当前位置:文档之家› FLAC3D强度折减程序

FLAC3D强度折减程序

FLAC3D强度折减程序
FLAC3D强度折减程序

def safefactor

new_safefactor = 1.0

ini_fric = 35.0

new_fric = 35.0

section

loop n (1,100)

command

prop fric = new_fric

step 1000

endcommand

if mech_ratio<1e-5 then

command

print new_sf

print new_fric

print new_fric

endcommand

exit section

endif

new_safefactor = (1 + n * 0.1)

new_fric = atan2 ( tan (ini_fric ) , new_safefactor ) / degrad endloop

endsection

end

safefactor

套管安全系数计算

套管安全系数计算 以下是为大家整理的套管安全系数计算的相关范文,本文关键词为套管,安全系数,计算,套管,安全系数,计算,下表,抗拉,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。 套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??Kn

Kn pp= 拉 额 8 .72 .1110008.9- =:其中浮力系数下深每米重量=浮力系数钢拉ppmρ??? 36.20383

.0791.7== 抗挤系数=抗拉 额 mpa pp p抗挤力=〔()〕50= p抗挤力=〔ρ固井时的泥浆密度-(1-掏空系数)ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 mpa

mpa pp 井底最大内压力=50= p内压力=(ρ下次最大泥浆-ρ地层水)套管下深23.31000 8.9202053.5985.09.3233=抗拉系数=? ??Kn ()[]38.12020 2.165.012.100981.0305.21=抗挤系数=

??--?mpa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φn80 38.41000 8.9175076.2985.08.1903=抗拉系数=???Kn

()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?mpa50.13600 2.100981.036 3.63=抗内压系数=?? 〔s抗挤〕=~ 〔s抗内压〕=~ 〔s抗拉〕=~ 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力;②泥浆密度均采用1.2g/cm;

材料强度等级

1.砂浆强度等级 砂浆强度等级是以边长为7.07 cm的立方体试块,按 标准条件[在(20±2)℃温度、相对湿度为90%以上的条件下养护至28 d的抗压强度值确定。砌筑砂浆按抗压强 度划分为 M20、M15、M10、M7.5、M5、M2.5等六个强度 等级。砂浆的强度除受砂浆本身的组成材料及配比影响外,还与基层的吸水性能有关。 2.砖的强度等级 标准规格砖为53mm×115mm×240mm,加入灰缝后,砖的长 宽厚之比为4:2:1.砖的强度等级是由抗压强度和抗折强度 综合确定的,分为MU30,MU25,MU20,MU15,MU10,MU7.5 等六个等级。 3.混泥土强度等级 混凝土抗压强度标准值,规定以150mm×150mm×150mm 的立方体为标准试块,在20±3摄氏度和90%湿度环境中养 护28天,按标准试验方法(加载速度每秒0.3MPa—0.5MPa)测得抗压强度为混凝土的立方体抗压强度。混凝土强度等 级应该按立方体抗压强度标准值确定,即用上述试验方法 测得具有95%保证率的立方体抗压强度作为混凝土的强度等级,用字母C表示。混凝土强度等级有C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80.现在一般用

的就是C20——C40的混凝土,其他的都很少用。1立方米普通混凝土的重量为2400kg(不含钢筋) 混凝土强度等级就是由立方体模块为标准制定的。 根据国家标准规定,我国采用标准立方体抗压强度作为混凝土强度特征值。制作边长为150mm的立方体标准试件,在标准养护条件(温度20±30C,相对湿度大于90%)下,养护至28天龄期,用标准试验方法测得的抗压强度值称为混凝土立方体抗压强度。 混凝土强度等级采用符号“C”与立方体抗压强度标准值(以N/mm2计)表示。混凝土立方体抗压强度标准值是指用标准方法制作并养护的边长为150mm的立方体试件,在28天龄期,用标准试验方法测得的具有95%保证率的抗压强度。普通混凝土按立方体强度标准值“划分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60共12个强度等级。

套管安全系数计算

套管安全系数计算如下表: 抗拉安全系数=68.6710008.95011.8185.02286=? ??KN KN P P = 拉 额 8 .72 .1110008.9- =: 其中浮力系数下深每米重量=浮力系数钢 拉P P m ρ??? 36.20383 .0791.7== 抗挤系数=抗拉 额 MPa P P P 抗挤力=0.00981×〔1.2-(1-0.65)×1.2〕×50=0.383 P 抗挤力=0.00981×〔×ρ固井时的泥浆密度-(1-掏空系数0.65)×ρ下次泥浆密度〕 32588.0823.18==抗内压系数=抗内压额内 MPa MPa P P 井底最大内压力=0.00981×1.20×50=0.588MPa P 内压力=0.00981×(ρ下次最大泥浆-ρ地层水)×套管下深 23.31000 8.9202053.5985.09.3233=抗拉系数=? ??KN ()[]38.12020 2.165.012.100981.0305.21=抗挤系数= ??--?MPa 67.12020 2.100981.0645 .139=抗内压系数=?? 油套φ139.7 N80×9.17

38.41000 8.9175076.2985.08.1903=抗拉系数=? ??KN ()[]21.23600 2.165.012.100981.0881.60=抗挤系数= ??--?MPa 50.13600 2.100981.0363 .63=抗内压系数=?? 〔S 抗挤〕=1.0~1.125 〔S 抗内压〕=1.05~1.15 〔S 抗拉〕=1.60~2.00 说明: ①本井在计算最大内压力时忽略了地层水产生液柱压力; ②泥浆密度均采用1.2g/cm ; ③各额定压力查钻井手册表3-8(第160~180页)。

强度折减法的原理

二 抗剪强度折减系数法的理论 2.1抗剪强度折减系数法的概念 抗剪强度折减系数(SSRF :Shear Strength Reduction Factor)定义为:在外荷载保持不变的情况下,边坡内土体所发挥的最大抗剪强度与外荷载在边坡内所产生的实际剪应力之比。这里定义的抗剪强度折减系数,与极限平衡分析中所定义的土坡稳定安全系数在本质上是一致的。 2.2抗剪强度折减系数法的具体内容 所谓抗剪强度折减技术就是将土体的抗剪强度指标C 和φ,用一个折减系数s F ,如式 (1)和(2) 所示的形式进行折减,然后用折减后的虚拟抗剪强度指标F C 和F φ,取代原来的抗剪强度指标C 和φ,如式(3)所示。 s F F C C /= (式1) )/)((tan tan 1s F F φφ-= (式2) F F fF C φστtan += (式3) 式中:F C 是折减后土体虚拟的粘聚力;F φ是折减后土体虚拟的内摩擦角;fF τ是折减后的抗剪强度。 折减系数s F 的初始值取得足够小,以保证开始时是一个近乎弹性的问题。然后不断增加s F 的值,折减后的抗剪强度指标逐步减小,直到某一个折减抗剪强度下整个土坡发生失稳,那么在发生整体失稳之前的那个折减系数值,即土体的实际抗剪强度指标与发生虚拟破坏时折减强度指标的比值,就是这个土坡的稳定安全系数。 2.3抗剪强度折减系数法的优点 结合有限差分法的抗剪强度折减系数法较传统的方法具有如下优点: (1)能够对具有复杂地貌、地质的边坡进行计算; (2)考虑了土体的本构关系,以及变形对应力的影响; (3)能够模拟土坡的边坡过程及其滑移面形状(通常由剪应变增量或者位移增量确定滑移面的形状和位置); (4)能够模拟土体与支护结构(超前支护、土钉、面层等)的共同作用;

钢筋强度的标准值和设计值的概念有何区别

钢筋强度的标准值和设计值 钢筋的强度标准值应具有不小于95%的保证率是什么意思 为了结构或构件安全需要满足一定的强度保证率,原材料的强度不可能都是同一的强度,有的可能高点,有的低点,假设设计值是210兆帕的话,在100根钢筋里面,有95跟强度在210之上,只有5根低于210,这就是满足95%保证率的要求。你想想如果这100跟里面只有一半的钢筋达到了210,这批钢材你敢用吗如果要求100%肯定又不太现实成本太大。像其他的混凝土之类的所有材料都是需要满足一定的强度保证率的 受拉钢筋设计时是按屈服强度设计都是以屈服强度为标准定的,屈服强度不分受拉和受压,屈服强度都是一样比如Q235的钢筋,设计值就是235,标准值就是210,Q335的钢筋,设计值是335,标准值就是30标准值主要是计算承载力的,设计值是用来验算结构或构件的挠度和裂缝宽度的。。。 荷载和材料强度的标准值是通过试验取得统计数据后,根据其概率分布,并结合工程经验,取其中的某一分位值(不一定是最大值)确定的。 设计值是在标准值的基础上乘以一个分项系数确定的(在国标《建筑结构可靠度设计统一标准》GB50068-2001中有说明)。 如荷载的设计值等于荷载的标准值乘荷载分项系数。这在荷载规范中已有明确规定,永久荷载的分项系数为或;可变荷载为或; 材料强度的设计值等于材料强度的标准值乘材料强度的分项系数。在现行各结构设计规范中虽没有给出材料强度的分项系数,而是直接给出了材料强度的设计值,但你如果仔细研究是不难发现标准值和设计值之间的系数关系的。材料强度的分项系数一般都小于1。 各种分项系数在某种意义上可以理解为是一种安全系数。 “为什么在承载能力极限状态设计时材料强度与荷载要取用设计值而在进行正常使用极限状态计算时材料强度与荷载要取用标准值”这个问题可以这样简单地理解: 现行建筑结构设计规范编制所遵循遵的原则是:“技术先进、经济合理、安全适用、确保质量”。在承载能力极限状态设计时材料强度与荷载要取用设计值,其安全系数大些,确保了安全;而在进行正常使用极限状态计算时材料强度与荷载要取用标准值,其安全系数虽然小些,但对使用要求也是能够满足的,它更可以体现经济合理。

混凝土抗压强度标准值计算

1 总 则 1.0.1~ 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材 料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm 的立方体改为边长150mm 的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k =μfcu,15-σfcu =μfcu ,15(1-δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表 注:表中混凝土立方体抗压强度的变异系数是取用全国28个大中型水利水电工程合格 水平的混凝土立方体抗压强度的调查统计分析的结果。 3.1.3 混凝土强度标准值 (1)混凝土轴心抗压强度标准值

边坡稳定性强度折减系数分析 方法在公路边坡工程中的应用

边坡稳定性强度折减系数分析方法在公路边坡工程中的应用 发表时间:2019-12-30T13:19:08.193Z 来源:《基层建设》2019年第27期作者:吴正新1 谷世君2 [导读] 摘要:引用有限元强度折减系数法相关理论,对广东省某高速公路边坡加固方案进行ANSYS分析,并与传统的极限平衡法计算结果对比分析。 1.中交第四航务工程勘察设计院有限公司广州 510230; 2.中国市政工程西北设计研究院有限公司北京 730000 摘要:引用有限元强度折减系数法相关理论,对广东省某高速公路边坡加固方案进行ANSYS分析,并与传统的极限平衡法计算结果对比分析。研究结果表明,基于有限元强度折减系法与按传统方法在矩形荷载作用下的抗滑桩内力分布较为接近,同时在抗滑桩+预应力锚索支挡结构中存在最优的锚固力。有限元强度折减法考虑了边坡和抗滑桩的协调作用以及土体的应力-应变本构关系,同时可以自动搜索滑动面,是一种具有推广意义的高边坡分析方法。 关键词:公路工程高边坡;抗滑桩+预应力锚索;有限元强度折减;极限平衡法;锚固力随着国内经济建设与大规模基础设施建设的进行与国内外科技事业的迅猛发展,我国的边坡加固治理的科学技术水平也不断提高。各种类型的支挡手段也不段涌现并逐步成熟,同时随着计算技术的发展,各种数值分析方法也引入到边坡稳定分析中,它们从不同的角度对边坡的结构和稳定分析提供有效技术支撑,为边坡设计提供了强有力的工具[1-2]。 有限元强度折减系数分析方法在上世纪70年代为英国学者Zienkiewicz提出并应用于边坡稳定评价与分析。但是受制于当时计算机水平,同时缺少功能强大的大型商用程序,阻止了该方法的大规模应用。90年代美国岩土界学者Giriffith对有限元中边坡破坏的力学机理、计算模型以及破坏准则进行了系统的阐述,从而再次引起国内外学的的广泛关注,并将该方法大规模应用于岩石边坡和支挡结构的计算[3]。 有限元强度折减系数数值分析的主要原理是:选取合理的初始折减系数,采用库仑-摩尔准则将坡体原始的粘聚力和内摩擦角进行折减,然后利用有限元进行数值分析,如果在该过程中程序收敛,则表明岩土体处于一个相对稳定的状态,再进行折减系数调整,直到程序恰好处于不收敛状态为止,此时,折减系数也就是边坡稳定安全系数。 1 某公路边坡工程概况 某高速公路K15+250-K15+360段位于广东省境内丘陵区,山体高大,形态复杂,山坡陡峭,山坡自然坡度为20~35°,局部可达45°,设计标高144.84~146.950m,地面标高为180.34~190.50m。该山体表层为坡积、残积粉质粘土,呈黄褐色,硬塑,主要成分为粘粉粒,含碎石。下伏基岩为全、中风化云母石英片岩,风化程度较强烈,全、强风化岩厚度较大,风化裂隙发育且岩体破碎。地下水主要由残坡积层中的上层滞水及基岩裂隙水组成,其补给为大气降水。 边坡开挖部分上部岩性主要为坡积、残积粉质粘土,下部岩性主要为全、中风化云母石英片岩,岩体风化程度高,风化裂隙极发育,产状分别为第一组110°∠50°、第二组170°∠70°,左侧开挖坡面倾向约为188°。经采用赤平投影分析,边坡开挖后坡体上部易变形,下部岩体坡面也存在沿层面出现变形滑动的风险,同时受两组节理影响坡面可能发生楔体破坏,因此应放缓边坡,加强坡面防护。结合方案比选,本段边坡加固方案采用抗滑桩+预应力锚索方案。 图1边坡稳定分析典型断面 2有限元强度折减系数法在道路边坡稳定性评价中的应用 2.1 道路边坡稳定性的分析模型和设计参数输入 在对道路边坡进行整体稳定性评价时,应根据其项目特点选用合理的计算模型和假设条件。在本项目中岩土材料认为是理想的弹塑性体,而抗滑桩按照线弹性材料考虑。对于理想的线弹性模型,土体进入屈服阶段也就意味着破坏,本项目在分析中引入摩尔-库仑准则作为屈服判据。同时引入ANSYS有限元分析软件完成二次模拟,得到道路边坡设计的主要设计参数。 设计采用强度储备安全系数,因而求下滑推力时必须先将岩土强度除以设计中规定的安全系数。本次计算时,取安全系数为1.2,即将岩土体强度参数进行折减1.2倍后的参数作为输入值计算下滑推力及桩的内力,折减后的参数如表1所示。 表1 模型主要输入设计参数 边坡的开挖采用单元“杀死”(E-KILL)的方法来模拟,即将刚度矩阵乘以一个数量级较小的系数,从而其单元荷载、应变以及质量均为0。桩的施工作采用“激活”(E-ALIVE)单元方法来模拟,即将单元的刚度矩阵、应变以及荷载加载至分析模型中恢复至原有数值。再次激活的单元没有相应的应变过程,以实参形式输入的初应变不为单元生死所影响,所有单元需要事先划分好。 ANSYS软件提供的载荷步功能能够很好地模拟边坡的开挖施工过程,本次计算按照以下施工步骤进行计算1.计算边坡未开挖时的初始应力;2.施工抗滑桩,激活桩单元;3.进行开挖,即杀死要开挖的单元,然后施加锚索预应力;④将滑体强度参数折减1.2,从而得出相应条件下的桩内力分布;6.抗滑桩上滑坡推力进行有限元计算后,利用ANSYS软件后处理中提供的路径分析功能将水平应力反映至路径中,即可得到总的水平推力。

钢筋符号及强度标准值

HPB235(Q235)φf yk=235n/mm2 HRB335 Φf yk=335n/mm2 HRB400 三级钢f yk=400n/mm2 钢筋的密度:7.8×103kg/m3 常用金属材料密度表(1) 钢材信息:常用金属材料密度表(1)>>常用金属材料密度表(1) 材料名称密度(克/厘米3) 灰口铸铁 6.6~7.4 白口铸铁7.4~7.7 可锻铸铁7.2~7.4 铸钢7.8 工业纯铁7.87 普通碳素钢7.85 优质碳素钢7.85 碳素工具钢7.85 易切钢7.85 锰钢7.81 15CrA铬钢7.74 20Cr、30Cr、40Cr铬钢7.82 38CrA铬钢7.8 铬钒、铬镍、铬镍钼、铬锰、硅、铬锰硅镍、硅锰、硅铬钢7.85 铬镍钨钢7.8 铬钼铝钢7.65 含钨9高速工具钢8.3 含钨18高速工具钢8.7 高强度合金钢7.82 轴承钢7.81 不锈钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、 Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 0Cr18Ni9、1Cr18Ni9、Cr18Ni9Ti、2Cr18Ni9 Cr14、Cr17 7.7 4-0.3、4-4-4锡青铜8.9 1Cr18Ni11Si4A1Ti 7.52 7铝青铜7.8 19-2铝青铜 9-4、10-3-1.5铝青铜7.5 9-4、10-3-1.5铝青铜7.5 10-4-4铝青铜7.46

铍青铜8.3 3-1硅青铜8.47 1-3硅青铜8.6 1铍青铜8.8 0.5镉青铜8.9 0.5铬青铜8.9 1.5锰青铜8.8 5锰青铜8.6 白铜B5、B19、B30、BMn40-1.5 8.9 BMn3-12 8.4 BZN15-20 8.6 BA16-1.5 8.7 BA113-3 8.5 纯铝 2.7 防锈铝LF2、LF43 2.68 LF3 2.67 LF5、LF10、LF11 2.65 LF6 2.64 LF21 2.73 硬铝L Y1、L Y2、L Y4、LY6 2.76 L Y3 2.73 L Y7、L Y8、L Y10、L Y11、L Y14 2.8 L Y9、L Y12 2.78 L Y16、L Y17 2.84 锻铝LD2、LD30 2.7 LD4 2.7

混凝土立方体抗压强度标准值的计算

混凝土立方体抗压强度标准值fcu,k的计算 1.立方体抗压强度标准值fcu,k ⑴ 测定方法 我国国家标准《普通混凝土力学性能试验方法》(GBJ81-85)规定以边长为150mm的立方体为标准试件,标准立方体试件在(20±3)℃的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为N/mm2。 ⑵《混凝土结构设计规范》规定用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的立方体抗压强度标准值,用符号fcu,k表示。 ⑶ 强度等级的划分 《混凝土结构设计规范》规定混凝土强度等级应按立方体抗压强度标准值fcu,k确定。混凝土强度等级划分有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N /mm2。其中,C50~C80属高强度混凝土范畴。 2.混凝土的轴心抗压强度 fc 混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称轴心抗压强度。 ⑴ 测定方法 我国《普通混凝土力学性能试验方法》规定以150mm×150mm×300mm的棱柱体作为混凝土轴心抗压强度试验的标准试件。棱柱体试件与立方体试件的制作条件相同,试件上下表面不涂润滑剂。棱柱体试件的抗压强度都比立方体的强度值小,并且棱柱体试件高宽比越大,强度越小。 ⑵ 轴心抗压强度标准值fck 《混凝土结构设计规范》规定以150mm×150mm×300mm的棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号fck表示。 ⑶ 轴心抗压强度标准值与立方体抗压强度标准值的关系 《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定: fck=0.88αc1αc2fcu,k (1) 式中:

有限元强度折减系数法计算土坡稳定安全系数.

有限元强度折减系数法计算土坡稳定安全系数 摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、β(坡角)、C(粘聚力)、Φ(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。关键词:强度折减系数边坡稳定屈服准则误差分析自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。到目前为止,已有很多学者对折减系数法进行了较为深入的研究[1,2,3],并在一些算例中得到了与极限平衡法十分接近的结果。但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。此论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、β坡角、C粘聚力、Φ摩擦角)对折减系数法计算精度的影响。从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%~3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答[4]。这有力地说明了将有限元折减系数法用于分析土坡稳定问题是可行的,但必须合理地选用屈服条件以及严格地控制有限元法的计算精度,同时也表明:有限元折减系数法所得安全系数稍微偏高,其原因有待进一步研究。 1 折减系数法的基本原理 Bishop等将土坡稳定安全系数F定义为沿整个滑移面的抗剪强度与实际抗剪强度之比,工程中广为采用的各种极限平衡条分法便是以此来定义坡体稳定安全系数。有限元强度折减系数法的基本思想与此一致,两者均可称之为强度储备安全度。因后者无法直接用公式计算安全系数,而需根据某种破坏判据来判定系统是否进入极限平衡状态,这样不可避免地会带来一定的人为误差。尽管如此,仍发展了一些切实可行的平衡判据,如:限定求解迭代次数,当超过限值仍未收敛则认为破坏发生;或限定节点不平衡力与外荷载的比值大小;或利用可视化技术,当广义剪应变等值线自坡角与坡顶贯通则定义坡体破坏[3]。文中平衡判据取:当节点不平衡力与外荷载的比值大于10-3时便认为坡体破坏。有限元折减系数法的基本原理是将土体参数 C、Φ值同时除以一个折减系数 Ftrial,得到一组新的C′、Φ′值,然后作为新的材料参数带入有限元进行试算,当计算正好收敛时,也即Ftrial再稍大一些(数量级一般为10-3),计算便不收敛,对应的Ftrial被称为坡体的最小安全系数,此时土体达到临界状态,发生剪切破坏,具体计算步骤可参考文献[2],文中如无特别说明,计算结果均指达到临界状态时的折减

抗压试块评定_规范

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 1 .砼试块留样的部位和数量 在规范中7.4.1中明确规定用于检查结构构件混凝土强度的试块应该在混凝土的浇注地点随机抽取。取样和试块的留置应符合下面几个规定:1不超过100M3的同配合比的混凝土,取样不得少于一次;2每工作班搅拌的同一配合比的混凝土不足100盘时取样不得少于一次;3当一次连续浇注超过1000M3每200 M3取样一次;每一楼层、同一配合比的混凝土,取样不得少于一次;4每次取样应该至少留置一组标准养护试块,同条件养护试块的留置组数应根据实际需要确定。 所谓的实际需要,在规范的附录D中说明:同条件养护的试块所对应的结构构件或结构部位应由监理(建设)施工等各方共同决定,选定的依据是什么?结构实体的检验仅限于涉及结构安全的柱、墙、梁等结构构件的重要部位。像垫层等非涉及结构安全的部位完全可以不留置同条件试块。同条件试块留置数量依照《规范》的规定:同一强度等级的同条件养护试块,其留置的数量应根据混凝土工程的工程量和重要性决定,不宜少于10组不应少于3组,不少于10组是为了按照GBJ107的要求构成进行统计方法的必要条件,不少3组是为了按照GBJ107的要求构成非统计方法的必要条件。 当有抗渗要求的工程时,混凝土试块应当在浇注地点随机取样,同一工程同一配合比的混凝土,取样不应少于一次,留置组数可根据实际需要确定。 2. 砼试块的制作和养护 参加混凝土强度评定的试块分为标养试块和同养试块,标养试块是指在标养室养护的试块,规范规定标养试块是在温度20度上下3度范围,湿度不小于百分之九十,养护28天;同养试块是指在浇注现场随机抽取混凝土制作的试块,同养试块是在施工现场随机抽取并在现场依现场养护条件日平均温度累积至600摄氏度的试块。同时,《规范》也规定了等效的养护周期不宜小于14d也不宜大于60d。在进行高层建筑施工的情况下,通常我们也要留置拆模试块,冬季时,温度较低,混凝土的强度发展缓慢,这就要求拆模的龄期长些,夏季时,温度高,混凝土的强度发展较快,一般在7d的现场养护条件下,混凝土强度就能达到90%以上,可以适当的缩短拆模龄期。

边坡强度折减法

基本原理: 强度折减法中边坡稳定的安全系数定义为:使边坡刚好达到临界破坏状态时,对岩、土体的抗剪强度进行折减的程度,即定义安全系数为岩土体的实际抗剪强度与临界破坏时的折减后剪切强度的比值。强度折减法的要点是公式1、2来调整岩土体的强度指标C 和φ(式中,F C 为折减后的粘结力,F φ为折减后的摩擦角,trial F 为折减系数),然后对边坡稳定性进行数值分析,不断地增加折减系数。反复计算,直至其达到临界破坏,此时得到的折减系数即为安全系数S F 。公式如下: trial F F C C /= (1) t a n =F φ-1)/)((tan trial F φ(2) 实现过程: 目前尚无统一的边坡失稳判据,现行的边坡失稳判据主要有以下几种: 1 以数值计算的收敛性作为失稳判据 2 以特征部位位移的突变性作为失稳判据 3 以塑性区的贯通性作为失稳判据 在FLAC3D 中求解安全系数时,单次安全系数的计算过程主要采用的是第一种失稳判据。假设数值计算模型所有非空区域都采用摩尔-库伦本构模型,便可使用命令Solve fos 来求解安全系数:首先,通过给粘结力设定一个大值来改变内部应力,以找到体系达到力平衡的典型时步r N ;接着,对于给定的安全系数s F ,执行r N 时步,如果体系不平衡力与典型内力比率R 小于10-3,则认为体系达到力平衡。如

果不平衡力比率R大于10-3,再执行r N时步,直至R小于10-3退出当前计算,开始新一轮折减计算过程。除上述以力不平衡比率小于10-3作为终止条件外,FLAC3D还采用: 1 前后典型时步运算结束时的不平衡力比率R差值小于10% 2 强度折减后的计算过程已运行了6个典型时步r N作为计算终止条件 计算过程中,只要满足上述三个标准中的任何一个,便退出当前计算。这样做的目的只要是为了控制整个强度折减法循环计算过程中的求解时间。 可以从这几个方面判断:边坡沿滑动面产生滑动、软弱面处产生的沿X方向的位移是否最大、剪切应变增量云图、安全系数、剪切应变增量云图、变形矢量图及速度矢量图、水平位移、竖直位移、垂直应力、最大不平衡力、在坡顶边缘和坡脚处设置监测点(水平应力竖直应力位移)。 FLAC是快速拉格朗日差分分析(Fast grangian Analysis of Continua)的简写。它是以岩石力学理论为基础,以介质物理力学参数和地质构造特性为计算依据,建立在客观反映原型和动态演化过程仿真力学效应基础上的一种新型数值方法。虽然其基本原理类同于离散元法,但却可与有限元一样适用于多种材料模式与边界条件非规则区域的连续问题求解。而且计算中利用的“混合离散化”技术可针对不同介质特

混凝土立方体抗压强度标准值的表示法

混凝土立方体抗压强度标准值用fcu,k表示。 混凝土强度等级采用符号C与立方体抗压强度标准值(以N/m㎡计)表示. 例:C25就是25N/平方MM 立方体抗压强度标准值系指对按标准方法制作和养护的边长为150mm(150*150*150mm)的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%。 每组三个试件应在同一盘混凝土中取样制作。其强度代表值的确定,应符合下列规定: 一、取三个试件强度的算术平均值作为每组试件的强度代表值; 二、当一组试件中强度的最大值或最小值与中间值之差超过中间似的15%时,取中间值作为该组试件的强度代表值; 三、当一组试件中强度的最大值和最小值与中间值之差均超过中间值的15%时,该组试件的强度不应作为评定的依据。 例:一组强度值18、24、20。22、24、16 那么:20*15%=3、20-18=2、24-20=2,(18+24+20)/3=20.其代表值是20. 那么:22*15%=3.3、24-22=2、22-16=6,其代表值是22. 简述:其中只有一个强度超过中间值的15%就取中间值,两个都超过中间值15%时作废,如果两个中间值不超过15%就取组数算数的平均值。 根据有关标准规定,建筑材料强度统一由符号“f”表达。 混凝土轴心抗压强度标准值为fck,"c"是棱柱体的意思,“k”是标准值

的意思。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 1、混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度÷标准强度×100%(即试压结果÷强度等级×100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 fcu------抗压强度 σo——验收批混凝土立方体抗压强度的标准差(N/m㎡); fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) fcu,min -----同一验收批混凝土强度最小值 Sfcu ------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 fcu,i----第Ⅰ组混凝土试件强度值(N/mm2); n----一个验收混凝土试件级数。 (验收批总组数) ∑---总和。 n ∑ fcu,i 2 - nm2fcu Sfcu= i=1 __________________ n - 1

材料的许用应力和安全系数计算三角

第四节 许用应力·安全系数·强度条件. 强度计算。三角函数 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方 面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成 , 由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件 确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的 最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在 b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤= A N ][σN A ≥ ][max σA N ≤

材料强度的标准值与设计值

1470 1860 1470 1470 1860 1470、 1860 1720 1470 1770 1570 1470 1470

折算关系: 2、混凝土的轴心抗拉强度 抗拉强度标准值与立方体抗压强度标准值之间的折算关系如下:3、混凝土的强度标准值 表2-6混凝土的强度标准值和设计值。 强度种类强度等级强度标准值设计值 轴心抗压轴心抗拉轴心抗压轴心抗拉 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 1.27 1.54 1.78 2.01 2.20 2.40 2.51 2.65 2.74 2.85 2.93 3.00 3.05 3.10 6.9 9.2 11.5 13.8 16.1 18.4 20.5 22.4 24.4 26.5 28.5 30.5 32.4 34.6 0.88 1.06 1.23 1.39 1.52 1.65 1.74 1.83 1.89 1.96 2.02 2.07 2.10 2.14 二、材料强度设计值 (一)钢筋的强度设计值 《公桥规》规定,钢筋抗压强度设计值或按以下两个条件确定: 《公桥规》规定,钢筋抗压强度设计值或按以下两个条件确定: 1.钢筋的受压应变(或)=0.002; 2.钢筋的抗压强度设计值(或)=(或)必须不大于钢 筋的抗拉强度设计值(或)。 各级普通钢筋强度设计值,如表2-7所示。 钢筋种类符号

235 335 1000 1070 1070 1260 1000 1070 1140 1200 1000 1070 450 650 770

混凝土抗压强度标准值计算

1 总则 1.0.1~1.0.3 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 3.1 混凝土 3.l.2 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去1.27倍标准差(保证率90%),改为强度总体分布的平均值减去1.645倍标准差(保

证率95%)。用公式表示,即: f cu,k =μfcu,15-1.645σfcu =μfcu ,15(1-1.645δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中0.95为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;0.1为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

抗压强度计算2015讲解

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

有限元强度折减法

有限元强度折减法 1 背景 1974年,Smith & Hobbs[1]使用有限元方法分析了φu=0条件下的边坡稳定性 并与Taylar[2]的结果进行对比,得到了很好的一致性;1975年,Zienkiewicz等[3]考虑c’、φ’进行有限元边坡稳定性分析,其结果与圆弧滑面解有较好吻合;1980年Griffiths[4]验证了一系列具有不同材料特性和形状的边坡稳定性并通过与 Bishop& Morgenstern[5]的结果进行了对比确定了数据的可靠性;此后也有研究证 实了利用有限元方法进行边坡稳定性分析的可靠性[6,7,8,9];在文献[9]中,引入一些 案例证明了有限元强度折减法的准确性,并证明了有限元强度折减法在分析非均 质边坡时相对于传统方法的优越性。2001年,郑颖人等[10]把有限元强度折减法 引入国内,并对此进行了后续研究[11,12,13,14]。 相较于一些传统的边坡稳定型分析方法,有限元强度折减法有以下几个优点[9]: (1)不必假设滑面的位置和形状,当土体自身强度不足以抵抗剪应力时土体 失稳会自然发生。 (2)由于有限元强度折减法中没有条分的概念,因此也不必假设条间力,在 整体失稳之前土体都处于整体稳定状态。 (3)使用有限元方法能够查看破坏过程。 2 有限元强度系数折减法 1.模型参数 边坡模型主要包括六个参数,分别是:膨胀角ψ、内摩擦角φ’、黏聚力c’、弹性模量E’、泊松比υ’、重度γ。 膨胀角影响土体屈服后的体积变形,若ψ<0,则土体屈服后体积减小,若ψ>0则体积增大,ψ=0则体积不变。ψ=φ的情况被称之为关联流动法则,但是此时ψ值通常高于实验观测值,特别是在侧限条件下会提高土的承载力预测值。边坡稳 定型问题通常是处于无侧限条件下,此时膨胀角的选取不再重要[9],因此文献[9] 选取ψ=0条件下的非关联流动法则,并且通过案例分析可以得出此膨胀角的选 取可以得出准确的安全系数以及滑动面。 c’和φ’指Mohr-Coulomb准则中边坡土体的有效黏聚力和内摩擦角;E’和υ’是土体材料的弹性参数,这两个参数对土体稳定性分析的影响较小;γ是土体的 重度。应用有限元方法进行边坡稳定性分析中最重要的三个参数是c’、φ’、和γ。 2.屈服条件 (1)Mohr-Coulomb准则 Mohr-Coulomb准则用大小主应力表示如式(1)所示: (1) 其中,、分别指土中一点的大小主应力。在主应力空间中,如果不考虑、、之间的大小关系,屈服面是一个不等角六棱锥,在π平面上是一 个等边不等角六边形。 (2)D-P准则

相关主题
文本预览
相关文档 最新文档