当前位置:文档之家› 【免费下载】数值传热学第五章作业

【免费下载】数值传热学第五章作业

【免费下载】数值传热学第五章作业
【免费下载】数值传热学第五章作业

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示:

(取常物性)22x x u ??Γ=??φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--?Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ?=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 2)

一阶迎风节点离散方程: ?-?++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=?P 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=?P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ??????--++++++=+-??-??+?)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ??

????---++++++=+--??

-??+?)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i 、管路敷设过程中,要加强交底。管线敷设技术中敷设原则:在分线盒处,、电气课件其在正常工况下与过度写重要设备高中资料试试卷技术指导。对于调试、电气设备调试高中资组高中资料试卷安全,并试卷保护装置动作,并且做到准确灵活。对于差

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= =0,y(16)==1,程序中Pa 为,x 为题中所提的x/L 。由于本程序假设y(1)=0φL φ?P =0,y(16)==1,所以)0φL φy y y y y y L =--=--=--0

10)1()16()1(00φφφφPa=input('请输入Pa=')

x=0:1/15:1

Pe=15*Pa;

y=(exp(Pe*x)-1)/(exp(Pe)-1)

plot(x,y,'-*k') %精确解

hold on

y(1)=0,y(16)=1;

for i=2:15

y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;

end

plot(x,y(1:16),'-or') %中心差分

hold on

for i=2:15

y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa);

end

plot(x,y(1:16),'-.>g') %一阶迎风

hold on

for i=2:15

if Pa==1

y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2;

else

y(i)=y(i-1)

end

end

plot(x,y(1:16),'-+y') %混合格式

hold on

for i=2:15

if i==2

y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else

y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end

end

plot(x, y(1:16),'-

hold on

legend('精确解','中心差分','一阶迎风','混合格式','QUICK 格式')

运行结果如下图所示:当 :1=?P

当:

5=?

P 当:10=?P

5-3 解:根据课本式(5-19)得:乘方格式:???????<-≤≤--+≤≤->=????????10,010,)1.01(100,)1.01(10,055P P P P P P P P D a e E 当时有:1.0=?P 951.0)1.01.01()1.01(55=?-=-=?P D a e E 301.0/3)()()()()()(===Γ=Γ=?e

e e e e e e e e P u x u u x D ρδρρδ5297.2830951.0951.0=?==e E D a 由系数关系可得:?=-P D a D a e E w W 53.3130)951.01.0((=?+=?+

=?w e E W D D a P a

根据式(5-51g )得: 205

.01.010=?=??=t

x a P p ρ根据式(4-12)得: (本题方程中无源项)0P W E P a fa fa a ++=当采用隐式时,则得到:1=f 0597.62253.315297.280=++=++=P W E P a fa fa a 即:时,,,

,1.0=?P 5297.28=E a 53.31=W a 20=p a 0597.62=P a 当时,按照以上算法得出:10=?P ,, , 0=E a 3=W a 20

=p a 5=P a

陶文铨 数值传热学 第二版 第五章 5-2

精确解: p=[1,5,10]; x=0:1/19:1; for i=1:1:3 for j=1:1:20 y(i,j)=(exp(p(1,i)*19*x(1,j))-1)/(exp(p(1,i)*19)-1); end plot(x,y(i,:)); hold on ; end 由题对中心差分、一阶迎风、混合格式进行模块编程: 他们之间可以通用,只需更改ae 关于p 的函数即可: 程序如下: (1)中心差分 p=[1,5,10]; for i=1:1:3 ae=1-0.5*p(1,i); x/L (Φ-ΦL )/(Φ0-ΦL ) 精确解图像

aw=p(1,i)+ae; ap=ae+aw; for i=1:1:18 for j=1:1:20 a(i,j)=0; end end for i=1:1:18 j=i; a(i,j)=aw; a(i,j+1)=-ap; a(i,j+2)=ae; end for i=1:1:17 n=i+1; for m=i:-1:1 b(1,1)=a(m,n); a(m,n)=-a(i+1,n)/a(i+1,n)*b(1,1)+a(m,n); a(m,n+1)=-a(i+1,n+1)/a(i+1,n)*b(1,1)+a(m,n+1); a(m,n+2)=-a(i+1,n+2)/a(i+1,n)*b(1,1)+a(m,n+2); end end F(1)=0; F(20)=1; F(19)=(-a(1,20)*F(20)-a(1,1)*F(1))/a(1,19); for i=2:1:18 F(i)=(-a(i,20)*F(20)-a(i,19)*F(19))/a(i,i); end x=0:1/19:1; y(1,:)=F; plot(x,y); hold on end

第四章编程题

三、编程题 4.16 设计工程,已知圆的半径r,求圆面积S。 【解答】设圆半径为r,圆面积为S。根据数学知识,已知圆半径r,求圆面积S的公式为:2r Sπ =。 设计步骤如下。 (1)建立应用程序用户界面,如图4-1所示。 (2)设置对象属性: Label1的Caption属性为“已知圆半径r=”; Text1的Text属性为空; Command1的Caption属性为“圆面积为:”; Label2的Caption属性为空; Label2的BorderStyle属性为1-Fixed Single。 各控件的属性设置如图4-2所示。 图4-1 建立用户界面图4-2 设置各控件的属性(3)编写程序代码。 写出“圆面积为:”命令按钮Command1的Click事件代码为: Private Sub Command1_Click( ) Const pi = 3.14 Dim r As Single, S As Single r = V al(Text1.Text) S = pi * r ^ 2 Label2.Caption = S End Sub 运行程序时,在文本框输入圆半径的值,单击“圆面积为:”按钮后,输出结果如图4-3所示。 也可以不用文本框接收输入值,改用InputBox函数接收圆的半径r,求圆面积S,代码如下。 图4-3 程序运行结果 Private Sub Form_Load( ) Show Const pi = 3.1415926

Dim r As Single, S As Single r = V al(InputBox("输入半径:", "计算圆面积", "10")) FontSize = 18 S = pi * r ^ 2 Print "圆面积:"; S End Sub 程序运行时,首先显示如图4-4所示的对话框,在该对话框的文本框中输入数字,按Enter 键或单击“确定”按钮后,才能显示窗体。 图4-4 输入对话框 用InputBox 函数输入文本虽然很方便,但是由于输入框弹出后将暂停程序的运行,直到用户响应,因此输入框不符合VB 自由环境的精神。输入框适合于像要求用户输入口令等这样不常见的输入方式。还可以用更好的用户输入方式,如文本框、选项按钮等。 4.17 已知平面坐标系中两点的坐标,求两点间的距离。 【解答】 由数学知识可知,已知两点坐标(x A , y A )、(x B , y B ),求两点间距离的计算公式为 2 A B 2 A B )()(y y x x s -+-= 建立用户界面如图4-5所示。在该界面中用TextBox 控件输入数据,用Label 控件输出数据。为了形象地表示两点之间的距离,可用Picture 控件插入一幅图,该图用画图软件绘制。 命令按钮Command1的Click 事件代码为: Private Sub Command1_Click( ) Dim xa As Single, xb As Single Dim ya As Single, yb As Single Dim s As Single xa = Val(Text1.Text) ya = V al(Text2.Text) xb = V al(Text3.Text) yb = V al(Text4.Text) s = Sqr((xb - xa) ^ 2 + (yb - ya) ^ 2) Label6.Caption = s End Sub 程序运行结果如图4-6所示。

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

数值传热学部分习题答案

习题4-2 一维稳态导热问题的控制方程: 022=+??S x T λ 依据本题给定条件,对节点2 节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 75432=+-T T 求解结果: 852=T ,403=T 对整个控制容积作能量平衡,有: 02150)4020(15)(3=?--?=?+-=?+x S T T h x S q f f B 即:计算区域总体守恒要求满足 习题4-5 在4-2习题中,如果25 .03)(10f T T h -?=,则各节点离散方程如下: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 25.03325.032)20(4015])20(21[-?+=-?++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果: 818.822=T ,635.353=T (迭代精度为10-4) 迭代计算的Matlab 程序如下: x=30; x1=20; while abs(x1-x)>0.0001 a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);

end tcal=t 习题4-12的Matlab程序 %代数方程形式A i T i=C i T i+1+B i T i-1+D i mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成A、C、B、T数据的基数; A=cos(x);%TDMA的主对角元素 B=sin(x);%TDMA的下对角线元素 C=cos(x)+exp(x); %TDMA的上对角线元素 T=exp(x).*cos(x); %温度数据 %由A、B、C构成TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n

数值传热学陶文铨第四章作业(完整资料).doc

【最新整理,下载后即可编辑】 2T 3T 4T 4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分123278.8 7769.9T T T === 22 d T T=0dx - 有 i+1i 1 2 2+T 0i i T T T x ---=? 将2点,3点带入 321222+T 0T T T x --=? 即3 21 209T T -+= 432322+T 0T T T x --=?432132 2+T 0T T T x --=? 即4321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 43122293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ???? --?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -= 544431011363 T T T T T ----= 即 34599 02828T T T -+=

对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()2200 20.64806911x x x x dT e e q e e dx e e λ -====-+=-=++ (2)由A 的一阶截差公式 21 0.247730.743113x T T dT q dx λ=-=-= =?= (3)由B 的一阶截差公式 0.21640 0.649213 x dT q dx λ=-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-??==?= ??? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡 法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图 3 由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为 22d T +S=0dx λ x=0, T 0=75℃ x=0.1 dT =h(T-T )dx f λ- 1点 ,2点采用中心差分有

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

数值传热学报告

数 值 传 热 学 近代发展及数值方法 建环:屈锐 2011年10月5日

数值传热学的发展史及数值方法 一、计算传热学的发展史 首先,计算传热学(Numerical Heat Transfer)与计算流体动力学(Computational Fluid Dynamics)之间的关系密切,可以认为,他们的主要研究内容是一致的,因此,计算传热学的发展史很大程度上也就是计算流体动力学的发展史,但他们之间还有不少区别,流体动力学的一个主要研究内容是讨论无粘流动及跨、超音速流动数值计算中的一些特殊问题。应用计算机和数值方法求解流动及传热问题在全世界范围内逐渐形成规模而且得出有益的结果,大致始于60年代,故从60年代起,可以把数值传热学的发展过程分为3个阶段: 1、萌芽初创阶段 主要有以下重大事件: (1)交错网格的提出。初期的数值传热学出现的两大困难之一是,网格设置不当时会得出具有不合理的压力场的解。1965年美国科学家首先提出了交错网格的思想,有效解决了这一难题,促使了求解NS 方程的原始变量法的发展。 (2)对流项差分迎风格式的再次确认。初期发展遇到的另一难题是

对流项采用中心差分时,对流速较高的情况的计算会得出振荡的解,1966年,科学家撰稿介绍了迎风格式在求解可压缩流体及非稳态层流流动中的作用,使流动与对流换热问题的求解建立在一个健壮的数值方法上发展。 (3)世界上第一本介绍流体及计算传热学的杂志于1966年创刊。(4)求解抛物型流动的P-S方法出现。由于受到计算机资源的限制,边界层类型问题的数值计算得到更多的关注,如何把有限个节点数目都充分利用起来成为了一个重要的问题。 (5)1969年Spalding在英国帝国理工学院创建了CHAM,旨在把他们研究组的成果推广应用到工业界。 (6)1972年SIMPLE算法问世。所谓分离式的求解方法应运而生,这个算法的基本思路是,在流场迭代求解的任何一个层次上,速度场都必须满足质量守恒方程,这一思想被以后的大量数值计算实例证明,是保证流场迭代计算收敛的一个十分重要的原则。 1974年美国学者提出了采用微分方程来生成适体坐标的方法。由于有限元法对不规则区域有很强的适应性,有限差分法与有限容积法则对复杂区域的适应能力很差,但对于流动问题的数值处理则要比有限元法容易得多。TTM方法的提出,为有限差分法与有限容积法处理不规则边界问题提出了一条崭新的道路。 2、开始走向工业应用阶段

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

【免费下载】数值传热学第五章作业

5-2解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: (取常物性)22x x u ??Γ=??φφρ边界条件如下:L L x x φφφφ====,;,00由(5—2)得方程的精确解为: 11)/(00--=--?Pe L x Pe L e e φφφφΓ=/uL Pe ρ将分成15等份,有:L ?=P Pe 15对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下:1)(CD)中心差分节点离散方程: 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 2) 一阶迎风节点离散方程: ?-?++++=P P i i i 2)1(11φφφ10,2 =i 3)混合格式当时,节点离散方程:,1=?P 2)5.01()5.01(11-?+?++-=i i i P P φφφ10,2 =i 当时,节点离散方程: , 10,5=?P 1-=i i φφ10,2 =i 4)QUICK 格式,节点离散方程: , ??????--++++++=+-??-??+?)336(81221211111i i i i i i P P P P P φφφφφφ2=i , ?? ????---++++++=+--?? -??+?)35(812212112111i i i i i i i P P P P P φφφφφφφ2≠i 、管路敷设过程中,要加强交底。管线敷设技术中敷设原则:在分线盒处,、电气课件其在正常工况下与过度写重要设备高中资料试试卷技术指导。对于调试、电气设备调试高中资组高中资料试卷安全,并试卷保护装置动作,并且做到准确灵活。对于差

两相流大作业

水—水蒸汽两相相变界面的数值模拟 ——两相流动与热物理大作业 姓名张蛟龙_______ 学号201328013524021__ 班级物理308_____ 指导教师刘捷__ 完成时间_2014.5.8_

水—水蒸汽两相相变界面的数值模拟报告 一.文献综述 作为化石资源的替代产品,核能的高效,清洁一直备受青睐,然而光环之下,核废料的处理不禁让人黯然神伤。强致命性辐射,动辄千年的半衰期,惯用的办法只能是深埋,等待下一代的聪明才智。与此同时,核废料的利用和加速衰减一直是核能大国们的研究重点。欧洲的ADS系统第六代散裂靶模型计划的目标就是要验证高水平的核废料转换的可行性。散裂靶作为连接加速器和核废料的装置需要工作在高辐射和高热流密度的条件下,因此散裂靶的设计是ADS系统研制最有挑战的部分。由加速器产生的高能质子流轰击靶核产生中子作为外源中子驱动和维持次临界堆的运行。散裂靶在极小的空间内需承受极大的热负荷,质子束通道与靶核的自由面相邻更加剧了设计难度。受材料限制,流体的温度不能超过550度,因此必须保证流体维持在一定的流量。但同时又要考虑高流速带来的飞溅和回流造成的局部温度过高。这一装置在水作为散裂靶的实验中获得了成功。二.问题描述 2.1.模型及尺寸 图1、欧洲液态金属散裂靶V0.10示意图[1]

如图1所示的欧洲加速器驱动次临界堆(ADS )之无窗散裂靶示意图,液态铅铋合金从上方管间流下并汇合,形成两相界面,质子束由中间的真空管进入打在自由面上。此次模拟用的是水,详细物理背景见文献[1]。 2.2. 控制方程 连续性方程 动量方程 能量方程 三. Openfoam 求解 有关Openfoam 的下载和安装在老师给的安装指导的推荐网站上有详细的操作,在此就不赘述。网址为:https://www.doczj.com/doc/881122142.html,/download/ubuntu.php 。 3.1. OpenFoam 求解简述 Openfoam 是一款基于linex 的开源可编程软件,其求解过程的关键是三个文件夹的设置,即0,constant 和system 。0文件夹里存放的是初始条件和边界条件设置文件;constant 文件夹里存放的是网格文件,物性参数和求解器模型;system 文件夹里存放的是求解过程控制,差分格式和代数方程求解器设置文件。以下就三个文件的设置展开简述初始条件、边界条件、物性参数,网格个数、疏密设置差分格式、界面捕获算法、气蚀模型等的选择和设置。 3.2. 0文件夹 包含有5个文件,分别为alph-water ,p_rgh ,U ,epsilon ,k ,详细设置见附录1,这里只着重强调在大作业完成过程中几个曾经连续考虑的点。 首先是参数的量纲设置。在Openfoam 文件中常会见到这样一行代码:dimensions [0 0 0 0 0],这便是量纲,单位顺序依次是 [质量,长度,时间,温度,物质的量,电流,光强]。 其次是边界条件和初始条件的设置。在alph-water 中,alpha 代表水所占比例,参照userguide ,1时表示全部为液相,0时表示全部为气相。初始内部场的设置均为1,即起始时刻,散裂靶内部充满水。水入口是边界类型为“定值”,即 0)(=?? +??i i u x t ρρi b j ij i j i j i F x x p x u u t u +??+??-=??+??τρρετδρρ+=+-++??++??j j b j c ij k i i ij i i j j i i u F Q u p u u u e u x u u e t ] )2 1 ([)]21([

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分123278.8 77 69.9 T T T === 22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=? 将2点,3点带入 321222+T 0T T T x --=? 即321209 T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4321209T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 4313 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++V 所以 434111. 1.36311 T T T =++ 即 43122293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239028 T T -= 544431011363T T T T T ----= 即 34599 02828 T T T -+=

对3点采用中心差分有 432 322+T 013T T T --=?? ??? 即 2349901919 T T T -+= 对于点5 由x=1 1dT dx =,得 5416 T T -= (1)精确解求左端点的热流密度 由 ()21 x x e T e e e -=-+ 所以有 ()2200 20.64806911x x x x dT e e q e e dx e e λ-====- +=-=++ (2)由A 的一阶截差公式 (3)由B 的一阶截差公式 (4)由区域离散方法B 中的一阶截差公式: 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图 由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为 x=0, T 0=75℃ x=0.1 dT =h(T-T )dx f λ- 1点 ,2点采用中心差分有 21022+T 0T T S x λ -+=? (1) 3 2122+T 0T T S x λ-+=? (2) 右端点采用一阶截差的离散

传热学大作业

传热学大作业——二维物体热传导 问题的数值解法

1.二维热传导问题的物理描述: 本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。 1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的 建筑物墙壁的截面。尺寸如图中所标注。 1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需 要研究墙角的1/4即可(图中阴影部分)。假设在垂直纸面方向上不存在热量 的传递,我们只需要对墙角进行二维问题的研究即可。 1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温 边界条件下两类边界条件的问题。由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。 2.二维热传导问题的数学描写: 本次实验的墙角满足二维,稳态无内热源的条件,因此: 壁面内满足导热微分方程: ?2t ?x2+?2t ?y2 =0。

在绝热面处,满足边界条件: ?λ(?t ?n )=0。在对流边界处满足边界条件: ?λ?t ?n w =?(t w?t f) 3.二维热传导问题离散方程的建立: 本次作业中墙角的温度场是一个稳态的连续的场。本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。 通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。 对1/4墙角的网格划分如下: 选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下: x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx,取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。以此进行编码,进行离散方程的建立。 建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例

数值传热学第四章编程题

4-5迭代法求解节点温度。 说明:此处给出的是C++程序代码,使用牛顿迭代法,迭代收敛精度1.0e-6;程序运行结果附后。 /*NHT 4-5 newton *created on 2012-10-19 by Sanye */ #include #include #include using namespace std; int main() { double funT=1.0,dfunT=1.0,temp1=1.0,temp2=1.0; double T=20.0;//primary value int i=0; //for TEST! cout<<"primary T= "<=1.0e-6) { i++; if(i==1&&(T<=20.0))T=100.0;//in case unreasonable T; temp1=pow(T-20.0,0.25);temp2=pow(T-20.0,-0.75); funT=0.5*T-80+2*T*temp1-40*temp1; dfunT=0.5+2*temp1+0.5*T*temp2-10*temp2; T=T-funT/dfunT; cout<<" step "<

文本预览
相关文档 最新文档