当前位置:文档之家› 管道液体流动及动画连接组态设计

管道液体流动及动画连接组态设计

管道液体流动及动画连接组态设计
管道液体流动及动画连接组态设计

1、管道液体流动组态设计

if(a==1)

b=b+2;

if(b>=100)

b=0;

else

b=b;

2、动画连接

程序:{if(b==1) a=1; else

a=0;}

if(e>80) k=1; else

k=0;

e=e+5;

if(e>200) e=0;

{c=c+5; if(c>100) c=0;}

{i=i+5;

if(i>=100) i=0;}

{j=j+5;

if(j>=100) j=0;}

两种液体混合装置PLC控制系统设计

两种液体混合装置P L C控 制系统设计 This manuscript was revised by the office on December 10, 2020.

摘要 S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能价格比。 本系统使用S7-200PLC实现了对液体混合装置的自动控制要求。同时控制系统利用仿真设备不仅能满足两种液体混合的功能,而且可以扩展其功能满足多种液体混合系统的功能。提出了一种基于PLC 的多种液体混合控制系统设计思路, 提高了液体混合生产线的自动化程度和生产效率。文中详细介绍了系统的硬件设计、软件设计。其中硬件设计包液体混合装置的电路框图、输入/输出的分配表及外部接线;软件设计包括系统控制的梯形图、指令表及工作过程。在本装置设计中,液面传感器和电阀门以及搅动电机采用相应的钮子开关和发光二极管来模拟,另外还借助外围元件来完成本装置。整个程序采用结构化的设计方法, 具有调试方便, 维护简单, 移植性好的优点. 关键词:PLC ;液体混合装置;程序 目录

1 液体混合装置控制系统设计任务 课程设计的目的 在工艺加工最初,把多种原料再合适的时间和条件下进行需要的加工以得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要。实际生产中需要更精确、更便捷的控制装置。 随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合远远不能满足当前自动化的需要。可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术等技术与一体的机电一体化装置。充分吸收了分散式控制系统和集中控制系统的优点,采用标准化、模块化、系统化设计,配置灵活、组态方便。 可编程控制器多种液体自动混合控制系统的特点: 1)系统自动工作; 2)控制的单周期运行方式; 3)由传感器送入设定的参数实现自动控制; 4)启动后就能自动完成一个周期的工作,并循环。 本系统采用PLC是基于以下两个原因: 1)PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上; 2)编程能力强,可以将模糊化、模糊决策和解模糊都方便地用软件来实现。 根据多种液体自动混合系统的要求与特点,我们采用的PLC具有小型化、高速度、高性能等特点,可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。设计内容及要实现的目标 利用西门子PLC的S7-200系列设计 两种液体混合装置控制系统。在实验之前 将容器中的液体放空,按动启动按钮SB1 后,电磁阀A通电打开,液体A流入容 器。当液位高度达到中限位时,液位传感 器接通,此时电磁阀A断电关闭,而电磁 阀B通电打开,液体B流入容器。当液位 达到上限位时,液位传感器接通,这时电 磁阀B断电关闭,同时启动电动机M搅 拌。60分钟后电动机M停止搅拌,这时 电磁阀C通电打开,放出混合液去下道工 序。当液位高度下降到下限位后,再延时

管道内压力和流速的关系

管道内压力和流速的关系 一般计算管线的需求,主要在于求取流体在管内的流量与管径大小。这个结果从流体力学的※Energy equation ※Bernoullie equation … 等可以计算一个参考值。 吾等更进一步,藉 ☆Hazen & Williams equation ☆Darcy & Weisback equation ☆Colebrook & White … 等更精确的计算出管道中「流量」、「流速」、「摩擦损失」、「管内径」这四个关系之间的相互变化。而Moody diagram,Nomogram,或Nomograph…就是以图表阐释管道中「流量」、「流速」、「摩擦损失」、「管内径」这四个关系而省去复杂的数学计算。 楼主所提昰「管内径」、「流量」、「流速」三个已知数,需要求未知数「压力」。 四个参数,三个已知,另一个参数当然没有问题。问题再于你对流体力学的造诣 与功力了!欲对管道的水利或水力计算熟练,唯有流体力学的应用一途。给排水课程的基础训练向来没有在流体力学与工程数学加强,是很可惜的! 下面的数学计算式是解问题之钥: 4660 a =─────── √ ̄ ̄ ̄ ̄ ̄ ̄ (1) 1 +K×Di /E×t a ‥压力速度wave velocity m/s E ‥塑料管的弹性系数modulus of elasticity of the pipe ,Mpa K ‥流体的挫曲系数fluid bulk modulus,Mpa T ‥管厚度wall thickness ,mm Di ‥管内径pipe inside diameter ,mm 因为DR =Di /t 所以a =4660 /√ ̄ ̄ ̄ ̄ ̄ ̄ ̄ (2) 1 + k/E (DR-2) P =〔a V /2.31 × g〕x 0.03 (3) P 管内水压力bar g 重力加速度m/s2 V 管内水速m/s

WinCC界面组态实例全解

WinCC界面组态 控制系统上位机监控软件采用SIEMENS公司的上位监控组态软件SIMATIC WINCC。 WinCC指的是Windows Control Center,它是在生产和过程自动化中解决可视化和控制任务的监控系统,它提供了适用于工业的图形显示、消息、归档以及报表的功能模板。高性能的功能耦合、快速的画面更新以及可靠的数据交换使其具有高度的实用性。 WinCC 是基于Windows NT 32位操作系统的,在Windows NT或Windows 2000标准环境中,WinCC具有控制自动化过程的强大功能,它是基于个人计算机,同时具有极高性价比的操作监视系统。WINCC的显著特性就是全面开放,它很容易结合用户的下位机程序建立人机界面,精确的满足控制系统的要求。不仅如此,WINCC还建立了像DDE、OLE等在Windonws 程序间交换数据的标准接口,因此能毫无困难的集成ActiveX控制和OPC服务器、客户端功能。以下以走廊等的WinCC组态为例进行介绍。 6.1 走廊灯WinCC的建立 6.1.1 新建工程 打开WinCC界面,新建一工程,在弹出的对话框WinCC项目管理器中选择单用户项目,点击确定。如图6.1所示。 图6.1 单用户项目 创建新项目对话框中填入项目名称并选择路径。单击创建。如图6.2所示。

图6.2 创建新项目 6.1.2 添加新驱动链接 右击变量管理,选择添加新的驱动程序,在弹出的对话框选择 SIMATIC S7 Protocol Suite. chn ,单击打开。如图6.3所示。 图6.3 添加新的驱动程序 在SIMATIC S7 Protocol Suite的下拉选项中找到PROFIBUS。我们选择PROFIBUS-DP 连接方式。也可选择TCP/IP以太网连接方式。如图6.4所示。

两种液体混合装置PLC控制系统设计说明

两种液体混合装置PLC控制系统设计 摘要 S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能价格比。 本系统使用S7-200PLC实现了对液体混合装置的自动控制要求。同时控制系统利用仿真设备不仅能满足两种液体混合的功能,而且可以扩展其功能满足多种液体混合系统的功能。提出了一种基于PLC 的多种液体混合控制系统设计思路, 提高了液体混合生产线的自动化程度和生产效率。文中详细介绍了系统的硬件设计、软件设计。其中硬件设计包液体混合装置的电路框图、输入/输出的分配表及外部接线;软件设计包括系统控制的梯形图、指令表及工作过程。在本装置设计中,液面传感器和电阀门以及搅动电机采用相应的钮子开关和发光二极管来模拟,另外还借助外围元件来完成本装置。整个程序采用结构化的设计方法, 具有调试方便, 维护简单, 移植性好的优点. 关键词:PLC ;液体混合装置;程序

目录 1 液体混合装置控制系统设计任务 (2) 1.1课程设计的目的 (2) 1.2设计容及要实现的目标 (2) 2 系统总体方案设计 (3) 2.1系统硬件配置及组成原理 (3) 2.2系统接线图设计 (3) 3 控制系统设计 (4) 3.1估算 (4) 3.2硬件电路设计 (4) 3.3选型 (6) 3.4分配表设计 (6) 3.5外部接线图设计 (7) 3.6控制程序流程图设计 (8) 3.7控制程序设计 (8) 3.8创新设计容 (10) 4 系统调试及结果分析 (11) 4.1系统调试 (11) 4.2结果分析 (11) 总结 (12) 致 (13) 参考文献 (14)

液体混合控制系统设计

摘要 “组态”的概念是伴随着集散型控制系统(Distributed Control System简称DCS)的出现才开始被广大的生产过程自动化技术人员所熟知的。在工业控制技术不断发展和应用的过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术已经成熟;由PC构建的工业控制系统具有相对较低的拥有成本;PC的软件资源和硬件资源丰富,软件之间的互操作性强;基于PC的控制系统易于学习和使用,可以容易地得到技术方面的支持。在PC技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。 通用工业自动化组态软件的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象和控制目的的任意组态,完成最终的自动化控制工程。 组态软件是有专业性的。一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中,如:DCS(集散控制系统)组态、PLC(可编程控制器)梯形图组态;人机界面生成软件就叫工控组态软件。在其他行业也有组态的概念,如AutoCAD,PhotoShop等。不同之处在于,工业控制中形成的组态结果是用在实时监控的,利用现场监控完成工业工程的调控。 关键词:工业组态;自动化;PLC控制;实时监控

目录 1 MCGS简介 (1) 1.1 MCGS组态软件的系统构成 (1) 1.1.1 MCGS组态软件的整体结构 (1) 1.1.2 MCGS工程的五大部分 (1) 1.2 MCGS组态软件的工作方式 (2) 1.2.1 MCGS如何与设备进行通讯 (2) 1.2.2 MCGS如何产生动画效果 (2) 1.2.3 MCGS如何实施远程多机监控 (3) 1.2.4 如何对工程运行流程实施有效控制 (3) 1.3MCGS嵌入版概述 (3) 1.3.1 MCGS嵌入版组态软件的主要功能 (3) 1.3.2 MCGS嵌入版组态软件的主要特点 (5) 2 PLC简介 (7) 2.1 PLC的介绍 (7) 2.2 PLC的工作原理 (7) 3 液体混合监控系统设计 (8) 3.1 控制要求 (8) 3.2 I/O分配表 (8) 3.3 程序设计 (9) 3.3液体混合装置人机界面设计 (12) 3.3.1 建立工程 (12) 3.3.2 定义数据对象 (13) 3.3.3 界面设计 (14) 3.3.4 设备连接 (14) 3.3.5 设备调试 (15) 4 plc程序模拟运行结果 (16) 总结 (17) 参考文献 (18)

PLC 多种液体自动混合控制系统设计

**** 专科生课程设计报告 题目多种液体自动混合控制系统设计 课程电气控制及可编程控制器 专业电气工程及其自动化 班级电气21131 学号 2010113141 2010113145 2010113 姓名王喆杨杰田东升 指导老师 完成日期 2013年 6月

目录 1 绪论 (1) 1.1 课程题目 (1) 1.2 设计目的及要求 (1) 1.3 原始资料 (1) 1.4 课题要求 (1) 1.5 日程安排 (2) 1.2 主要参考书 (2) 2 器件选择 (3) 2.1 总体结构 (3) 2.2 具体器件的选择 (3) 2.2.1液位传感器的选择 (3) 2.2.2温度传感器的选择 (4) 2.2.3 搅拌电动机的选择 (4) 2.2.4 电磁阀的选择 (5) 2.2.5 接触器的选择 (5) 2.2.6 热继电器的选择 (6) 3 程序设计 (7) 3.1 总体设计思路 (7) 3.2 PLC输入输出口分配 (8) 3.3 主电路设计 (9) 3.4 液体混合装置的输入输出接线图 (9) 3.5 液体混合装置的梯形图 (11) 4 安装、接线及系统联合测试 (13) 5 后期工作 (13) 6 总结 (14) 7 参考文献 (14)

1.绪论 1.1 课程题目 多种液体自动混合控制系统设计 1.2 设计目的及要求 1、熟悉电气控制系统的一般设计原则、设计内容及设计程序。 2、掌握电气设计制图的基本规范,熟练掌握PLC程序设计的方法和步骤。 3、学会收集、分析、运用电气设计有关资料及数据。 4、培养独立工作和工程设计能力以及综合运用专业知识解决实际工程技术问题的能力。 1.3 原始资料 图例是三种液体自动加热搅拌混合示意图,工作过程如下:打开电 磁阀Y1加入液体A,加到L3位置时停止,然后打开Y2加入液体 B,到L2位置时停止,再打开Y3,加入液体C,到位置L1停止, 此时,电炉接通加热,搅拌电机工作。当温度到后停止加热和搅拌, 打开电磁阀Y4,排放加工好的液体,排放时间由拨码开关设定,时 间到后关断Y4,加工完成。拨码开关第一位为设定产量,7段数码 管显示当前产量,设计电路,编写程序。 1.4 课题要求 1、根据项目技术要求,设计PLC控制系统总体方案; 2、根据方案选择相应电气元器件后列写主要元器件清单; 3、绘制电路图、控制板电气元件布置图、电气安装接线图; 4、在控制板上安装接线; 5、系统控制板测试; 6、通电联调; 7、整理技术资料,编写项目报告,项目验收。 1.5 日程安排

(推荐)项目八 液体混合控制系统

教时安排第周 授课课题项目八液体混合控制系统授课类型理论+实训课 教学目标、 要求1.掌握步进顺序指令的用法 2.能根据控制要求用状态继电器编写流程图、梯形图,并上机调试 3.进一步提高PLC的编程能力,将PLC与生产过程自动化联系起来 教学重点状态继电器编写流程图、梯形图教学难点状态继电器编写流程图、梯形图教具准备课件 教学方法、 手段 讲授法、举例法、演示法 参考资料三菱FX系列PLC应用技能实训 教学过程 本项目的主要内容是以图8-1所示的液体(药剂)混合机为例,运用 PLC的顺序控制设计中的步进顺控指令编程法, 完成对液体自动混合装置的电气控制。 图8-2所示为液体自动混合装置的示意图,其控制要求如下: 1.初始状态、 液体自动混合装置投入运行时, 液体 A、 B阀门美闭, 容器为放空关闭状态 2?周期操作 按下混合装置启动按钮 SB1 , 液体自动混合装置开始按以下順序工作, (1)液体 A阀门打开,液体 A流入容器,液位上升。 (2)当液位上升到 SL2时, SL2导通,关闭液体 A阀f1,同时打开液体 B阀门,液体B开始流入容器。 (3) 当液位上升到 SL1关闭液体1B 网门, 搅拌电动机开始搅拌。 (4)搅拌电动机工作20后停止搅拌, 混合液阀门 YV3行开, 放出混合液体。 (5)当液位下降到 SL3时, 开始时,且装置继续放液,将容器放空,计时满20 s后, 混合液阀门关闭, 自动开始下一个周期? 3.停止操作 按下混合装置停止按钮 SB2,在完成当前的工作循环后装置才停止操作。

一、编程元件 状态继电器 S 用于记录系统的运行状态, 是编制顺序控制程序的重要编程元件。 状态继 电器应用与步进顺序指令STL 配合使用。 在使用状态继电器时,需要注意以下几个方面: 1.状态继电器的编号必须在指定的类别范围内使用 。 2.状态继电器与辅助继电器一样有很多常开和常闭触点。 3.不使用步进顺控指令时, -状态继电器可与辅助继电器一样使用 。 4.供报警用的状态继电器可用于外部故障诊断的输出 。 、 5.通用状态继电器和断电保持状态继电器的地址编号分配可通过改变参数来设置。 二、步进顺控指令(STL 、 RET) 1.指令功能 (1)STL ~ 步进开始指令, 与母线直接连接,表示步;i 生顺控开始。 STL 的操作元件为 S0~S899。 (2)RET 步进结束指令,表示步进顺控结束,用于状态流程图结東返回主程序。 RET 无操作元件。 2.编程实例 使用 STL 指令的状态继电器的常开触点称为 STL 触点 。 从图 8=3 所示可以看出顺序 功能图、步进梯形图和指令表的对应关系。 3.指令使用说明 (1) 每一个状态继电器具有三种功能, ,即对负载的驱动处理、 指定转换条件和指定转换目标,如图8-3a 所示。 (2) STL 触点与左母线连接,与 STL 相连的起始触点要使用LD 或 LDI 指令。使用STL 指令后, 相当于母线右移至 STL 触点的右侧,,形成子母线,一直到出现下一条 sTL 指 令或者出现RET 指令为止 。 RET 指令使右移后的子母线返回原来的母线, 表示顺控结束 。使用 ST L 指令为新的状态置位 前一状态自动复位。 步进触点指令只用子常开角成点。 每一状态的转换条件由指令 LD 或 LDI 引入, 当转换条件有效时, 该状态由置位指令激活, 并由步进指令进入该状态, 接着列出该状态下的所有基本顺序指令及转换条件。 在STL 指令后出现 RET 指令,则表明步进顺控过程结束。 (3) STL 触点可以直接驱动或通过别的触点驱动 Y 、 M 、 S 、 T 等元件中餐事和年用指令。 表8-1 · 状态继电器的类型和地址编号 类型 地址编号 数用途及特点 初始状态继电器 S0~S9 10 供初始化使用 回零状态继电器 S10~S19 10 供返回原点使用 通用状态继电器 S20~S499 480 没有断电保持功能,但是可以用程序将它们设 定为有断电保持功能 断电保持功能状态继电器 S500~S899 400 具有停电保持功能,断电再启动后,可继续执 行 报警用状态继电器 S900~S999 100 用于故障诊断和报警 '

组态王监控画面大全(水处理)

客户提案

目录 ?公司简介 ?产品优势 ?案例介绍

公司简介 ?成立于1997年,总部位于北京中关村银网中心?目前员工数159人[2005.6月数据] ?年软件销售额两千余万,为国内最大的工业软件研发生产企业 ?在上海、广州、成都、济南、武汉及西安设有分支机构 ?全国三十余家分销商 ?工业自动化软件国内市场占有率38.4%[源自ARC2005数据]?产品累计销售近3万套[2005.6月数据]

产品优势 基本功能 ?全中文的过程可视化软件 ?实时趋势显示和历史趋势的动态查询 ?符合国内企业使用习惯的全中文报表生成功能 ?报警和报警管理,支持通过声音、短信、视频、电话等方式实现报警信息的记录和发布?面向用户的分级和分区的安全管理机制 ?分布式设计的软件结构,完善的网络功能 ?支持远程维护和诊断功能 ?支持OPC1.0/2.0、DDE/NETDDE ?支持ODBC接口 ?支持ActiveX可视控件 ?内置脚本语言编辑器 ?可视化的开发环境 ?支持真彩色(24位色)和过渡色的界面开发系统 ?高速历史数据的记录和查询 ?WEB Server的功能支持 ?分布式多媒体报警系统[支持视频、电子邮件、短信及语音] ?支持设备冗余、网络冗余和站点冗余 ?1500以上种的硬件设备支持[包括PLC、仪表、变频器、板卡及专用设备]

使用组态王可以: ?现场操作人员、工艺工程师、管理者可随时掌握生产信息并实现控制 ?易于部署、操作、配置和管理 ?提高生产效率,降低额外的生产开销?方便构建软硬件一体化的数字工厂 ?提高决策水平

方便的系统开发和配置: ?全中文、全集成的开发环境,采用标准的Windows界面易于直观的建立新的系统;?采用工业标准技术,包括:Windows NT/2000/XP、COM/DCOM、OPC、 ActiveX、ODBC及TCP/IP; ?提供开放的编程接口、易于功能的扩展;?支持远程调试;

西门子S7-1200多液体混合控制系统PLC课程设计报告.doc

山东交通学院 电控与PLC课程设计报告 院(部)别信息科学与电气工程学院 班级电气 学号 姓名 指导教师 时间2017.12.11--2017.12.22

课程设计任务书 题目多液体混合控制系统 学院信息科学与电气工程学院 专业电气工程及其自动化 班级电气 学生姓名 学号 12 月11 日至12 月22 日共 2 周 指导教师(签字) 院长(主任) (签字) 2017 年12月20 日

目录 摘要.................................................................................................................................................. - 1 - 一、基础题........................................................................................................................................... - 2 - 1. 1天塔之光 ............................................................................................................................... - 2 - 1.1.1设计要求 ..................................................................................................................... - 2 - 1.1.2设计思路 ..................................................................................................................... - 2 - 1.1.3部分程序梯形图........................................................................................................ - 3 - 1.2PLC控制电机正反转............................................................................................................ - 4 - 1.2.1设计要求 ..................................................................................................................... - 4 - 1.2.2设计思路 ..................................................................................................................... - 4 - 1.2.3电路接线图................................................................................................................. - 5 - 1.2.4程序梯形图................................................................................................................. - 6 - 二、组合题PLC 实现多液体自动混合控制...................................................................... - 6 - 2.1设计要求................................................................................................................................. - 6 - 2.2设计思路及流程图 .............................................................................................................. - 7 - 2.3 实验器材 ............................................................................................................................... - 8 - 2.4 I/O分配............................................................................................................................... - 9 - 2.5 程序梯形图...................................................................................................................... - 10 - 2.6 设计中遇到的问题,解决方法.................................................................................... - 15 - 2.7实验效果图......................................................................................................................... - 16 - 三、课程设计总结 .......................................................................................................................... - 17 -

多种液体混合控制系统设计.doc

目录 1 题目背景与意义 (1) 1.1 课题背景 (1) 1.2 课题意义 (1) 2 设计题目介绍 (2) 2.1 设计目的 (2) 2.2 设计内容及要求 (2) 3 系统设计方案 (3) 3.1 PLC输入输出地址分配 (3) 3.2 整体控制流程图 (3) 4 系统硬件设计 (5) 4.1 S7-300组态 (5) 4.1.1 S7-300特点 (5) 4.1.2 S7-300工作过程 (5) 4.2 S7-300组成部件 (5) 4.3 S7-300硬件组态步骤 (6) 5 系统软件设计 (7) 6 系统仿真调试 (8) 6.1 WinCC组态 (8) 6.2 触摸屏连接 (8) 6.3 变量定义 (9) 6.4 显示界面设置 (9) 6.5 管理画面设置 (11) 6.6 报警画面设置 (11) 设置超限报警值为100,具体操作如图6-9。 (11) 6.7 配方画面设置 (12) 6.8 趋势图画面设置 (13) 7 心得体会 (13) 8 参考文献 (14) 附录 (15)

1 题目背景与意义 1.1 课题背景 在众多生产领域中,经常需要对贮槽、贮罐、水池等容器中的液位进行监控,以往常采用传统的继电器接触控制,这种控制方式自动化程度不高,使用的硬件设备多,不易连接,可靠性差。目前已有许多企业采用先进控制器对传统控制器进行改造,大大提高了控制系统的可靠性和自控程度,为企业提供了更可靠的生产保障。 1.2 课题意义 在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。另外,生产要求该系统要具有配料精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的。所以为了帮助相关行业,特别是其中的中小型企业实现多种液体自动混合的目的,液体自动混合配料的自动控制程序就显得尤为重要。 对于本课题来说,液体混合控制部分是一个较大规模工业控制系统的改造升级,控制装置需要根据企业和设备现况来构成并需尽量用以前系统中的元器件。对于人机交互方式改变后系统的操作模式应尽量和改造前的相似,以便于操作人员快速掌握。从企业的改造要求可以看出在新控制系统中既需要处理模拟量也需要处理大量的开关量。系统的可靠性要高,人机界面友好,应具备数据储存和分析汇总的能力。

管道中液体流速过大会产生静电(新编版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 管道中液体流速过大会产生静 电(新编版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

管道中液体流速过大会产生静电(新编版) 1、API2003-1991防止静电、闪电和杂散电流引燃的措施 2.5公路槽车 C、初流速应限制在1m/s以下; E、灌装速度应控制在7m/s和下式所得值二者较小值之下:v=0.5/d; F、装载后测量或采样前,应至少保持1min时间; G、对于孔径小于100μm(细于100目)的过滤器或筛网,其下游至少保持30s的静电释放时间。 2.7铁路槽车 2.7.4对产生静电荷的控制 油品电导率小于50PS/m时,v<0.8/d,其余同样遵守2.5之规定

3海运作业 3.2对静电荷产生的控制 初装速度限制在1m/s以下,直至舱室内的输入口浸没在油内0.3~2m,方可加快装载速度。 4储罐 4.2产生静电荷的控制 b)在装油管浸没在油中0.6m或两倍管径之前,速度限制在1m/s 以下; d)避免大量空气或其它夹带气体随液体泵入储罐。 2、NFPA77-1993关于处理防静电措施的建议 4-3储罐 4-3.2防护措施 (b)灌装管尽量接近罐底,把液体的湍流减小到最低限度。原则上应使灌入的液流呈水平,以减轻对罐底水或沉积物的冲击; (c)在实际可能情况下,应该使从管口流入储罐的液体的线流速保持在1m/s,同时管口应没入液面之下;

液体混合控制系统设计

摘要 “组态”的概念就是伴随着集散型控制系统(Distributed Control System简称DCS)的出现才开始被广大的生产过程自动化技术人员所熟知的。在工业控制技术不断发展与应用的过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术已经成熟;由PC构建的工业控制系统具有相对较低的拥有成本;PC的软件资源与硬件资源丰富,软件之间的互操作性强;基于PC的控制系统易于学习与使用,可以容易地得到技术方面的支持。在PC技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。 通用工业自动化组态软件的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象与控制目的的任意组态,完成最终的自动化控制工程。 组态软件就是有专业性的。一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中,如:DCS(集散控制系统)组态、PLC(可编程控制器)梯形图组态;人机界面生成软件就叫工控组态软件。在其她行业也有组态的概念,如AutoCAD,PhotoShop等。不同之处在于,工业控制中形成的组态结果就是用在实时监控的,利用现场监控完成工业工程的调控。 关键词:工业组态;自动化;PLC控制;实时监控

目录 1 MCGS简介 (1) 1、1 MCGS组态软件的系统构成 (1) 1、1、1 MCGS组态软件的整体结构 (1) 1、1、2 MCGS工程的五大部分 (1) 1、2 MCGS组态软件的工作方式 (2) 1、2、1 MCGS如何与设备进行通讯 (2) 1、2、2 MCGS如何产生动画效果 (2) 1、2、3 MCGS如何实施远程多机监控 (3) 1、2、4 如何对工程运行流程实施有效控制 (3) 1、3 MCGS嵌入版概述 (3) 1、3、1 MCGS嵌入版组态软件的主要功能 (3) 1、3、2 MCGS嵌入版组态软件的主要特点 (5) 2 PLC简介 (6) 2、1 PLC的介绍 (6) 2、2 PLC的工作原理 (6) 3 液体混合监控系统设计 (6) 3、1 控制要求 (6) 3、2 I/O分配表 (7) 3、3 程序设计 (7) 3、3液体混合装置人机界面设计 (9)

管道内流体的流速限定范围

管道内流体常用流速范围 序号介质名称工作条件或管径范围流速m/s 1 饱和蒸汽DN>200, DN=100~200 DN<100 30~40 35~25 30~15 2 饱和蒸汽P<1Mpa P=1~4Mpa P=4~12Mpa 15~20 20~40 40~60 3 过热蒸汽DN>200, DN=100~200 DN<100 40~60 50~30 40~20 4 二次蒸汽二次蒸汽要利用时 二次蒸汽不利用时 15~30 60 5 高压乏气80~100 6 乏气排气管:从受压容器排出 从无压容器排出 80 15~30 7 压缩气体真空 P<0.3Mpa(表压) P=0.3~0.6Mpa(表压) P=0.6~1.0Mpa(表压) P=1.0~2.0Mpa(表压) P=2~3Mpa(表压) P=3~30Mpa(表压) 5~10 8~12 20~10 15~10 12~8 8~3 3~0.5 8 氧气P=0~0.05Mpa(表压) P=0.05~0.6Mpa(表压) P=0.6~1.0Mpa(表压) P=2~3Mpa(表压) 10~5 8~6 6~4 4~3 9 煤气管道长50~100m P≤0.027Mpa P≤0.27Mpa P≤0.8Mpa 3~0.75 12~8 12~3 10 半水煤气P=0.1~0.15Mpa(表压)10~15 11 天然气30 序号介质名称工作条件或管径范围流速m/s 12 烟道气烟道内 管道内 3~6 3~4

13 石灰窑窑气10~12 14 氮气P=5~10Mpa(表压)2~5 15 氢氮混合气P=20~30Mpa(表压)5~10 16 氨气真空 P<0.3Mpa(表压) P<0.6Mpa(表压) P<2.0Mpa(表压) 15~25 8~15 10~20 3~8 17 乙烯气P=22~150Mpa(表压)5~6 18 乙炔气P<0.01Mpa(表压) P<0.15Mpa(表压) P<2.0Mpa(表压) 3~4 4~8(最大) 最大4 19 氮气体 液体 10~25 1.5 20 氯仿气体 液体 10 2 21 氯化氢气体(钢衬胶管) 液体(橡胶管) 20 1.5 22 溴气体(玻璃管) 液体(玻璃管) 10 1.2 23 氯化甲烷气体 液体 20 2 23 氯乙烯(三种) 2 24 乙二醇 2 25 苯乙烯 2 26 水(及粘度相似的 液体) P=0.1~0.3Mpa(表压) P≤1.0Mpa(表压) P≤8.0Mpa(表压) P≤20~30Mpa(表压) 0.5~2 3~0.5 3~2 3.5~2 序号介质名称工作条件或管径范围流速m/s 27 二溴乙烯玻璃管 1 28 自来水主管P=0.3Mpa(表压) 支管P=0.3Mpa(表压) 1.5~3.5 1.0~1.5 29 锅炉给水P>0.8Mpa(表压) 1.2~3.5 30 蒸汽冷凝液0.5~1.5 31 冷凝水自流0.2~0.5 32 过热水 2 33 海水,微碱水P<0.6Mpa(表压) 1.5~2.5

基于PLC的两种液体混合搅拌控制系统设计

物理与电子工程学院 《PLC编程及应用》 课程设计报告书 设计题目:基于PLC的两种液体混合搅拌控制系统设计专业:自动化 班级:XXX 学生姓名:XX 学号:XXXX 指导教师:XXXX 2013年12 月18 日

物理与电子工程学院课程设计任务书专业:自动化班级:XX

PLC是以计算机技术为核心的通用自动控制装置,也可以说它是一种用程序来改变控制功能的计算机。随着微处理器、计算机和通信技术的飞速发展,可编程序控制器PLC已在工业控制中得到广泛应用,而且所占比重在迅速的上升。PLC主要由CPU模块、输入模块、输出模块和编程装置组成。它应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械顺利、有序、准确的工作创造了有力的保障。本文所介绍的多种液体混合的PLC控制程序可进行单周期或连续工作,具有断电记忆功能,复电后可以继续运行。另外,PLC还有通信联网功能,再通过组态,可直接对现场监控、更方便工作和管理。 关键词:PLC;液位传感器;定时器;梯形图

1 液体自动混合系统方案设计 (1) 1.1 控制要求 (1) 1.2 编程软件地址分配表 (1) 1.3 PLC外部电路接线图 (2) 1.4 主电路连接图 (2) 1.5 控制程序 (3) 2 液体自动混合系统的硬件设计 (4) 2.1 硬件选型 (4) 2.2 主电路的设计 (5) 2.3 液体混合控制系统示意 (6) 3液体自动混合系统的软件设计 (7) 3.1 PLC控制的相关流程图 (7) 3.2 可编程控制器梯形图 (7) 4.1 系统模拟调试 (9) 4.2 系统联机调试 (9) 5 心得体会 (12) 参考文献 (13)

组态王画面切换和画中画的实现

画面切换和画中画的实现 掌握内容: 1、掌握画面切换的设置方法 2、掌握画面窗口的设置方法。 画面切换的设置方法有两种: 1、通过组态对话框设置(注意其实质是通过事件选项卡中的直接连接设置) 2、通过动态向导设置:(其实质是通过事件选项卡中的C动作。记住OpenPicture(“文件名”) 函数;) 练习1:画面切换 1:新建六个画面: start.pdl, 大小1024*768 定义为起始画面 hm1.pdl, 大小1024*768 hm2.pdl, 大小800*600 hm3.pdl , 大小800*600 hm4.pdl , 大小800*600 hm5.pdl。大小800*600 2、分别在hm1~hm5中插入:分别插入静态文本框和按钮 设置静态文本框的文本属性为“画面1”、“画面2”、“画面3”、“画面4”和“画面5”字号20号、按钮设置为return,要求按下return按钮后,能回到start.pdl画面。如下图所示:

3、打开Start.pdl画面,并按下图所示设置内容: 要求蓝色按钮按照直接连接方式切换到指定画面。绿色按钮按照C动作方式连接到指定画面。 4、在画面1中添加以下内容: 西门子位图图标(库—全局库—displays- Text Fields中)。 按钮、以及静态文本框。 在第1层中,添加窗口画面1:大小810*610。边框和滚动条的属性设置为“是”。 窗口名称由按钮HM2~HM5决定,缩放因子由缩放按钮决定。偏移量由偏移按钮决定。

在右上角的文本框中,显示日期和时间,画面窗口的名称。 5、在画面3中要求实现教材64页部分的内容。 6、在画面4中要求实现教材65页部分的内容。 7、在画面2中实现以下内容 使用状态显示对象 1、使用状态显示对象、显示左右三角形(p63)。 2、使用状态显示对象、显示微笑和生气,以及平静。 1)使用画图板工具,画出生气、微笑以及平静三个图像。 。 2)打开变量编辑器、新建内部变量组ztxs. 打开内部变量组ztxs,新建变量 Is_right 二进制变量起始值0 Biaoqing 无符号8位数下限值:0,上限值:3 run 无符号8位数下限值:0,上限值:10 3)新建画面zhuangtaixs,并将其定义为启动画面。设置画面大小:1024*768 4)在画面中、使用折线画出三个画面区域。并在画面中按如下方式插入对象按钮、以及状态显示1、2、3、4分别显示左右三角形、三种表情、以及电机旋转的效果图。

给排水管道流速常用数据

以下摘自教科书《建筑给水排水工程》,考虑到经济流速因素,设计时给水管道流速应控制在正常范围内: 生活或生产给水管道,不宜大于2.0m/s,当防噪声要求,且管径不大于25mm时,流速可采用0.8~1.0m/s; 消火栓系统,消防给水管道,不宜大于2.5m/s; 自动喷水灭火系统给水管道,不宜大于5.0m/s,但其配水只管在个别情况下,可控制在10 m/s以内。 经济流速: 经济流速是指在设计供水管道的管径时使供水的总成本(包括铺设管路的建安费、水泵站的建安费、及水泵抽水的经营费之总和)最低的流速。 介质为水时用于一般给水: 主压力管道流速:2至3m/s 低压管道0.1至1m/s 工业用水:离心泵压力管3至4m/s 离心泵吸水管1至2m/s(管径小于250)1.5至2.5m/s(管径大于250)5 m. 给水总管1.5至3m/s, 排水管0.5至1m/s 冷水管1.5至2.5m/s 1. 生活给水管道流速:摘自《建筑给排水设计规范》GB 50015-2003 3.6.9 生活给水管道的水流速度,宜按表3.6.9采用。。 表3。6。9 生活给水管道的水流速度 (也是参考5.5.8规定。) 表5.5.8 水管道的流速

以下摘自教科书《建筑给水排水工程》,考虑到经济流速因素,设计时给水管道流速应控制在正常范围内: 生活或生产给水管道,不宜大于2.0m/s,当防噪声要求,且管径不大于25mm时,流速可采用0.8~1.0m/s; 消火栓系统,消防给水管道,不宜大于2.5m/s; 自动喷水灭火系统给水管道,不宜大于5.0m/s,但其配水只管在个别情况下,可控制在10 m/s以内。 2. 室外消防给水管流速:摘自《石油化工企业设计防火规范》GB 50160—92 第7.3.14条工艺装置区或罐区的消防给水干管的管径,应经计算确定,但不宜小于200mm。独立的消防给水管道的流速,不宜大于5m/s。 3.自动喷水灭火系统给水管流速: 摘自《自动喷水灭火系统设计规范》GB GB 50084—2001 9. 2 管道水力计算 9. 2. 1 管道内的水流速度宜采用经济流速,必要时可超过5m/s,但不应大于10m/s。9. 2. 1条文说明:采用经济流速是给水系统设计的基础要素,本条在原规范第7.1.3条基础上调整为宜采用经济流速,必要时可采用较高流速的规定。采用较高的管道流速,不利于均衡系统管道的水力特性并加大能耗;为降低管道摩阻而放大管径、采用低流速的后果,将导致管道重量的增加,使设计的经济性能降低。 原规范中关于“管道内水流速度可以超过5m/s,但不应大于10m/s”的规定.是参考下述资料提出的: 我国《给排水设计手册》(第三册)建议,管内水的平均流速,钢管允许不大于5m/s;铸铁管为3m/s。

相关主题
文本预览
相关文档 最新文档