash oil were widely used in pesticides, medicine, dye, processing aids and engineering plastics. Distillation and recrystallization of wash oil was the main separation method in α-methyl naphthalene, β-methyl naphthalene, quinoline, biphenyl, indole, acenaphthylene, fluorene etc, which is power-wasting and largely polluted. It’s necessary to develop green separation process. In general green separation process includes reactive distillation, fluid extraction with green solvent and membrane process. The development of green separation is of research value for the further processing of wash oil and industrial application. Keywords: wash oil;fine chemicals;green separation 从煤焦油分离的化学品及其进一步加工的产品,在农药、医药、染料、加工助剂及工程塑料等领域有着广泛的应用,其中有些产品如咔唑、菲、芘及苊等是石油化工产品不能替代的,因此煤焦油深加工对资源综合利用及精细化工发展具有重要意义。 煤焦油洗油是煤焦油蒸馏时切取的230~300 (GB ℃-3064)馏分段,全国洗油年产量在100万t以上。洗油主要组分是中性组分(约90 %),其余是碱性、酸性组分,其中富含α-甲基萘、β-甲基萘、喹啉、联苯、吲哚、苊及芴等宝贵的基本有机化工原料,这些产品均具有广泛的后续开发前景[1]。 1 洗油的精细化学品深加工现状 1.1 工业甲基萘 甲基萘馏分,占洗油的25 %以上,主要组分是α-甲基萘和β-甲基萘,主要用来生产扩散剂和减水剂,此外还可用作油墨溶剂、合成多烷基萘、作压敏复写纸的溶剂。工业甲基萘作油墨溶剂与同类石油产品相比具有更好的渗透性好;作轿车漆溶剂,比四氢萘价格便宜[2]。 洗油馏分经蒸馏切取α-甲基萘与β-甲基萘混合的甲基萘馏分,再将混合甲基萘通过冷冻结晶法或共沸蒸馏分离、蒸馏与结晶分离及精馏分离,将α-甲基萘和β-甲基萘分离。 β-甲基萘是一种重要的精细化工原料。以β-甲基萘为原料制得的β-萘甲酸、β-萘酚及2,6-萘二甲酸等,被广泛用于感光材料、还原性染剂、橡胶、植物生长调节剂、表面活性剂及新型高聚材料的合成。高纯度β-甲基萘是合成维生素K类药物和饲料添加剂的原料。 目前,β-甲基萘的生产,只有宝钢是引进日本的技术,国内尚无成熟的煤焦油分离β-甲基萘技术。攀钢正和清大合作,只完成实验室的生产研究。 α-甲基萘在洗油中的质量分数约为10 %,也是一种重要的化工原料,可用来合成植物生长激素、医药中间体和高性能树脂。同时,α-甲基萘还可作为金属加工的探伤剂、静电喷漆溶剂及纤维助染剂等。 目前,α-甲基萘在我国只有鞍钢等少数企业在生产。α-甲基萘还没得到充分的开发,市场不够稳定,因此加强α-甲基萘下游产品的开发,形成稳定的市场,对于降低β-甲基萘的提取成本有很大的帮助,并使资源能够得到更充分的利用。1.2 喹啉和异喹啉 生产喹啉的常用制法是斯克洛甫合成法,这种方法存在着工艺复杂、产品成本高的不足。从煤焦油中分离喹啉比合成法成本低。从洗油中分离喹啉和异喹啉,只需将喹啉和异喹啉馏分用硫酸洗涤,再经碱中和,即可得到工业级喹啉和异喹啉。目前喹啉的提取主要采用硫酸氢铵作萃取剂,同时能够避免吲哚在强酸条件下发生低聚反应而损失[3]。 喹啉在洗油中的质量分数为2 %~4 %。是重要的医药原料,在医药上主要用于制烟酸系、8-羟基喹啉系和奎宁系三大类药物。8-羟基喹啉是新近开发的农药,可用于生产高效低毒的杀虫剂。此外,喹啉在染料、感光色素及橡胶行业也有广泛用途。 异喹啉是从生产工业喹啉的残油中进一步分离提取的,可制得治疗血吸虫病的喹啉酮。 1.3 芴 洗油馏分经蒸馏切取290~310 ℃的芴馏分,然后再蒸馏切取293~297 ℃窄馏分,冷却结晶并过滤制得粗芴,用溶剂洗涤结晶得到纯度大于95 %的芴。 芴主要集中在洗油馏分(约6 %)。可用于合成各种非银感光材料,与各种过渡金属化合制备多种金属茂,制多肽试剂用作生化药物,还可以用来生产洗涤剂、润湿剂、液体闪光剂、杀虫剂、感光材料和液晶化合物等。 芴氧化制芴酮是利用芴资源的重要途径。芴酮经还原、酯化生成双酚芴。双酚芴在电导体绝缘体、光电导体、高性能聚合体、各种膜和耐高温涂料等方面具有良好的应用前景,成为当今高性能材料、新型工程塑料的重要单体和改性剂[4]。 1.4 苊 洗油馏分经蒸馏切取苊馏分,再经冷却、结晶、分离可得工业苊,或是洗油馏分经二次精馏而得。 苊在洗油中的质量分数约为15 %,具有耐热、耐晒及耐侯性,是煤焦油洗油中分离和利用最早的产品之一。可作为合成树脂、工程塑料、医药、染料、杀虫剂、杀真菌剂、除草剂、植物生长激素的中间体以及用于制造光电感光器或有机场致发光设备所用导电材料等。 苊经高温气相脱氧可得苊烯。苊烯可用作电绝缘材料、离子交换树脂和染料等。苊烯经溴化、氯化可制得溴代和氯代苊 [收稿日期] 2011-03-01 [作者简介] 何选明(1954-),男,湖北武汉人,硕士,硕士生导师,教授,主要研究方向为煤炭综合利用及煤化工节能减排。

石油化工油水处理方案

油水处

理方案

2014-06-15 油水处理方案 --------石油化工废水处理 作者:王 1、项目简介 水体的污染破坏了生态环境的平衡,违背了社会的可持续发展规律,影响 了人们的正常生活。水体污染的来源广泛,污染物种类繁多,其中,含油废水是水体污染的主要来源。油类漂浮于水体表面,阻止空气中的氧溶解在水中,导致水体溶解氧缺乏,水生生物死亡,妨碍水生植物的光和作用,甚至水质变臭,水体生态平衡被破坏,破坏水资源的利用价值。因此,含油污水必须经过适当的处理后才可排放。随着石油、机械、冶炼、交通等行业设迅速发展,含油废水的排放量不断增大,对环境的威胁也越来越大。因此,含有废水的处理是保护水资源,防治水污染,改善水环境的必不可少的重要一环。炼油废水是含油废水的主要来源,因此,净化处理炼油废水是防治油类污染的关键。 含油废水的处理方法很多,处理设备类型也多种多样,可以根据含油种类 的不同选择不同的处理方法及设备。目前,处理炼油厂排出的含油废水多采用隔油池进行隔油,隔油池是利用油水间的密度差异,利用重力进行油水分离的,是处理含油废水的主要构筑物,它广泛的应用与全国各大炼油厂的水处理工艺中,对去除炼油废水中的油类起到了相当重要的作用。本次设计中介绍了含油废水的几种处理方法,并进行了比较,最终选定采用平流式隔油池设计处理炼油废水。 2、水质分析 炼油废水实造成水污染的主要污染源,在石油开采、炼制和石油化工生产 中,含油废水的排放量是很大的。例如,一个年产25万吨的炼油厂,每小时排出的废水可达500-600m2。这种废水中的油品,其密度一般都小于1,他们在废

油水处理方案

油水处理

方 案 2014-06-15 油水处理方案 --------石油化工废水处理 作者:王 一、项目简介 水体的污染破坏了生态环境的平衡,违背了社会的可持续发展规律,影响了人们的正常生活。水体污染的来源广泛,污染物种类繁多,其中,含油废水是水体污染的主要来源。油类漂浮于水体表面,阻止空气中的氧溶解在水中,导致水体溶解氧缺乏,水生生物死亡,妨碍水生植物的光和作用,甚至水质变臭,水体生态平衡被破坏,破坏水资源的利用价值。因此,含油污水必须经过适当的处理

后才可排放。随着石油、机械、冶炼、交通等行业设迅速发展,含油废水的排放量不断增大,对环境的威胁也越来越大。因此,含有废水的处理是保护水资源,防治水污染,改善水环境的必不可少的重要一环。炼油废水是含油废水的主要来源,因此,净化处理炼油废水是防治油类污染的关键。 含油废水的处理方法很多,处理设备类型也多种多样,可以根据含油种类的不同选择不同的处理方法及设备。目前,处理炼油厂排出的含油废水多采用隔油池进行隔油,隔油池是利用油水间的密度差异,利用重力进行油水分离的,是处理含油废水的主要构筑物,它广泛的应用与全国各大炼油厂的水处理工艺中,对去除炼油废水中的油类起到了相当重要的作用。本次设计中介绍了含油废水的几种处理方法,并进行了比较,最终选定采用平流式隔油池设计处理炼油废水。二、水质分析 炼油废水实造成水污染的主要污染源,在石油开采、炼制和石油化工生产中,含油废水的排放量是很大的。例如,一个年产25万吨的炼油厂,每小时排出的废水可达500-600m2。这种废水中的油品,其密度一般都小于1,他们在废水中以浮油,溶解油和乳化油三种存在形态。 炼油厂的主要加工方法是直接蒸馏,重质油的裂化与蒸馏,某些馏分的精致等。炼油装置一般有常减压蒸馏,催化裂化,铂重整,加氧精致,脱沥青装置等。炼油厂的主要产品是汽油,煤油,柴油,润滑油,沥青和石蜡等。其生产废水一般是根据废水的水质进行分类分流的,主要是冷却水,含硫废水,含油废水,含碱废水有时还排出含酸废水。 (1)冷却废水:是冷却馏分时的间接冷却水,温度较高,有时由于设备渗漏等原因,冷却废水经常含油,但污染程度较轻。

相关主题
文本预览
相关文档 最新文档