当前位置:文档之家› An Overview of 3D Printing Technologies for Food Fabrication

An Overview of 3D Printing Technologies for Food Fabrication

An Overview of 3D Printing Technologies for Food Fabrication
An Overview of 3D Printing Technologies for Food Fabrication

ORIGINAL PAPER

An Overview of 3D Printing Technologies for Food Fabrication

Jie Sun 1,2&Weibiao Zhou 2,3&Dejian Huang 2,3&Jerry Y.H.Fuh 2,4&Geok Soon Hong 2,4

Received:2January 2015/Accepted:10April 2015/Published online:21April 2015#Springer Science+Business Media New York 2015

Abstract Different from robotics-based food manufacturing,three-dimensional (3D)food printing integrates 3D printing and digital gastronomy to revolutionize food manufacturing with customized shape,color,flavor,texture,and even nutri-tion.Hence,food products can be designed and fabricated to meet individual needs through controlling the amount of print-ing material and nutrition content.The objectives of this study are to collate,analyze,categorize,and summarize published articles and papers pertaining to 3D food printing and its im-pact on food processing,as well as to provide a critical insight into the direction of its future development.From the available references,both universal platforms and self-developed plat-forms are utilized for food printing.These platforms could be reconstructed in terms of process reformulation,material pro-cessing,and user interface in the near future.Three types of printing materials (i.e.,natively printable materials,non-printable traditional food materials,and alternative ingredi-ents)and two types of recipes (i.e.,element-based recipe and traditional recipe)have been used for customized food fabri-cation.The available 3D food printing technologies and food processing technologies potentially applicable to food printing are presented.Essentially,3D food printing provides an

engineering solution for customized food design and person-alized nutrition control,a prototyping tool to facilitate new food product development,and a potential machine to recon-figure a customized food supply chain.

Keywords Customized food fabrication .3D printing .Personalized nutrition .Printing recipe .Platform design

Introduction

Frosted patterns on biscuits and chocolates,letters carved into cookies,and logos painted onto food have created an amazing sector in the personal gift market.Such decorated foods are currently designed and made by specially trained artisans and need longer time for design and fabrication,which results in a relatively higher cost than that of food products from mass production.This blocks their way to be widely adopted by the public.In addition,food ingredients and their effects on metabolism and health vary among individuals.To improve individual health condition,the concept of personalized nutri-tion which aims to tailor and fabricate diet specifically based on individual health condition has significantly prompted pub-lic interest.Traditional food preparation processes even with advanced processing technologies cannot meet such demands (Zoran and Coelho 2011).Three-dimensional (3D)Food Printing,also known as Food Layered Manufacture (Wegrzyn et al.2012),can be one of the potential ways to bridge this gap.It is a digitally controlled,robotic construction process which can build up complex 3D food products layer by layer (Huang et al.2013).It has started a revolution in cooking by precisely mixing,depositing,and cooking layers of ingredi-ents,so that users can easily and rapidly experiment with different material combinations.With this technology,food can be designed and fabricated to meet individual needs on

*Jie Sun

sunjie701030@https://www.doczj.com/doc/8d9506031.html,

1

Keio-NUS CUTE Center,National University of Singapore,Singapore,Singapore

2

National University of Singapore (Suzhou)Research Institute,

Suzhou Industrial Park,Suzhou 215123,People ’s Republic of China 3

Food Science and Technology Programme,Department of

Chemistry,National University of Singapore,Singapore,Singapore 4

Department of Mechanical Engineering,National University of Singapore,Singapore,Singapore

Food Bioprocess Technol (2015)8:1605–1615DOI 10.1007/s11947-015-1528-6

health condition and physical activities through controlling the amount of printing material and nutrition content.

The first-generation food printer concept designs were in-troduced to the general public more than 10years ago.Nanotek Instruments,Inc.,patented a rapid prototyping and fabrication method for producing 3D food objects (Yang et al.2001),such as a customer-designed birthday cake;however,no physical prototype was built.Nico Kl?ber (Electrolux 2009)came out with a Moléculaire concept design in the Electrolux Design Lab 2009competition,which could print a multi-material customized meal using a small robotic arm.Philips Design (2010)proposed creating a custom-designed food product using food cartridges and an interactive graphi-cal user interface to select ingredients,quantities,shapes,tex-tures,and other properties.

A few printing projects have been carried out (Cohen et al.2009;Hao et al.2010;Lipton et al.2009).As shown in Fig.1,the current food printing process starts with designing a virtual 3D model.Slicing software translates this model into individ-ual layers and finally generates machine codes for printing.After uploading the codes into a printer and choosing a pre-ferred food recipe,the food printing starts.

Numerous efforts have been put into recipe modification,food printing process tuning,and equipment modification.Currently,selective sintering (Gray 2010),hot melt extrusion/room temperature extrusion (Hao et al.2010;Cohen et al.2009),power bed binder jetting (Southerland et al.2011),and inkjet printing (Mironov et al.2009)are applied to food-related printing.

A number of articles and papers pertaining to food printing have been published over the past few years (Lipton et al.2009;Cohen et al.2009).Most of them focused on the fabri-cation of customized food items.Researchers from Nether-lands Organisation for Applied Scientific Research (TNO)had started to explore more fundamental topics such as converting ingredients into tasty products for healthy and en-vironmental concerns (van Bommel and Spicer 2011).

However,such information is scattered in various publications and websites with different technical focuses.The objectives of this paper are to collate,analyze,categorize,and summarize information pertaining to food printing and its impact on food processing,as well as to provide a critical insight into the direction of its future development.The rest of the paper is organized as follows.The B Food Printing and Platform Design ^section discusses the difference between food print-ing and robotics-based food manufacturing.The food printing platforms are investigated in terms of available platform de-signs,factors for future platform design,and user interface design.The B Materials and Recipes ^section reviews avail-able materials used for printing and printing recipes in terms of these materials.To revolutionize customized food fabrica-tion by 3D printing,the B Food Printing Technologies ^section investigates the available 3D food printing technologies and food processing technologies potentially applicable to food printing.The B Impacts from 3D Food Printing ^section dis-cusses the impact of food printing on customized design,per-sonalized nutrition,and food product design.Finally,a con-clusion is presented in the B Conclusions ^section.

Food Printing and Platform Design

In this section,food printing and robotics-based food manufacturing will be compared first,followed by a discus-sion on food printing platforms in terms of design require-ments,factors for further development and user interface design.

Difference Between Food Printing and Robotics-Based Food Manufacturing

Food processing often requires rapid and repetitive move-ments;thus,applying automation in a food manufacturing process can improve its efficiency and the resultant

food

Fig.1Overview of 3D food printing process

quality.Both food printing and robotics-based manufacturing can automate a food preparation process and reduce human workload,yet they create totally different user experience.The former places users’creativity and control at the center of the process by allowing the users to manipulate food forms and materials directly,and the latter aims to reduce human in-volvement and workload by automating various manual processes.

Robotics-based technologies have been designed to replace labor-intensive operations,to automate individual steps or re-place manual operations in household,food catering service, and food manufacturing industries.For example,for baking cookies,robots can locate ingredients,mix them in a correct order,and place the resulting dough in a baking tray(Bollini et al.2011).Motion libraries embedded into these robots can perform cooking tasks,through basic actions such as picking up an object,putting it down,or pouring(Beetz et al.2011). These technologies changed the way of food producing,im-proved food preparation efficiency,but had very little rele-vance to nutrition control and customized fabrication.

Food printing is a digital food fabrication process integrat-ing3D printing and digital gastronomy technique to manufac-ture food pieces.It allows users to design and fabricate food with customized color,shape,flavor,texture,and even nutri-tion.As a result,our eating experiences can go beyond taste to encompass all aspects of gastronomy such as food prepara-tion,culture,economy,physics,and chemistry(van Bommel and Spicer2011),while the efficiency of current food printers is too slow and cannot meet consumer requirements.

Engaging consumers is also emphasized in food printer design,i.e.,a convenient and friendly interaction between consumers and machines.Burritobot(2014)extruded custom-izable amounts of Mexican ingredients onto a pre-made torti-lla to a user’s taste,which might become a perfect way for the fast food industry to save manpower cost,improve service efficiency,and reduce consumer waiting time.Consumers in Japan may order chocolates made from a3D scan of their face for Valentine’s Day(Gorkin and Dodds2013).

Table1gives a comparison of recipes for cookies,choco-lates,and sugar cubes between food printing and robotics-based food manufacturing.The basic ingredients of cookies are quite similar including flour,sugar,egg,and butter.It is the same case for the sugar cube recipes.For robotics-based choc-olate manufacturing,raw materials such as cocoa,cocoa but-ter,full cream milk,and sugar are used for processing.How-ever,commercial chocolates are utilized in printing.

Substantial efforts have been made to pre-process materials suitable for printing and improve their thermal stability for post-processing.Hence,the recipes used in printing would have to be slightly different from traditional recipes(Lipton et al.2010).Ingredients even with well-known material prop-erties needed be tailored for each printing application.In ChocALM machine,formulations of chocolate were modified to meet the rheological and post-deposition fusion require-ments during the development(Hao et al.2010).These mod-ified recipes may have commercial value in the near future; hence,not much detail is released in publications.

Food Printing Platform

A food printing platform basically consists of an X-Y-Z three axis stage(i.e.,a Cartesian coordinate system),dispensing/ sintering units,and a user interface.With a computer-controlled material feeding system,such platforms can manip-ulate food fabrication in real time.Both commercial and self-developed platforms have been utilized for food printing pro-jects in the literature.

Universal Platforms

To simplify a development process and shorten its develop-ment time,researchers have modified open-source commer-cial printing platforms for food printing purpose.The Fab@Home system was one of them(Cohen et al.2009).This machine is not specifically designed for food applications but as a universal desktop fabricator compatible with food https://www.doczj.com/doc/8d9506031.html,ing this platform,Lipton et al.(2010)experimented food texture using two hydrocolloid systems and explored structural requirements for post-processing materials such as protein pastes and cake mixtures.MakerBot was also modi-fied for food printing by installing Frostruder MK2as a print-head(Millen2012).These universal platforms can help re-searchers quickly create3D food shapes and investigate food materials’properties.However,they are applicable to limited materials and cannot support in-depth research.

Self-Developed Platform

Self-developed platforms are usually built based on specific requirements to support fabrication-related pieces of research (Torrone2007;Hao et al.2010).Researchers can flexibly design such platforms according to dispensing mechanism, material property,and printhead to optimize a fabrication pro-cess.Further development of these platforms will require im-provements on machines as well as materials.

Factors for Future Platform Design

Either as a household device or industrial food processing machine,a future food printing platform should be able to replace current multi-step food processing technologies,while conventional food processing technologies are unlikely to fit into a food printing process directly.Reformulating food manufacturing processes is essential,such as pre-conducting some processes(e.g.,gluten formation and leavening)and replacing remaining processes(e.g.,shaping and baking).

Conceptual designs focusing on mixing,modeling,and trans-formation processes may create new food processing technol-ogies(Zoran and Coelho2011).Besides food materials’me-chanical and thermal properties,biological variation and mi-crobiological and biochemical properties place additional lim-itations on handling and processing.The factors from process reformulation and material processing will shape future print-ing platform design.However,this topic has not been ex-plored yet.

Ingredient formulations with varied combinations and ma-nipulation conditions can generate various textures in prod-ucts,which may go beyond a manageable level.A simulation model should be built to digitalize this process,including data quantification for each process(ingredient metering and mixing,printing,baking,and so on),communication proto-cols between different functions or processes,and process predictions.The data quantification can digitally describe food quantity,ingredients,and chemical composition for pre-cise manipulation.The communication protocols would help to collect the quantified data along the process and monitor their change.Embedding such a model into platform design can digitally visualize the printing process and increase con-sistency in the printed products.

User Interface

A user-friendly interface should be designed according to con-sumer requirements and knowledge level.To prompt the us-age of3D Systems’ChefJet series,Digital Cookbook software has been designed for users who are not familiar with3D modeling software.The purposes of platform development and working environments(e.g.,household,factory,or labo-ratory)should also be considered.In other words,platforms designed to fabricate customized shapes,control personalized nutrition,and prototype new product designs should have dif-ferent user interfaces.

In self-developed platforms,various user interfaces have been developed consisting of3D model design,material se-lection,path planning,processing parameter selection,and template library.Efforts have also been spent to develop an open-access web-based template library for food design inno-vation(Lipton et al.2010;Malone and Lipson2007).With such user interface,customers should be able to design their own food pieces,obtain design files online,or share their designs on websites for others to download and modify.The food products will then be built in front of customers in a new context of household product making,which is impossible to achieve now.

A growing number of makers,academics,and startups have been playing with the idea of interactive user interface design for food printers.In the Burritobot printer(2014),con-sumers can play with sliding scales embedded in the app to calibrate the exact amount of each ingredient on the burrito via iOS app or a Ruby-based web app.In the near future,web/iOS interfaces will move to the next level by letting consumers create their exact meal via proxy.

Materials and Recipes

Available Printing Materials

The available materials for food printing can be classified into three categories:natively printable materials,non-printable traditional food materials,and alternative ingredients.

Natively Printable Materials

Natively printable materials like hydrogel,cake frosting, cheese,hummus,and chocolate can be extruded smoothly from a syringe(Cohen et al.2009).Final products are fabri-cated with diverse taste,nutritional value,and texture.How-ever,none of them is served as a main course in meals.

Table1Comparison of recipes in food printing and robotics-based food manufacturing

Food printing Robotics-based food manufacturing Cookies Printable sugar cookies Afghan biscuits

Flour,powdered sugar,egg yolk,

and unsalted butter(Lipton et al.2010)Flour,sugar,butter,cocoa powder, cornflakes(Bollini et al.2011)

Snowflake-shaped sugar cookies Quick’N Easy Sugar Cookies

All-purpose flour,granulated sugar, unsalted butter,egg and egg yolk,salt, and vanilla extract(Bosker2013)All-purpose flour,sugar,eggs,vegetable oil,vanilla,granulated baking powder, and salt(Bollini et al.2011)

Chocolate Cadbury milk chocolate(Hao et al.2010)Cocoa and cocoa butter,full-cream milk,

sugar,special flavoring,and emulsifier

(Gunstone and Fred1997)

Sugar cubes Sugar,sweet and sour flavored candies,

and milk chocolates(3D System2013)Sugar,food colorings,aromatic herbs,and spices(La Bau2014)

Some of these natively printable materials are stable enough to hold the shape after deposition.For example,the mixture of sugars,starch,and mashed potato was used as powder materials in Z Corporation powder/binder3D printers (Walters et al.2011)to fabricate sugar teeth.The fabricated teeth were strong enough without further post-processing. Other composite formulations such as batters and protein pastes may require a post-cooking process(Lipton et al. 2010),resulting in fabricated structures difficult to retain their printed shapes.

Non-printable Traditional Food Material

Printability tests for traditional food materials were judged by viscosity,consistency,and solidifying properties(Fabaroni 2007),and the most successful printable material was pasta dough.Food like rice,meat,fruit,and vegetables,largely con-sumed by people every day,is not printable by nature.To enable their capability of extrusion,adding hydrocolloids in these solid materials has been utilized in many culinary fields. Although some solid and semisolid foods have already been manipulated to become printable by gastronomic tricks,it is difficult to test and modify the whole list.One potential solu-tion is to create an element set using a small group of ingre-dients which can generate a high degree of freedom on texture and flavor.Cohen et al.(2009))investigated on fine tuning concentration of hydrocolloids(xanthan gum and gelatin)and achieved a very wide range of textures(i.e.mouthfeels).

After printing process,the majority of traditional edibles need post-deposition cooking,such as baking,steaming,or frying.These processes involve different levels of heat pene-tration and result in non-homogenous texture.Lipton et al. (2010)experimented on modifying cookie recipes for both printing and post-cooking.He managed to find one recipe which can print3D models with complex internal geometries and retain their shape after deep frying.

Alternative Ingredients

Alternative ingredients extracted from algae,fungi,seaweed, lupine,and insects are novel sources for protein and fiber.In the B Insects Au Gratin^project,insect powders mixed with extrudable icing and soft cheese were used as printing mate-rials to shape food structures and make tasty pieces(Walters et al.2011).Residues from the current agricultural and food processing can be transformed to biologically active metabo-lites,enzymes,and food flavor compounds(Silva et al.2007; Nikitina et al.2007),as sustainable and eco-friendly printing material sources.Available food processing technologies can further scale down the size of alternative food material mole-cules,create more particles for an overall greater surface area, and improve food nutrition absorption and stability.Briefly,introducing alternative ingredients into food printing would aid in developing healthier(e.g.,low fat)food products. Printing Recipes

Based on these available food materials,printing recipes can be categorized into element-based recipe printing and tradi-tional recipe printing.

The element-based recipe printing uses a standard set of dispensing elements to control the taste,texture,flavor,and nutrition of fabricated food pieces.The elements mentioned here refer to ingredients.This method was proposed in Mas-sachusetts Institute of Technology(MIT)conceptual designs on Virtuoso Mixer,Digital Fabricator,Robotic Chef(Zoran and Coelho2011),and a few other prototype designs.Cohen et al.(2009))used a small group of ingredients to print solid and semisolid foods.In their study,a wide range of textures could be achieved by fine-tuning hydrocolloids’concentration and combination,and the flavor could be tuned by using concentrated flavoring additives.van Bommel and Spicer (2011)extracted basic carbohydrates,proteins,and other nu-trients from algae or insects and mixed them together in varied proportion to print something resembling steak and chicken. Such printing recipes would be an eco-friendly and sustain-able solution to deal with a growing demand for food.

The traditional recipe printing works on modification of existing recipes for customized food fabrication.Examples include fabricated food items with complex structure from Cornell University’s Fab@Home3D Printer,customized chocolate products from Exeter University’s ChocALM ma-chine,and items made of sugars,starch powders,and choco-late from University of the West of England’s Edible3D Print-ing projects.This method can be further developed as a prototyping tool to fabricate and evaluate new designs and reduce the cost and time required in new food product devel-opment.However,the link between recipes and ingredient control has not been built in the current research activities.

A combination of element-based recipe printing and tradi-tional recipe printing will enable users to customize shape and ingredient and support a food design workflow to experiment with diverse recipes.It can easily substitute ingredients based on nutritional contents as well as personal and social prefer-ences.Leveraging on their highly customizable features and digital fabrication flexibilities would create an information-driven food culture for healthier life.

Food Printing Technologies

Food printing process creates food pieces in a layer-by-layer manner,which does not require a high-energy source to completely remove liquid ingredients from food composition. Fabricated layers do not need to be completely solidified but

require sufficient rigidity and strength to support its own weight and the weight of subsequent layers without a signif-icant deformation or shape change.The quality of fabricated food items depends on the process and planning rather than people’s skill.Below is a summary of applicable3D food printing technologies.

3D Food Printing Technologies

Selective Laser Sintering/Hot Air Sintering

Both laser(as in Fig.2)and hot air(as in Fig.3)can be utilized as a sintering source to fuse powder particles and form a solid layer.TNO’s Food Jetting Printer(Gray2010)applied laser to sinter sugars and NesQuik powders to build solid3D objects.

The sintered material formed the product part while the unsintered powder remained in place to support the structure. The CandyFab(CandyFab2007)applied a selective low-velocity stream of hot air to sinter and melt a bed of sugar. The fabrication powder bed is heated to just below the mate-rial’s melting point to minimize thermal distortion and facili-tate fusion to the previous layer.The two sintering processes offer the freedom to quickly build complex food items in a short time without post-curing.However,they are only suit-able for sugar and fat-based materials with relatively low melt-ing point,and the fabrication processes as well as machine structure are complicated as many variables are involved. Hot-Melt Extrusion/Room Temperature Extrusion

Hot-melt extrusion,also called fused deposition modeling (FDM),was firstly described in Crump’s work(1991).In Fig.4,melted semisolid food polymer is extruded from a movable FDM head,solidifies almost immediately after ex-trusion,and welds to the previous layers.

Hot-melt extrusion has been applied to create customized 3D chocolate products(Causer2009;Hao et al.2010).MIT researchers used hot-melt chocolate as a dispensing liquid and developed a functional prototype B digital chocolatier^(Zoran and Coelho2011).In this project,compressed air was applied to push the melt chocolate out of chambers for customized candy https://www.doczj.com/doc/8d9506031.html,ing the hot-melt extrusion method,a ^3D Food-Inks Printer^printed3D color images on an ex-truded base(Golding et al.2011),while a post-cooking step was required to fuse layers together.

Some natively printable materials like cheese,frosting,and hummus can be extruded smoothly at room temperature (Cohen et al.2009;Periard et al.2007).The material flow rate can be adjusted by controlling solenoid valves,and this setup was tested using creamy peanut butter,jelly and Nutella (Makerbot2010).This extrusion method can fabricate com-plex confections using a single material with high repeatabil-ity,which were difficult to make by hand(Periard et al.2007). The food printers designed based on the extrusion method usually have a compact size and low maintenance cost

but Fig.2Selective laser

sintering

Fig.3Selective hot air

sintering

Fig.4Hot-melt extrusion

are greatly limited by material choices,long fabrication time,and delamination caused by temperature fluctuation.Binder Jetting

In binder jetting shown in Fig.5,each powder layer is distrib-uted evenly across the fabrication platform,and a liquid binder sprays to bind two consecutive powder layers (Sachs et al.1992).Before fabrication,a layer of water mist is sprayed to stabilize powder material and minimize disturbance caused by binder dispensing.In the edible 3D printing project,Southerland et al.(2011)utilized sugars and starch mixtures as the powder and a Z Corporation powder/binder 3D printer as the platform to fabricate customized shapes.Binder jetting offers advantages such as fast fabrication and low material cost but suffers from rough surface finish and high machine cost.In 2013,Sugar Lab (https://www.doczj.com/doc/8d9506031.html,/press-releases/3d-systems-acquires-sugar-lab )used sugar and different flavor binders to fabricate complex sculptural cakes for weddings and other special events.This fabrication adopted 3D Systems ’Color Jet Printing technology,and the material and fabrication process met all food safety requirements.However,food items with high sugar content and little nutritional value may not be attractive,which are often linked to obesity,type 2diabetes,and heart disease.This greatly limits this technology ’s market potential.Inkjet Printing

As shown in Fig.6,inkjet food printing dispenses a stream of droplets from a syringe-type printhead in a drop-on-demand way for cookie,cake,or pastry fabrication.De Grood Innova-tions ’FoodJet Printer (Foodjet 2012)used pneumatic mem-brane nozzle jets to deposit drops onto pizza bases,biscuits,and cupcakes.The drops fallen under gravity and formed a two and a half-dimensional digital image as decoration or surface fill on substrates.

Four of the above technologies have been further devel-oped for commercial machine design:hot-melt extrusion for chocolate printing (Choc Creator,https://https://www.doczj.com/doc/8d9506031.html,/),room temperature extrusion for pizza printing (Foodini,https://www.doczj.com/doc/8d9506031.html,/press-kit/),power bed binder jetting for sugar printing (ChefJet,https://www.doczj.com/doc/8d9506031.html,/ChefJet ),and inkjet printing for decoration or surface fill (FoodJet,http://foodjet.nl ).Obviously,food safety concerns have greatly limited the applying of technologies that involved laser,electron beam,and unsafe food additives in food printing.Table 2is a summary of these commercial machines in terms of applicable materials,fabrication platforms,and products.Multi-material and Multi-printhead

Applying multiple materials is quite common in food design and fabrication,and the diversity of printing materials empowers consumers to take control of food design.Most of food printer projects such as ChocALM and Insects Au Gratin were developed using single printhead extrusion for a mixture of multiple materials.To choose a suitable printhead,Gong et al.(2014)compared a bathtub-type gel printer and an inkjet-type food printer in meso-decorated gel and agar printing.When one printhead is used to print the mixture of food materials,it is not capable to control material distribution or composition within each layer or in a whole structure.

To achieve controlled material deposition and distribution,multiple printheads are allocated to print supporting or fabrication materials.The data from each layer are directed to a platform controller,which activates the associated motors to move the corresponding dispensing head and control its feeding rate and deposition area.Periard et al.(2007)constructed a variety of food products with overhanging geometries using dual-material printing (silicon and Betty Crocker easy-squeeze frosting).In this study,the two materials were tested on fabricat-ing a silicone bridge and a bouncy ball toy,either as a fabrication material or supporting material.Generally,this process

may

Fig.5Powder bed binder

jetting

Fig.6Inkjet printing

deliver multi-material fabrication with geometric complexity eas-ier than manual operation.Printing multi-material from multi-printhead is a highly attractive feature which allows switching among material sources for fabricating complex food constructs. It can be applied to testing various nutrition/ingredient combina-tions in a food product development process or tailor nutrition for individual preference.

Potential technologies Applicable to Food Printing Besides the above described3D printing technologies,there is a need to bring in more established technologies to further enhance the printing process,such as electrospinning and mi-croencapsulation.They have been embedded into bioprinter design for structural coating and microsphere fabrication(Xu et al.2013;Yu et al.2014).In food science,the applications of electrospinning and microencapsulation include extracting fi-bers and encapsulating nutrition,thus providing additional material sources for printing.The two technologies can also be directly integrated into the food printing process through multi-printhead platform,to control fibers and nutrition dis-pensing.This may be a potential way to fabricate on-demand food.

Electrospinning

Electrospinning is capable of producing thin,solid polymer strands ranging from10to1000nm in diameter.It can gen-erate antimicrobial nanofibers from chitin(Kriegel et al.2009) and biopolymer zein nanofibers to encapsulate beta-carotene (Fernandez et al.2009)for bioactive food packaging.

Electrospinning can produce food materials with controlled size and structure,thus generating healthier foods(lower fat and lower salt)with desirable sensory properties and ingredi-ents with improved properties(Neethirajan and Jayas2011).It is also capable to shape non-traditional food materials under multi-scale into appealing edible structures.

An integration of electrospinning and food printing may offer a possible all-in-one solution to fabricate food products with personalized nutrition,i.e.,extracting fibers out of mate-rials,encapsulating nutrients,controlling their dispensing volume,and constructing food structures with a controlled release of the nutrients.Gray(2010)proposed using electrospinning to produce multiple food sub-components at micro-scale and further assemble them into multi-component composite structures for a variety of materials.Micro-scale fibers can provide structure and texture to food products with a pleasant taste experience,such as muscle fibers in meat, cellulose fibers in vegetables,and citrus fibers in low-fat full-taste mayonnaise.From a technical perspective,the cur-rent challenge is to integrate and manipulate electrospinning process in food printing platform.

Microencapsulation

Simply adding ingredients to food products can improve nu-tritional value but may compromise aroma,taste,color,and texture.Also,the bioavailability of ingredients may suffer due to slow degradation,oxidation,and reactions between ingre-dients and other food components.Microencapsulation can pack minerals,vitamins,flavors,and essential oils within an-other material for the purpose of shielding active ingredients from the surrounding environment.One of the microencapsu-lation approaches,electrohydrodynamic atomization has been incorporated into bioprinter design to generate double-walled microspheres for a bioactive drug delivery system(Xu et al. 2013).Integrating such technology into food printing can be achieved by using a multi-printhead system,where at least one printhead generates and dispenses microcapsules in the fabri-cated food products.This would help fragile and sensitive materials survive in processing and packaging conditions,sta-bilize the shelf life of active ingredients,and create appealing aroma release,taste,odor,and color masking.In other words, microcapsules containing flavor or nutritional elements would

Table2Comparison of commercial3D food printing machines

Company Chocedge Natural Machines3D systems De Grood Innovations a

Machine Choc Creator Foodini ChefJet FoodJet Technologies Hot-melt extrusion Room temperature extrusion Inkjet powder printing Inkjet printing

Materials Food polymer powder

such as chocolate Semisolid high-viscosity

material such as dough

Powder such as sugars,

starch,corn flour,flavors,

and liquid binder

Low-viscosity material

such as paste or puree

Platforms Motorized stage Motorized stage Motorized stage Motorized stage Heating unit Extrusion device Inkjet binder printhead Inkjet printhead

Extrusion device Powder bed Thermal control unit Fabricated products Customized chocolate Customized pizza and cookies Sugar cube in full color Customized cookies,

bench-top food paste

shaping Reference Choc Creator(2014)Foodini(2014)3D Systems(2013)Foodjet(2012)

remain dormant in the food and will only be released when triggered by consumers (Dunn 2004).This method simplifies the current functional food manufacturing process,enhances functional ingredient stability (e.g.,probiotics and bioactive ingredients),and realizes controlled release of flavorings and nutrients.

Impacts from 3D Food Printing

Food printing introduces artistic capabilities to fine dining and extends mass customization capabilities to the industrial culi-nary sector.It provides a solution for customized food design and personalized nutrition control,a prototyping tool to facil-itate new food product development,and a potential type of new machines to reconfigure a customized food supply chain.The cost of 3D printed food products includes expenses asso-ciated with printing platforms (hardware and software)and printing materials,labor cost,operation cost,and general over-head for maintaining the production facility.The current price of commercial food printing platforms is at least a few thou-sand dollars (3D system 2013;Choc Creator 2014),which is too high as a consumer product in terms of fabrication capa-bilities.In addition,consumers need to purchase printing ma-terials from the platform companies which are more expensive than that of the similar materials in the market.This technol-ogy is in the midst of development,and some potential im-pacts are discussed below.Customized Food Design

Food manufacturing techniques are mainly developed for mass production,while creativity on shapes,structures,and flavors are usually compromised.Previously,customized food involves specifically handmade skills with low production rate and high cost.Food printing technologies could potential-ly overcome these barriers and provide a platform to experi-ment food design on shapes,colors,and flavors.More design solutions are generated such as customized chocolate shaping (Causer 2009;Zoran and Coelho 2011)and personalized full-color images onto solid food formats (Golding et al.2011).Figure 7shows printed biscuit samples fabricated by our group at the National University of Singapore.This biscuit recipe consists of flour,butter,sugar,and egg white.The

printer is built based on a modified Prusa i3platform with a self-developed extrusion printhead.

The quality of fabricated food products depends on the fabrication process rather than operator skills.As such,pro-duction can be easily synchronized with customer demands.Some problems from traditional food production processes are virtually eliminated because complex food pieces are pro-duced in a single process.The need for warehousing,trans-portation,and packaging can be reduced significantly.With a proper supply chain configuration,it is possible to improve cost efficiency of customized food products while maintaining customer responsiveness.Personalized Nutrition

Besides existing nutritional preferences,the concept of per-sonalized nutrition care according to a person ’s dietary needs,allergies,or taste preferences is on the research agenda of food industries (Watzke and German 2010).Studies have shown that individuals respond differently to various nutrients,and they may experience more or less benefit/risk associated with particular dietary components.Only personalized nutrition can meet the needs and preferences in terms of an individual ’s health status and body type requirement.TNO has suggested printing customized meals for seniors,athletes,and expectant mothers through varying food component levels like protein and fat (Gray 2010).Serizawa et al.(2014))developed a 3D edible gel printer using a syringe pump and dispenser to make soft food for the elderly who cannot swallow the food well.Under the traditional food supply chain,foods with person-alized nutrition are produced with additional cost.Marketing and distributing such foods may not be financially viable.Furthermore,foods with controlled ingredient formulation will be much more challenging to produce from a technical perspective (de Roos 2013).Food printing can personalize nutrition in two ways:controlling the amount of food to be printed and calibrating natural/nutritional ingredients during design.Since food with personalized nutrition can be fabricat-ed in house or service store,the additional cost for distribution can be minimized.

Prototyping Tool for Food Product Design

In the food industry,consumer demands on improving food safety,shelf life,and nutritional value and reducing

wastage

Fig.7Customized food design and fabrication samples at the National University of Singapore

create a complicated scenario for food product design.The food industry preferred to redeveloping the existing products with incremental changes,rather than creating a radical change in products(Winger and Wall2006).This apparently B safe^approach perpetuates the problem of a high food prod-uct failure rate at around75%(Stewart-Knox and Mitchell 2003).To improve the communications between food scien-tists,food engineers,marketing people,distributors,and con-sumers during the product development stage,food producers need to explore ingredient combination and fabricate new de-sign samples.However,it is always difficult to find suitable equipment with simple design and reliable performance for a small batch production.A promising solution is to further develop the food printer as a prototyping tool to conduct small batch production in a cost-effective and time-efficient way.It can help to fully understand comprehensive technical require-ments,explore ingredient combination,taste,and mouthfeel prior to starting mass production.The fabricated food prod-ucts may be used to verify consumer interest in a proposed design and ingredient stability of specific designs.This could also help filter out a large number of design candidates that do not meet the requirements in a short time at acceptable cost. Sustainability and Ethical Issues

An increase of global population results in growing demand for food.Alternative ingredients extracted from algae,fungi, seaweed,lupine,and waste from the current agricultural and food production can be utilized as printing materials in the future.All of them may ease the growing demand for food production in an environmentally friendly and efficient https://www.doczj.com/doc/8d9506031.html,ing other advanced technologies,these food materials can be scaled down to a greater extent,which makes nutrients more stable and more absorbable in the human body.

The most controversial ethical issue is in regard to printing meat.3D printed meat could provide high-quality proteins without increasing stress on arable land or fishing farm.For vegetarians,printed meat somewhat circumvents concerns about harmful or destructive use of animals for food.Australia has sponsored an ethical research program for uncovering and articulating community concerns about this emerging technol-ogy(Gorkin and Dodds2013).

Conclusions

3D food printing has demonstrated its capability of making personalized chocolates or producing simple homogenous snacks.Currently,these applications are still primitive with limited internal structures and monotonous textures.It is nec-essary to develop a systematic way to investigate recipes, platform design,printing technologies,and their influences on food fabrication.Meanwhile,the food design process should be structured to promote user’s creativity,the fabrica-tion process should be quantified to achieve consistent fabri-cation results,and a simulation model should be developed to link design and fabrication with nutrient control.

Food printing technologies apply digital technologies to manipulate food forms and materials.This versatility,applied to domestic cooking or catering service,will allow efficient delivery of high-quality,freshly prepared food items to con-sumers.It can also deliver personalized nutrition,new flavors, textures,and shapes of food products.

With the development of an open web-based media inter-face,food printers may form an ecology of networked ma-chines that can order new ingredients,prepare favorite food on demand,and even collaborate with doctors to develop healthier diets.

Acknowledgments This research is supported by the National Re-search Foundation,Prime Minister’s Office,Singapore,under its Interna-tional Research Centre@Singapore Funding Initiative and administered by the Interactive&Digital Media Programme Office.It is also partially sponsored by the Jiangsu Province Science and Technology Support Pro-gram,China,under Grant No.BE2013057.

References

3D Systems(2013).3D Systems acquires the Sugar Lab.Available at: https://www.doczj.com/doc/8d9506031.html,/de/press-releases/3d-systems-acquires-sugar-lab Accessed22Dec2014

Beetz,M.,Klank,U.,&Kresse,I.(2011).Robotic roommates making pancakes,In:Proceedings of11th IEEE-RAS International Conference on Humanoid Robots,26Oct–28Oct2011,Bled, Slovenia.

Bollini,M.,Barry,J.&Rus,D.(2011).Bakebot:baking cookies with the PR2,In:The PR2workshop:challenges and lessons learned in advancing robots with a common platform,IEEE/RSJ International Conference on Intelligent Robots and Systems,25–30September2011,San Francisco,USA.

Bosker.,B.(2013).3D printers could actually make donuts healthy.

Available at https://www.doczj.com/doc/8d9506031.html,/2013/04/24/3d-printed-food_n_3148598.html.Accessed24April2013. Burritobot(2014).A3-D printer that spits out burritos.Available at: https://https://www.doczj.com/doc/8d9506031.html,/pin/115967759125319211/.Accessed Dec2014.

CandyFab(2007).The CandyFab project.Available at http://wiki.

https://www.doczj.com/doc/8d9506031.html,/Main_Page.Accessed Dec2014.

Causer,C.(2009).They’ve got a golden ticket.Potentials IEEE,28(4), 42–44.

Choc Creator(2014).Available at:https://www.doczj.com/doc/8d9506031.html,/.Accessed Dec2014.

Cohen,D.L.,Jeffrey,I.L.,Cutler,M.,Coulter,D.,Vesco,A.,&Lipson,

H.(2009).Hydrocolloid printing:a novel platform for customized

food production.In:Proceedings of solid freeform fabrication sym-posium(SFF'09),3–5August2009,Austin,TX,USA. Crump,S.S.(1991).Fast,precise,safe prototypes with FDM.In: Proceedings of ASME annual winter conference,50,53–60, December,1991,Atlanta,USA.

de Roos,B.(2013).Personalised nutrition:ready for practice?

Proceedings of the Nutrition Society,72(01),48–52.

Dunn,J.(2004).A mini revolution-food manufacture,Available at:http:// https://www.doczj.com/doc/8d9506031.html,/news/fullstory.php/aid/472/A% 20mini%20revolution.htm.Accessed23April2009.

Electrolux(2009).Interview with Nico Kl?ber(Moléculaire)Electrolux Design Lab finalist.Available at:https://www.doczj.com/doc/8d9506031.html,/en/ interview-with-nico-klaber-moleculaire-electrolux-design-lab-finalist-2040/.Accessed Dec2014.

Fabaroni(2007).Fabaroni:A home made3D printer.Available at:http:// https://www.doczj.com/doc/8d9506031.html,/classes/MIT/863.07/11.05/fabaroni/.Accessed Dec2014.

Fernandez,A.,Torres-Giner,S.,&Lagaron,J.M.(2009).Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine.Food Hydrocolloids,23(5), 1427–1432.doi:10.1007/s11483-009-9119-6.

Foodini(2014).Natural machines.Available at:http://www.

https://www.doczj.com/doc/8d9506031.html,/press-kit/.Accessed Dec2014.

Foodjet(2012).Foodjet.Available at:http://foodjet.nl/.Accessed Dec2014

Gunstone&Fred(1997).Lipid technologies and applications.CRC press.

Golding,M.,Archer,R.,Gupta,G.,Wegrzyn,T.,Kim,S.,&Millen,C.

(2011).Design and development of a3-D food printer.In: Proceedings of NZIFST2011Conference,10–12July,2011, Rotorua,New Zealand.

Gong,J.,Shitara,M.,Serizawa,R.,Makino,M.,Kabir,M.H.,& Furukawa,H.(2014).3D printing of meso-decorated gels and foods.

Materials Science Forum,783,1250–1254.

Gorkin,R.,&Dodds,S.(2013).The ultimate iron chef-when3D printers invade the kitchen.The conversation,15October,1–4,2013. Gray,N.(2010).Looking to the future:creating novel foods using3D printing.Available at:https://www.doczj.com/doc/8d9506031.html,/Science-Nutrition/Looking-to-the-future-Creating-novel-foods-using-3D-printing.Accessed23Dec2010.

Hao,L.,Mellor,S.,Seaman,O.,Henderson,J.,Sewell,N.,&Sloan,M.

(2010).Material characterisation and process development for choc-olate additive layer manufacturing.Virtual and Physical Prototyping,5,57–64.

Huang,S.H.,Liu,P.,&Mokasdar,A.(2013).Additive manufacturing and its societal impact:a literature review.The International Journal of Advanced Manufacturing Technology,67(5–8),1191–1203. Kriegel,C.,Kit,K.M.,McClements,D.J.,&Weiss,J.(2009).Influence of surfactant type and concentration on electrospinning of chitosan-poly(ethylene oxide)blend nanofibers.Food Biophysics,4(3),213–228.

La Bau,E.(2014).Sugar cubes.Available at:https://www.doczj.com/doc/8d9506031.html,/od/ sugarcandy/r/Sugar-Cubes.htm Accessed22Dec2014

Lipton,J.,Cohen,D.,Heinz,M.,Lobovsky,M.(2009).Fab@Home Model2:towards ubiquitous personal fabrication devices.In: Solid freeform fabrication symposium(SFF’09),Aug3–52009, Austin,TX,USA.

Lipton,J.,Arnold,D.,&Nigl,F.(2010).Multi-material food printing with complex internal structure suitable for conventional post-pro-cessing,In:Proceedings of solid freeform fabrication symposium, August2010,Austin TX,USA.

Makerbot(2010).Introducing the MakerBot Industries Frostruder MK2.

Available at:https://www.doczj.com/doc/8d9506031.html,/blog/2010/05/14/ introducing-the-makerbot-industries-frostruder-mk2/.Accessed Dec2014.

Malone,E.,&Lipson,H.(2007).Fab@Home:the personal desktop fabricator kit.Rapid Prototyping Journal,13(4),245–255. Millen,C.I.(2012).The development of colour3D food printing system.

Master thesis.Massey University.New Zealand.Mironov,V.,Trusk,T.,&Kasyanov,V.(2009).Biofabrication:a21st century manufacturing paradigm.Biofabrication,1(2). Neethirajan,S.,&Jayas,D.S.(2011).Nanotechnology for the food and bioprocessing industries.Food and Bioprocess Technology,4(1), 39–47.

Nikitina,V.E.,Tsivileva,O.M.,&Pankratov,A.N.(2007).Lentinula edodes biotechnology-from lentinan to lectins.Food and Bioprocess Technology,45,230–237.

Periard,D.,Schaal,N.,&Schaal,M.(2007).Printing food,In: Proceedings of the18th solid freeform fabrication symposium, 564–574,2007,Austin TX,USA.

Philips Design(2010).New design probe explores the future of food.

Available at:https://www.doczj.com/doc/8d9506031.html,/philips/sites/philipsdesign/ about/design/designnews/pressreleases/foodprobes.page.Accessed 22March2010.

Sachs,E.,Cima,M.,Williams,P.,Brancazio,D.,&Cornie,J.(1992).

Three dimensional printing:rapid tooling and prototypes directly from a CAD model.Journal of Manufacturing Science and Engineering,114(4),481–488.

Serizawa,R.,Shitara,M.,Gong,J.,Makino,M.,Kabir,M.H.,& Furukawa,H.(2014).3D jet printer of edible gels for food creation.

In:Proceedings of SPIE smart structures and materials+nondestruc-tive evaluation and health monitoring,9–13March2014,San Diego,United States.

Silva,é.S.,Cavallazzi,J.R.P.,&Muller,G.(2007).Biotechnological applications of Lentinus edodes.Journal of Food,Agriculture and Environment,5,403–407.

Southerland,D.,Walters,P.,&Huson,D.(2011).Edible3D printing,In Proceeding of NIP&digital fabrication conference.Society for Imaging Science and Technology,2,819–822.

Stewart-Knox,B.,&Mitchell,P.(2003).What separates the winners from the losers in new food product development?Trends in Food Science&Technology,14,58–64.

Torrone,P.(2007).Solid freeform fabrication:DIY,on the cheap,and made of pure sugar,Available at:https://www.doczj.com/doc/8d9506031.html,/ 2007/solid-freeform-fabrication-diy-on-the-cheap-and-made-of-pure-sugar/Accessed22Dec2014.

van Bommel,K.,&Spicer,A.(2011).Hail the snail:hegemonic struggles in the slow food https://www.doczj.com/doc/8d9506031.html,anization Studies,32(12), 1717–1744.

Walters,P.,Huson,D.,&Southerland,D.(2011).Edible3D printing,In: Proceedings of27th international conference on digital printing technologies,October2011,Minnesota,USA.

Watzke,H.,&German,J.(2010).Personalizing foods.In H.Moskovitz,

I.Saguy,&T.Strauss(Eds.),An integrated approach to new food

product development(pp.133–173).USA:CRC Press. Wegrzyn,T.F.,Golding,M.,&Archer,R.H.(2012).Food layered manufacture:a new process for constructing solid foods.Trends in Food Science&Technology,27(2),66–72.

Winger,R.,&Wall,G.(2006).Food product innovation:A background paper.Rome:Food and agriculture organization of the United Nations.

Xu,Q.,Qin,H.,&Yin,Z.(2013).Coaxial electrohydrodynamic atomi-zation process for production of polymeric composite microspheres.

Chemical Engineering Science,104,330–346.

Yang,J.,Wu,L.,&Liu,J.(2001).Rapid prototyping and fabrication method for3-D food objects,U.S.Patent No.6280785.

Yu,Y.Z.,Zheng,L.L.,&Chen,H.P.(2014).Fabrication of hierarchical polycaprolactone/gel scaffolds via combined3D bioprinting and electrospinning for tissue engineering.Advances in Manufacturing,2(3),231–238.

Zoran,A.,&Coelho,M.(2011).Cornucopia:the concept of digital gas-tronomy.Leonardo,44(5),425–431.

(完整word版)自动化设备技术协议

设备技术协议 甲方: 乙方: (甲方)向(乙方)购置设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。 2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训

供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他 1、本协议一式三份,甲方两份、乙方一份,每份具有同等效力。 2、除非有甲方的书面同意,否则乙方不得将其任何合同权利或义务转给第 三方。

GKG全自动锡膏印刷机总保养_维护与保养

维护与保养 一台好的设备只有恰当地维护与保养,才能更好地发挥它的功能,缩短工作周期,减少人力、物力,延长使用寿命,为了GKG印刷机的印刷品质,机台寿命,请遵循本章的注意事项及维护保养准则。 1. 注意事项 制定设备日常和定期维护保养制度,并由熟悉本设备的有资格人员进行。维护应该以八小时一班为一个循环,如果环境温度或PCB 板的要求较高,为免落尘埃,更短的维护周期也是必不可少的。 注意: 只有接受过专门培训的、熟悉所有安全检查规则的人员才有资格维护保养本机器。 粗布和未经同意的清洁液可能损伤、污染机器工作台面和元件塑胶表面,只能使用指定的棉布或纱布(不起毛)和清洁液来清洁机器。特别是丝杆,导轨及马达主轴等精密标准件。当以酒精作为清洁液擦拭机台时,用后应立即将机器零部件表面及印刷台面的酒精遗留物擦去,以免损坏机器。 使用润滑剂时,用户应检查其性能,以免影响润滑效果(导轨、丝杆、轴承等处推荐使用下面的油脂。如机器在特殊条件下工作,请与生产厂家商议使用何种牌号的润滑剂。绝不能随便使用普通油脂,以免对精密件产生损坏),而推荐使用的油和油脂,以及丝杆,导轨的正确清洗润滑方法在最后部分有附上。(3.7部分) 酒精是易燃物,用其清洁机器时应极其小心慎重,不许与其他物质混合,以免导致人身伤害和机器损坏。 警告: 1. 维护和维修之前一定要切断机器的主电源开关; 2. 在安全装置不能正常工作时,不允许开机; 3. 操作员不允许穿便服操作机器,处理焊锡膏时一定要戴防护手套; 4. 在开机之前,应检查机器是否有损坏,内部是否有工具,零件是否有松动,以免阻碍 机器的运行或引起事故;

2. 设备日常维护检查项目及检查周期

包装印刷行业MES案例分享

以智造为推手,定义印刷包装行业新标准 包装印刷行业MES案例分享 如今的印刷包装行业,既面临着信息化、智能化的快速迭代,又遭遇到原材料和人力成本的急剧上涨。此外,还伴随着政府不断提高要求的环保政策。这些内外因素如同大浪淘沙般的加速着行业的洗牌。对于印刷包装企业来说,智能化建设是当下最具颠覆性的推手,是叠加在人力成本不断增加、原材料价格上涨和绿色环保压力等因素之上的又一巨大挑战。 辽宁东盛科技集团有限公司,作为“中国轻工百强企业”在行业内率先进行智能化改造,2017年与知名软件供应商鑫海智桥达成了战略合作协议。从手动到机械化、半自动化、自动化、智能化,再到如今的智慧工厂,东盛科技率先建成印刷包装行业智能制造工厂,探索出印刷包装领域的智能化之路。 鑫海智桥为东盛科技打造的智能制造系统,以MES操作平台为核心,MOP现场数据平台、PDA现场移动平台、Web数据看板为辅助的四大平台,配置了涵盖运维、工艺、生产、质量、物流、设备、现场、手持、看板九大功能模块。形成了以产品设计、方案优化、加工生产到第三方采购与包装产品物流配送、供应商库存管理以及辅助包装作业的一体化业务模式,为东盛科技集团MES项目解决了多项业务挑战: 原有业务问题: 1、产品种类繁多,产品迭代周期短、版本多 2、工序简单但生产线繁杂,不同工序设备穿插对应关联性低 3、原料通用性强,配方变更频繁 4、以销定产,订单变更无序,现场订单调整频繁 5、自动化程度低,人员干预因素较强

东盛科技借助鑫海智桥MES系统,实现了: IT技术与智能制造技术完美融合 一体化解决方案,实现自动化与信息化的完美融合,向上承接ERP、WMS等管理系统,向下连通设备PLC控制系统,全面支持制造业全工序过程管理。 通过制造物联技术,实现制造全过程的互联、互感、互通 通过条码、设备联网、人机交互技术,实现人与人、人与物、物与物、人与系统、设备与系统的交互,建立覆盖制造全过程的数据感知网络,为生产管理、经营决策提供全面、客观、详实的数据支持。 实现设备联网、群控及智能化控制 利用OPC、数据总线技术,实现设备联网与群控,实时采集设备运行状态,及时反馈设备异常,自动统计OEE、MTTR等KPI指标,提升设备利用率,保护企业投资。 打破管理黑箱,打造透明化、可视化的数字工厂 采用强大数据采集引擎、整合数据采集渠道,覆盖整个工厂制造现场,以图形化看板展示生产、设备、工艺、质量信息,让管理触角延伸到工厂每个角落。 一、打破管理“黑箱”

IT设备操作及维护手册

信息部TI硬件操作及维护手册 目录 第一章:信息部工作职责 (2) 一、信息部经理岗位职责 (2) 二、网络管理专员岗位职责 (3) 第二章:门店设备的使用及维护 (3) 一、机房环境注意与日常维护 (3) 二、服务器操作与维护 (4) 三、网络设备的日常维护 (6) 四、监控系统的操作与维护 (6) 五、功放设备的使用和日常维护 (9) 六、UPS不间断供电源 (10) 七、点单收银电脑使用和维护 (12) 八、微型打印机使用和维护 (16) 九、排号等位使用和维护 (18) 十、门店网费电话费缴费流程 (19) 十一、钉钉考勤机操作流程 (21) 十二、钉钉审批流程 (26) 十三、天子星前厅点餐系统操作流程 (31)

第一章:信息部工作职责 一、信息经理岗位职责 1,拟定和执行企业信息化战略。 1)负责制订公司信息化中长期战略规划、当年滚动实施计划。 2)制定企业信息化管理制度、制定信息化标准规范。 3)负责公司信息化网络规划、建设组织。 4)制订IT基础资源(硬、软件)运行流程、制定网络安全、信息安全措施并组织实施, 实现IT资源集约管理。 5)负责公司集成信息系统总体构架,构建企业信息化实施组织,结合业务流程重组、项目管理实施企业集成信息系统。 6)负责集团公司网站建设计及总体规划。 2、办公自动化系统开发与运行 (1)根据公司发展战略和实际需要,组织实施公司办公自动化系 统、网站的运行管理和维护与更新,协助信息管理工作; (2)负责公司办公自动化设备(计算机及其软件、打印机)的维护、管理工作。 3、企业信息资源开发 根据企业发展战略和信息化战略要求,负责企业内外部信息资源开发利用。导入知识管理,牵头组织建立企业产业政策信息资源、竞争对手信息资源、供应商信息资源、企业客户信息资源、企业基础数据资源五大信息资源库。 4、建立信息化评价体系 根据公司信息化战略和企业实情,建立公司信息化评价体系和执行标准、制定全员信息化培训计划。 5、信息处理 负责信息的收集、汇总、分析研究,定期编写信息分析报告报公司领导决策参考;参与公司专用管理标准和制度的

我眼中的智慧课堂

我眼中得智慧课堂 本学期我校进行了大胆得教学改革,全面构建智慧课堂教学模式,在一步步得模仿、探索实践中,我对智慧课堂有了进一步得认识,我眼中得数学智慧课堂应当就是这样得: 智慧课堂应就是快乐得课堂,鲜活得素材,生动得课件,平等得对话,多元得评价,会使学生迈步在愉快得求知道路上。 智慧课堂应就是活动得课堂,独具匠心得教学活动,将引领着孩子们去探索,去发现,不断体验着数学知识得神奇魅力。 智慧课堂应就是生活得课堂,以多彩得生活为学习背景,用真实得问题激起学习欲望,让学生走进生活,体会“生活就就是数学,数学就就是生活”。 智慧课堂应当就是反思得课堂,孔子曰:“学而不思则罔,思而不学则殆”。反思就是开启智慧得金钥匙。智慧课堂应适时引导学生反思解决问题得策略,反思数学思想方法,反思“错误”得原因,从而优化思维能力,养成良好得思考习惯,提高用数学分析研究与解决问题能力. 智慧得课堂应当就是合作得课堂,自主、合作、探究就是课堂得命脉,要营造平等、民主、与谐、轻松得课堂气氛,给学生搭建自主合作学习得平台,莫再让她们“戴着镣铐跳舞”。让她们明白“我为人人,人人为我".成员之间互相帮助、互相鼓励、互相学习,勇于交流,勇于展示,共同成长。教师当好帮助者、引导者,发动机,助燃器,为她们“推波助澜”. 反思我得数学课堂,孩子们能真正沉浸在愉快得学习氛围里么?一个多月以来,借着智慧课堂教学得东风,大部分孩子在小组活动中展示自己,大部分学生能积极参与讨论与交流,积极展示个性,展示风采.从她们亮晶晶得双眸里,从她们高举得小手上,从她们自信得神态上,从她们红扑扑得小脸上,我瞧到了快乐与满足,我也从她们得快乐里找到了自己得快乐! 但就是,不能否定,还有部分孩子得基础很差,对数学得兴趣不浓,数学领悟能力也不强,她们能真正地体会到数学得乐趣吗?她们能真正融入智慧课堂中来么?她们会不会离我们越来越远? 面对这些问题,我们只有大胆得往前走,并坚实得走好每一步,才能寻求到答案。让每个孩子都能真正享受到学习得快乐,就是智慧课堂教学得不懈追求! 一、树立新得教学理念 1.三维目标-知识与技能、过程与方法、情感态度与价值观。 2.教师角色—组织者、引导者、合作者(导演、教练、裁判、心理医生、辅导专家). 3、学生角色—课堂主角、学习主人、探究者。

全自动锡膏印刷机

全自动锡膏印刷机CC系列 一.主要功能 1,功能概述: Cc是一款高精度全自动锡膏印刷机(High Precision Auto Paste Printer)。在表面组装工艺生产(SMT)中,用于高精度的钢网印刷或漏版印刷的专用生产设备。 2,产品基本特点: (1), PCB尺寸兼容范围广,可支持50mm X 50mm 至 400mm X 340mm 不同厚度的PCB。 (2), 高精度印刷分辨率。定位精度高,重复定位精度±0.01mm;印刷精度0.025mm. 支持胶水印刷。 (3), 全自动控制可以提高生产效率,控制品质,节省成本:自动钢网定位;自动PCB校正;自动刮刀压力调整;自动印刷;自动钢网清洗(干洗,湿洗,抽真空3种清洗方式); (4), 采用环城公司独立开发的悬浮式印刷头,可编程气缸压力自动调整系统,可以在线实时反馈压力和自动平衡刮刀压力,压力控制精准,可以达到完美的锡膏成型效果;

(5), 可编程电机控制刮刀与钢网分离速度及行程,可以灵活实现多种脱模方式。 (6), 多功能PCB固定定位系统,PCB定位方便快捷,准确。 (7), 上下视觉定位系统。 (8), 内建图像处理系统; (9), 支持2D,SPC功能 3,锡膏印刷范围 (1), SMT工艺的电阻,电容,电感,二极管,三极管等贴片元器件生产加工:01005, 0201, 0402, 0603, 0805, 1206等以及其他规格尺寸; (2), IC: 支持SOP, TSOP, TSSOP, QFN 等封装,最小间距(Pitch) 0.3mm; 支持 BGA, CSP封装,最小球径(Ball) 0.2mm;

《3D生物打印》阅读附答案

《3D生物打印》阅读附答案 3D生物打印 今年7月,深圳医院整形外科团队运用3D生物打印技术,通过3D打印辅助的耳廓塑形再造手术,让一位右耳廓先天发育不全的女孩再次长处一个正常的新耳朵。 早在2009年,瑞士伯尔尼的研究人员就使用3D打印机制作出了尺寸精确的人拇指骨。这种技术只需要一些简单的材料:3D打印机、三钙磷酸盐和聚乳酸以及能够发育成骨骼的活细胞。三钙磷酸盐和聚乳酸会形成坚硬的结构,起到支撑的作用;能够发育成骨骼的活细胞在支架上便可培养成人拇指骨。 但是那些只由柔软的细胞组成的器官并没有这些支撑物,像心脏、肝脏等复杂器官的3D制造,最大的困难就在于没有合适的支架。 随着科技发展,也许打印更复杂的器官将不需要太久,因为支架的问题已经有了解决方案。以3D生物打印“血管”为例:科学家先是利用一些富含糖类和其他营养物质的凝胶,制造出了柔软的支架,再利用从脊髓里采集到的干细胞为原料,配合不同的生长因子,让其发育成不同类型的活细胞。接着在3D打印机的两个喷头分别灌注活细胞和水凝胶,这种工作原理和我们使用彩色打印机时在不同墨盒中注入不同的墨水是一样的。喷头喷出的微小液滴中都包含了数万个细胞,它们会以数百微米的精度分布在水凝胶支架的周围,成为人体组织模型。打印完成后,这些微小的作品被放进营养液中,细胞会找到彼此并且相互结合,成为一段鲜活的血管,而水凝胶稍后将会被洗掉。 这种方法制作出的符合搭桥手术需要的血管,对人体既不会有副作用,也不会引起排异反应,因为制作血管的所有材料都来自患者自身。 目前,3 D生物打印技术只能制作一些简单的组织,离打印复杂器官的目标还有数年的距离,但是研究者们对它充满信心。在这种技术成熟之后,我们将会拥有个人专属的器官库,随时可以打印只适合自己的身体器官。因为器官衰老和死亡这件事也许可以避免,健康的肉体将会与健全的思维存在同样长的时间。 (选自《科技纵览》,有删改) 13.根据文章内容,用简洁的语言为“3D生物打印”下一个定义。(3分)答: 14.第4段中画线句子使用了什么说明方法?有什么作用?(3分) 答: 15.3D生物打印技术的出现对于人类有哪些意义?(3分) 答: 参考答案 13.(3分)3D生物打印就是利用3D打印机将活细胞分布在支架上培养(制造)人体器官的技术。 14.(3分)运用作比较的说明方法,将3D打印机两个喷头和彩色打印机不同墨盒的功能进行比较,清晰地说明了3D打印机喷头的工作原理,通俗易懂。(说明方法1分,作用2分) 15.(3分)①再造人体各种器官;②再造器官对人体没有副作用,不会引起排异反应;③拥有个人专属的器官库,打印只适合自己的身体器官;④可以避免

监控自动化设备危险点分析与控制措施手册

监控自动化设备危险点分析与控制措施手册 12. 1 控制系统巡视 1、系统运行异常 1、巡视设备时,不得进行巡视规定以外的工 作。 2、巡视工程中应按照电厂规定的路线和项目 开展巡视,防止漏项未能及时发现系统异常造 成事故。 巡视设备如发现异常,应设法处理,并报告有 关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或 其他伤害、如触电、高空摔伤 1、巡视设备应戴安全帽。 2、巡视应携带照明器具。

3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 2 水机保护系统巡 视 1、损坏模件引起保护系统误 动或拒动 1、巡视设备时,不得进行巡视规定以外的工 作。 巡视工程中应按照企业规定的路线和项目开 展巡视,防止漏项未能及时发现系统异常造成 事故。 巡视设备如发现异常,应设法处理,并报告有

关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或其他伤害、如触电、高空摔伤1、巡视设备应戴安全帽。 2、巡视应携带照明器具。 3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 3 控制系统的维护 1模件插拔、检查、更换和存 储损坏 1、维护人员应按规定戴防静电手带,防静电 工作服,以防止静电损坏模件。 2、模件接线错误或新旧换件 接线不一致造成系统故障 1、必须事前进行检查,确保模件上的位开关、 跨接线和跳线完全一致。

全自动锡膏印刷机评估技术参数

德森全自动锡膏印刷机目录 全自动锡膏印刷机 SMT全自动锡膏印刷机发展趋势将会对以下几方面提出更高的要求: 为了适应QFP、SOP、BGA、CSP、01005、PoP(Package on Package)堆叠装配技术等细间距、高密度电子封装技术的发展趋势,高精密全自动带视觉锡膏印刷机应运而生。 首先,Cycle Time的要求。随着SMT行业的发展,对SMT电子产品的要求越来越高,随着模组化高速帖片机的出现,对印刷机Cycle Time来说提出了更高的要求,怎样实现缩短Cycle Time将是各品牌全自动印刷机要解决的问题。 第二,精度的要求。0201、01005的Chip件的大量使用,以前的印刷机印刷已不能充分满足精度需求,高精度的机型将重新争夺市场。 第三,清洗效果的要求。随SMT的发展,清洗功能的完善可实现速度即生产的高效率。仿人工清洗是大的印刷机厂商正在考虑和研究的方向。 第四,性价比的要求。面对OEM的单价总体下降,各企业会根据产品的要求来选择印刷设备,在印刷机能完全满足生产需要的前提下,即会选择一款高性价比的产品。 第一章全自动锡膏印刷机系统描述…… 1.1 功能特性 (3) 1.2 技术参数 (4) 1.3 外形尺寸 (5) 1.4 系统主要组成部分 (6) 1.5 工作原理 (7) 第二章全自动锡膏印刷机设备安装与调试…… 2.1 开箱 (8) 2.2 操作环境 (9) 2.3 设备安置及高度调整 (9) 2.4 电源气源 (9) 2.5 工控机控制系统安装 (9) 2.6 软件安装 (10) 2 .6.1 软件功能简介 (10) 2 .6.2 软件安装 (10) 第三章全自动锡膏印刷机生产工作流程… 3.1 开机前检查 (12) 3.2 开始生产前准备 (12) 3.2.1范本的准备 (12)

自动化设备(DCS仪表)管理办法

XXXXXXX有限公司仪表自动化管理办法 文件编号:xxxxxx 拟文部门:动力设备部 编制人:xxx 审核人:xxx 批准人:xxx 发布日期:2015-1-5

第一章总则 第一条为了加强仪表自动化设备的管理工作,提高仪表自动化设备安全经济运行,依据中石化《仪表及自动控制设备管理制度》并结合公司实际情况,制定本办法。 第二条本办法所称仪表自动化设备包括测量、监测、控制、质量分析仪表、数据采集系统、控制系统(DCS、PLC等)、执行器、组合及智能仪表以及由它们组成的自动化系统和安全保护报警联锁系统。 第三条本办法适用于在用仪表自动化设备、更新零购项目仪表自动化设备管理,新、改、扩建、技改项目仪表管理按规建部有关规定执行。 第二章职责 第四条设备管理部职责 (一)负责贯彻执行中国石化及行业部门有关仪表自动化的管理制度、规程、办法、指令等。 (二)负责制订和修订仪化股份公司仪表自动化管理办法、检修规程及有关规定。 (三)负责组织对各使用单位的仪表自动化的完好及投用情况和管理工作进行检查、监督、考核。 (四)组织仪表自动化方面的技术交流、培训、咨询和应用开发,努力提高其应用水平。 (五)根据设备全过程管理的要求,负责组织重点更新、零购项目仪表自动化设备的规划调研、方案论证、设计选型和安装验收全过程工作,参与技术改造、新建装置仪表自动化设备的规划、设计、安装验收等工作。

第五条生产中心职责 (一)负责贯彻执行中国石化及仪化股份公司有关仪表自动化的管理制度、规程、办法、指令等规定。 (二)建立技术档案,对本单位仪表自动化的完好及投用情况进行管理考核。 (三)各单位负责对仪表自动化的管理。按规定及时上报有关仪表自动化的报表、资料。 (四)运保室(或同类机构)为仪表自动化的主管部门。 第六条安全环保监督部职责 负责对可燃、有毒气体报警器的管理进行安全监督。 第三章管理规定 第七条各单位应建立明确的仪表管理网络,明确职责。 第八条各单位要加强对仪表自动化设备的维护和检修,以保证仪表测量精度、可靠性和控制质量,使检测仪表和自动化系统处于良好状态。做好故障的统计和分析,及时消除故障,定期进行检修校验工作,健全原始记录和信息反馈。以上各项工作均要按公司统一表式填写建档。 第九条操作工应掌握仪表及自动化设备的简单原理、结构、性能,正确使用与操作,保持仪表自动化设备的清洁。 第十条设备主管部门应参与新建装置、技措项目、设备零购项目的仪器、仪表选型、验收工作。在办理竣工验收手续后,移交生产装置使用,附件、备件、工具、资料要齐全。 第十一条加强对仪器、仪表、DCS的电源、气源、伴热及空调系统的管理,仪器、仪表、DCS的电源、气源要保证专线专用,干净纯洁,并

GKGG全自动印刷机操作规范

G K G G全自动印刷机操 作规范 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

全自动锡膏印刷机操作 规程

1目的 正确操作全自动印刷机,保证机器正常运行,从而确保产品品质。 2适用范围 制造部生产车间SMT线 3名词解释 锡膏印刷机:现代锡膏印刷机一般由装板、加锡膏、压印、输电路板等机构组成。它的工作原理是:先将要印刷的电路板固定在印刷定位台上,然后由印刷机的前后刮刀把锡膏或红胶通过钢网漏印于对应焊盘,对漏印均匀的PCB,通过传输台输入至贴片机进行自动贴片。 4职责 4.1设备工程师负责印刷机的维修及周期性维护。 4.2设备技术员负责印刷机程序的制作与修改。 4.3操作员负责印刷机的操作及日常保养。 4.4生产主管负责监督执行。 5管理规定 5.1开机前检查 5.1.1确认机器外观清洁,确认设备内部尤其是运动轨道运行范围内有无杂 物。 5.1.2确认工作环境温度为23±5℃之间,湿度<80%。

5.1.3确定设备的工作气压为~之间。 5.1.4确认设备电源及相关连接线正常。 5.2开机 5.2.1打开设备电源。 关闭开启 图1.设备电源 5.2.2设备开机完成后,进入归零界面,点击【开始归零】,等待归零完成。 图2.设备归零界面图3.设备归零完成界面 5.3调用生产程序 5.3.1根据系统提示选择程序权限,操作员无需输入密码,其余均需输入相应密码获得权限。完成后点击返回。 图4.权限选择界面 5.3.2在主界面点击【打开工程】选项,选取对应的生产程序,如BCLG4A- V05。 图5.主界面图6.调用程序界面 5.3.3选取完成后自动返回主界面,此时程序已打开。点击【数据录入】,确认将要生产的产品印刷参数。 图7.数据录入第一页 5.4安装钢网 5.4.1确认第一步数据后,点击下一步,进入第二页,印刷机提示调整轨道宽

印刷包装公司各岗位职能职责

印刷包装公司各岗位职能职责

部门名称人力资源部岗位名称人力资源部主管 直属上级副总经理直属下级人力资源部助理入职要求: a)相关专业大学以上学历; b)从事相关工作三年以上。 c)熟悉HR六大模块,精通招聘、培训、劳资、绩效、薪酬等各项工作; d)具有较强的文字功底、写作能力; e)能熟练操作各种办公设备,运用各种办公软件; f)精通人力资源及其管理的业务知识,了解相关的法律、法规及消防知识; 主要职责: 1、协助上级主管建立健全公司招聘、培训等人力资源制度; 2、建立、维护人事档案,办理和更新劳动合同; 3、制定招聘工作流程,协调员工招聘、入职、离职、调任、升职等手续; 4、制定、修改合理的绩效考核方案,使员工付出与所得薪酬具有内部相当公平性 5、协同开展新员工入职培训,业务培训,联系组织外部培训以及培训效果的跟踪、反馈。 6、帮助建立员工关系,协调员工与管理层的关系; 7、完成上级领导临时交办的其他工作; 备注:8

部门名称人力资源部岗位名称人力资源部助理 直属上级人力资源部经理直属下级 入职要求: a)相关专业大学以上学历; b)从事相关工作一年以上。 c)了解HR六大模块,对招聘、培训、劳资、绩效、薪酬等其中一项工作较熟悉; d)具有一般的文字功底、写作能力; e)能熟练操作各种办公设备,运用各种办公软件; f)了解人力资源及其管理的业务知识,了解相关的法律、法规及消防知识; 主要职责: 1、协助部门经理建立健全公司招聘、培训等人力资源制度; 2、建立、维护人事档案,负责签订劳动合同; 3、按照流程办理员工招聘、入职、离职、调任、升职等手续; 4、执行绩效考核方案,按月编制绩效工资; 5、协同开展新员工入职培训; 6、帮助建立员工关系,协调员工与管理层的关系; 7、部门经理临时交办的其他工作; 备注:9

智慧课堂实施方案

九中智慧课堂实施细则 一、前言 为了解决制约教学改革的瓶颈问题,加快课堂教学改革与发展的步伐,保证课改工作顺利通 过深水区,引领我校课堂在信息化全新环境下走向服务学生终身学习和教师专业发展的光明前景, 实现让教育充满智慧,课堂充满活力,学习充满兴趣的改革目标,切实提高教学质量,促进学生人 格成长,做有思想、有灵魂的教育,办人民满意的特色学校。经广泛学习、研究、论证,学校决定 实施构建智慧课堂实践探索活动,特制定实施细则。 二、课堂现状分析 自2009年我市实施区域课堂教学改革以来,九中以课改先行者的姿态始终致力于课堂的创新 实践。先后经历了统一模式,整体推进和实施多元模式,构建自主课堂等发展阶段,逐步形成了以自 学为前提,以小组为单位,以展示为核心,以导学案为线路图,以评价为手段,以交流为平台。通过 独学、对学、群学,实现了学习方式的重大变革,使得“自主、合作、探究”成为 一种新的常态。尤其是经过2012年全省义务教育课程改革现场会和2013年全省课堂教学改革博览会的现场展示活动,我校的课改成果进一步得到巩固,师生的课堂表现得到了省市领导、专家和市内外同行的高度评价。《中国教师报》、《黑龙江日报》、《今日黑龙江》、《黑龙江教育》多家媒体相继报道我校课改工作,在龙江大地引发了广泛关注。但是当课改走进深水区,我们的课 堂遇到了空前的挑战,学生的自主学习还处在比较低的层次上,学生深度学习活动还缺乏丰富的学习 资源和信息技术手段的支撑。学生创新思维能力、反思能力和批判性思维还没有完全形成,个性化学 习体现不明显,师生互动的信息渠道不够畅通。随着我校信息化建设步伐的加快,课堂上各种信息基 础设施、高速的网络环境的建成以及丰富的学习资源的整合,进一步深化课堂教学改革在我校成为了 可能,也为新课堂建设创造了全新的、现代的环境,一场新的、更大的课堂革命正在九中人的心中孕育、成长。 三、指导思想 智慧课堂是我校实施智慧教育的重要载体,是基于我校课堂教学改革不断深化而发展的教师利 用优质教育资源的一种创新课堂教学模式,是指在创新教学理念指导下,着眼于学生的终身发展,以 学生智慧学习为目标,以智慧课堂建设为载体,以信息技术为支撑,着重培养学生提出问题、分析问题、 1

SMT全自动印刷机作业指导书

SMT全自动印刷机作业指导书 (ISO9001-2015) 1.0目的 为提供机器操作标准,促使操作人员能准确的规范的操作,进而提高工作效率,并能确保设备与操作者安全 2.0范围 SMT部IS-SE-IPM全自动印刷机 3.0开机前检查: 3.1确认气压值0.45Mpa±0.05Mpa. 3.2检查设备是否完好接地; 3.3检查机內有无异物。 3.3检查‘EMERGENCYSTOP’紧急开关是否弹起; 3.4检查面板电源开关是否处于(OFF)状态; 4.0开机: 4.1以上检查项目OK后,将墙上电源开关拨到(ON)状态; 4.2把机器上的总电源开关(MAINSWITCH)至ON; 4.3待WINDOWSXP系统启动后机器应用程序至主画面; 4.4点击初始化,待机器归零完毕。 5.0操作步骤 5.1点击打开文件选择生产程序(确认是否与工艺程序名一致); 5.2单击机器软件画面的‘自动运行’,确认PCB设置的宽度与实际的PCB宽度

是否匹配,进出板方向是否正确,机器的印锡参数与清洗参数是否与工艺要求一致等; 5.3依次点击设置机械/钢网设定中心为准钢网止动器下标记钢网,确认OKMARK 点的位置后按下‘CLAMP’键固定钢网; 5.4按照刮刀方向安装刮刀,安装刮刀时要注意刮刀不能安装反并且安装到位.否则钢网和刮刀会损坏,区分前后刮刀,根据螺丝间距的不同装在不同位置上,不能相互交换。 5.6加入适量的锡膏点击主画面的自动运行,然后点击控制面板上的START开始印刷,在印第一块板前由跟线技术人员确认刮刀是否装好,钢网是否锁紧。作业员在确认PCB型号和版本正确后,按工艺要求的方向将其放在机器进板轨道上,开始印刷。 5.7在印刷过程中,每隔半小时检查刮刀前的锡膏滚动直径是否小于15mm,每次添加的原则是:少量多次,同时铲回刮刀两边的锡膏,放置到刮刀滚动位置,以免两边的锡膏停置时间过长出现变质。在添加锡膏时必须将机器退出自动印刷状态,锡膏加好后,必须保持机器安全门关闭,以免锡膏内助焊剂挥发过快,影响其印刷质量。 5.8当生产主界面出现清洗纸已用完的提示时则需要更换钢网纸.更换钢网纸时需参照机器上所标识的钢网纸卷绕方向,防止卷错而卡坏机器。 5.9自动印锡机必须使用专用的工业酒精(清洁剂),机器须根据工艺要求设置自动清洗钢网次数及手工清洗要求。 5.10正常生产过程中不得随便拆下钢网,否则需要重新调试机器及对位等,当需要拆下钢网时,必须先把刮刀上的锡膏铲掉避免锡膏掉入机器内。

打造智慧课堂的实践研究

《打造智慧课堂的实践研究》课题方案 无锡市新安中学课题组 一、问题的提出 1、时代潮流的召唤 新的课程理念认为,课堂教学不是简单的知识学习的过程,它是师生共同成长的生命历程,是不可重复的激情与智慧综合生成的过程。国家督学成尚荣教授指出:“课堂教学改革就是要超越知识教育,从知识走向智慧,从培养“知识人”转为培养“智慧者”;用教育哲学指导和提升教育改革,就是要引领教师和学生爱智慧、追求智慧。因此“智慧教育”是近几年来教育界热议的一个话题。智慧教育是教育的一种过程,一种境界。在智慧教育中,教师应该是充满教育智慧的,课堂应该是智慧的课堂,管理应该是智慧的管理,智慧教育的真谛是给予学生以智慧,以教师的智慧激发学生的智慧潜能,不是只关注学生的知识、技能、分数,而是更关注学生的未知世界,学生生命的智慧。 由此可见,让智慧唤醒课堂,让智慧引领教师专业成长,是时代的呼唤,是教师专业成长的需要,是课堂教学焕发生机与活力的契机,也是新时期教育教学改革的重大使命,我校进行“构建智慧课堂的实践研究”有着鲜明的时代意义。 2、地域文化的熏陶 新安中学地处“中国慧谷、智者天堂”的太科园,鉴于时代机遇的召唤和地域文化的熏陶,新安中学定位在打造“智慧校园”这一发展特色上。“智慧课堂”作为“智慧校园”的一部分与“中国慧谷、智者天堂”可谓一脉

相承,相得益彰。我们可以在智者的天堂了尽享智慧、沐浴智慧、孕育智慧、提升智慧。同时,我们可以依托得天独厚的地域优势、人才优势培育更多的智者人才,为太科园的繁荣发展作出贡献,并因此来回报地方政府、家乡人民对学校一如既往的关怀和厚爱。我们的口号是“以人为本以师生发展推进学校跨越,以德立校以德育创新培养智慧人才。”打造“智慧校园”,既体现了学校教育之要义,也彰显了新安中学现代化、国际化的视野。智慧校园必须有智慧的课堂。实施智慧教育的主阵地——课堂,就应该成为学生的智慧之旅。新安中学要求每一位老师在课堂教学中注重让学生“感受过程,习得规律,发展智慧”,在组织学生学习时,要努力处理好自己的角色地位,重视引导学生在老师的指导下主动地、富有个性地学习,并最终达到“在乐学中启智,在成功中开慧。”的教育理念。 3、校本教研的传承 2009年5月期间,我校承担了全国中语会“课堂教学研究”总课题和省重点课题“课堂教学效益研究”两个课题的一个子课题《合作探究与生成的和谐关系研究》,学校语文教研组从语文学科这一层面探讨了课堂教学。在课题即将结题的今天,我们欣喜地发现,有效教学的课堂必定是一个充满智慧的课堂,必定洋溢着师生间浓浓的真情,洋溢着好学乐思、勇于创造的和谐愉悦的氛围,也必定会在有智慧的教师有智慧地引领下,彼此在多角度有层次的智慧交融、碰撞中,师生共同不断提升着的智慧。经过近三年的探索实践,我们承担的语文子课题收获了课题预期的目标。本课题我们提出智慧课堂实践的研究,是为了进一步延续拓宽学校以往的研究主题,为了进一步深化全校教师对智慧课堂的认知,同时也是为了进一步有效落

包装厂社会实践报告

包装厂社会实践报告 XX为您提供一篇关于,欢迎参考! 上下班还需要打卡,一天4次打卡,在加上在车间里的点名定考勤,一次不打卡要扣5块钱,所以是绝对不可以忘记的。由于厂里生产的是熟食,所以卫生情况要求的是很严格的。每天进车间前,要带好发罩,口罩,不许露岀一根头发,只露出眼睛,还要穿上工作服和工作靴。由于为了食品的存放,里面的温度只有10几度,所以我还带了件厚褂子穿在里面。可以说今年夏天,我一个月都没有穿过短裤,都是长裤,因为里面太冷了。然后进去前还要用消毒液泡手,然后过风淋室,然后才进到车间里。 暑假是一个漫长的等待,几乎每一个同学都找到自己的落脚点,最后我决定到印刷包装厂,虽然我不相信能学到什么, 但我肯定自己一定能锻炼自己的意志,为父母分担点负担。 印刷报装公司是一家专做高档包装的印后加工公司,他专注于高品质,高要求的加工的理念,一直赢得像想安琪月饼、茅台、五粮液等知名公司的青睐。当我走进公司的第一步起, 我就被车间井然有序、繁忙热闹的场面所震撼。我相信我自己能在这里学习更多的经验。

学校让人学习了那生硬的书本知识,让热血男儿变的更加弱小;社会让人学会了如何来生存与发展,让书生气的学者变的更加的疯狂。但无论是在学校还是在社会,我们依旧在学习,在学习中奋斗,至于奋斗的结局有谁预先知道呢? 但我们要坚持“努力不一定成功,放弃一定失败”的心态来奋斗。 在我走进公司的第一天,我感觉自己并不起眼,也没有人去关注这个新来的生手,所有的工人都专注包装生产,我也就只能做好自己本能的杂活,我就只好经过三四天的接触,我对厂里的情况有了一些了解?它的厂址不大但是设备一应了具全。该公司引进了台湾、大陆知名厂家的烫金、压纹、覆膜、啤机,粘盒机,并聘请至少有十年以上经验的机长去操作,所以该厂称为国内知名企业的合作伙伴。我在工厂待到十几天的时候,我就习惯工厂工人的冷漠,但他们对待事情一丝不苟的态度深深将我打动,到一个月的时候,我渐渐的对满版压纹,局部压纹,精雕压纹有了一定的了解,我同时产品的质量有一定的判断能力我感觉这次深圳之行让我的到了磨砺,也让我对印刷有了更深的了解。 暑假社会这一游不仅仅带给我的是金钱,更重要的是让我对人生有了新的认识,有了新的感悟。对社会我直接接触了消除了先前的一些偏见,又从社会上认识了自己在那些方面的不足自己还要努力的改进。下面是整理的关于大学生暑假电子厂

自动化设备技术协议(完整版)

设备技术协议 甲方:____________________________________________ 乙方:____________________________________________ (甲方)向(乙方)购置 设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。

2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训 供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他

“提升教师教学智慧实践研究”课题研究方案

沙坪坝区教育科学规划办2012年度规划课题“提升教师教学智慧的实践研究”课题研究方案 滨江小学课题组 一、问题的提出: 学校要发展,教师是关键。随着新课程改革的不断深入,课堂对教师素质的要求也越来越高,简单、固定、僵化的教学思维和方式已越来越不适应现代社会对人才的培养需求和学生的需要,教师必须注重学生在课堂生成的教学情境,灵活机智地处理一切教学活动,这就需要教师的教学智慧。近两年来,我校结合区“十一五”规划课题“特色课堂行动研究”开展了“智慧课堂”的研究,我们发现,智慧的课堂更需要智慧的教师。然而,在我们的课堂中,教师的教学智慧却成了制约课堂的短板,面对课堂中的一些生成的问题,我们往往缺少睿智的思考,机智的应对,灵活的处理,课堂少了一点生气和灵性。提升教师的教学智慧,打造高素质的教师队伍,是学校未来发展的必然要求。所以,我们提出“提升教师教学智慧的实践研究”课题,其研究的核心是“教学智慧”,其落脚点是提高教师的专业素养。 二、课题界定 智慧是指对事物的认识、辨析、判断、处理和发明创造的能力。概括地说,智慧就是指人在活动过程中,在与人的交往过程中所表现出来的应对社会、自然和人生的一种综合能力系统。它是个体在一定的社会文化心理的基础上形成的安身立命、直面人生、应对生活的一种最高境界的品质和状态。它与一个人所在的社会文化背景、个体的

智商、人生的阅历、能力的水平、知识程度等密切相关,更与教育的质量有着特殊的关系,一个人所受的教育程度会影响到一个人做事时所表现出来的智慧水平。 教学智慧在《教育大辞典》中被定义为:“教师面临复杂教学情境所表现的一种敏感、迅速、准确的判断能力。”理解教师智慧的内涵,需要分析它所强调的三个关键词:一是教学“复杂性”,二是教学的“情境性”,三是教学的“实践性”。具体地说教学智慧是教师个体在教学实践中,依据自身对教学现象和教学理论的感悟,深刻洞察并敏锐机智、高效便捷地应对教学情境而生成融通共生、自由和美的境界的一种综合能力。教学智慧是实践性存在方式的一种表达,实践性是其基本属性。 提升教师的教学智慧就是在具体的教学实践过程中,教师个体借助理论学习的积淀和教学实践的反省,逐步地使自己从低层次的技能熟练且恰当运用的教学智慧阶段,经过中间层次的机智应对突发性教学情景的教学智慧阶段,最终达到最高层次的圆融贯通、自由和美的教学智慧境界。 三、理论依据 近十年来,教师的教学智慧备受人们的关注,对教学智慧的研究既有专门的学者,又有教学第一线的老师。前者偏重于理论研究,理论性较强,如赵建军认为:“所谓教学智慧,指的是作为教主体的教师对教学所做的观念运筹、经验调度、操作设计等的种种努力及其体现于教学实践各环节的主体能动性。”王鉴认为:教师的教学智慧是

设备使用说明书范文 自动化设备说明书样本

自动化设备说明书样本 此文档为WORD 版可编辑修改 设备手册 目录 第1 章安全 ..................................................................... 5 1-1 内 容 . ......................................................................... 5 1-2安全装置的位 置 ................................................................ 6 1-3 安全装置的功 能 . ............................................................... 6 1-4 潜在危 险 . ..................................................................... 8 测试的过程中,压力测试增压缸是动作的 . ............................................. 8 压力测试完产品时动作 的 ........................................................... 8 推动产品时动作 的 ................................................................. 8 1-5 安全预 防 . (8) 1-5-1 机械方面 ................................................................ 8 1-5-2 电气方 面 ................................................................ 8 1-5-3 Lockout / Tag-out 程 序 (9)

相关主题
文本预览
相关文档 最新文档