当前位置:文档之家› 铝合金板材时效组织的高分辨分析

铝合金板材时效组织的高分辨分析

铝合金板材时效组织的高分辨分析
铝合金板材时效组织的高分辨分析

?轻金属材料?

铝合金板材时效组织的高分辨分析

王文焱,谢敬佩,刘忠侠,李伟

(河南科技大学材料科学与工程学院,河南洛阳471003)

摘要:本文通过X射线衍射、扫描电镜、高分辨透射电镜,分析了6009铝合金时效组织,球形Mg2Si是其主要强化相。

在电解低钛铝合金中,球形Mg2Si分布更为弥散、均匀。对高分辨像通过傅立叶变换和反傅立叶变换,得到了调幅分

解组织的晶格像。结果表明:电解低钛铝合金其力学性能和组织优于熔配加钛铝合金;电解低钛铝合金中Mg和Si原

子在铝基体的(200)面上偏聚,形成明显的调幅分解组织。

关键词:电解低钛铝合金;Mg2Si;显微组织

中图分类号:TG146.2+3 文献标识码:B 文章编号:1002Ο1752(2007)07Ο54Ο4

Microstructural analysis of an aged electrolytic

low-titanium aluminum alloy plate

WAN G Wen-yan,XIE Jing-pei,L IU Zhong-xia,L I Wei

(M at.Sci.and Eng.School,Henan

U niversity of Science and Technology,L uoyang471003,Chi na)

Abstract:The investigation of the aged6009type aluminum alloy by employing X-ray diffractometer,scanning electron microscope and high resolution transmission electron microscope indicated that the dispersive and uniform spherical Mg2Si was the main reinforced phase.The crystal lattice imagine was obtained through Fourier transform and reverse Fourier transform of the HREM imagine.Results showed that the mechanical properties of the electrolytic low-titanium aluminum alloy was superior to that of the fused aluminum alloy containing titanium and a spinodal decomposed microstructure was generated in terms of the clustering of Mg and Si on(200)plane.

K eyw ords:electrolytic low-titanium aluminum alloy;Mg2Si;microstructure

汽车车身占整车质量的25%左右,减小车身质量可为汽车轻量化提供最大的潜力。6000系铝合金具有强度和塑性良好的组合,综合性能优良,具有烘烤硬化效应,不仅使铝材进一步强化,还可使铝板零件减薄,可用于小汽车车身板材材料。传统上,通常用熔配法生产铝合金。先将各种合金元素熔配成各种铝基中间合金,然后,用纯铝锭和中间合金熔配成各种不同成分的铝合金预制锭,供应铸铝车间浇注铝铸件。这种熔配式生产工艺流程复杂,成本高,铝合金容易氧化,降低了合金性能〔1〕。电解低钛铝合金是利用现有工业电解纯铝的生产设备,在基本不改变现有纯铝电解工艺和技术参数的前提下,通过向纯铝电解槽中以适当方式加入廉价氧化钛粉,直接工业电解生产含有低钛的铝基合金〔2,3,4,5〕。本文探讨电解低钛变形铝合金的优越性,分析电解低钛6009铝合金的微观组织及调幅分解的分析过程。

1 试样制备与试验方法

用电解低钛铝合金配制符合国标成分的6009合金,称为电解低钛6009铝合金;用中间合金Al-5Ti配制符合国标成分的6009合金,称为熔配加钛6009铝合金。两种合金成分如表1。试验材料经过半连续铸造成厚度为42mm的坯锭,用铣床铣掉铸锭表面的氧化膜、气孔和冷隔等铸造缺陷,加工成200×200×36mm的坯锭。在350℃保温1h进行四道热轧至4mm,在420℃下2h再结晶退火,经三道冷轧至1mm。板材按国标G B/T6397规定加工为标准的拉伸试样。热处理工艺为:555℃保温60min,固溶处理+水淬+175℃保温8h,人工时效

收稿日期:2006-12-20

+5d 自然时效。在A G -I250KN 精密万能实验机

上进行拉伸性能试验,加载速度为1.0mm/min 。用

Philiphx PER T X 射线衍射仪进行物相分析。在J SM -5610LV 型扫描电子显微镜下对铸造和热处理状态的组织进行观察。用G aton 691PIPS 离子减薄器制备薄膜样品,用日立H -800透射电镜观察析出相形貌,并进行电子衍射。在J EM -3010高分辨电子显微镜下进行高分辨分析。

表1 两种合金的成分(Wt %)

Ti

Mg

Si

Fe

Mn

Cu

Cr

Zn

电解低钛60090.0210.8000.7040.1210.4540.304<0.03<0.1熔配加钛6009

0.0220.7880.8200.0910.4650.306<0.03<0.1

2 试验结果及分析

2.1 拉伸性能

两种合金在热处理后的性能如表2,表中电解

低钛铝合金抗拉强度、屈服强度和延伸率分别比熔配铝合金高出了7%、8%和12%。

表2 两种合金的力学性能

σb (MPa )

σs (MPa )δ(%)电解低钛6009389.1353.117.3熔配加钛6009

360.6

325.6

15.4

2.2 X

射线衍射和电子显微分析

图1 X 射线衍射

图1为电解低钛铝合金的X 射线衍射结果,从

图中可以看出,6009合金中除了有α(Al )固溶体以外,还有Mg 2Si 相的衍射峰。

图2是两种合金热处理后的TEM 像和电子衍射花样。在555℃保温60min 固溶处理后立即水淬可以得到亚稳态的过饱和固溶体。时效过程是沉淀相从过饱和固溶体中的析出过程,新相以形核和长大的方式完成转变。图2(a )是电解加钛合金时效后的衍射相,时效组织为调幅分解的花格尼状,分布密度大,较细小。大量均匀分布的细小调幅分解在铝基体析出,使该状态合金力学性能大大提高。图

2(b )和2(c )分别为电解低钛和熔配加钛合金热处

理后的TEM 像,均可以观察到有球状析出相形成。强化相为微小球状,尺度为几十到数百纳米,电解低钛铝合金的析出相均匀、弥散,较熔配合金析出相多,这和表2中性能符合。图2(d )为析出物的电子衍射照片,经电子衍射花样标定,析出相为Mg 2Si 。这和图1X 射线衍射分析Mg 2Si 相为其主要析出相相符。Mg 2Si 相为面心立方结构,a =0.6391nm ,是6009合金中的主要强化相。由于电解低钛铝合金6009合金中Mg 2Si 较熔配加钛合金中Mg 2Si 多且

弥散、均匀,所以其强度高于熔配合金。

2.3 高分辨电子分析

在J EM -3010高分辨电子显微镜上对调幅分

解进行高分辨分析,其调幅分解组织的高分辨见图3(a )所示,从高分辨可观察到基体α(Al )的两维晶格条纹非常清晰,图3(b )是铝基体的晶格条纹相,Mg 、Si 等元素在基体(200)面上偏聚,形成调幅分解组织,从图中可知,调幅分解组织有7个原子层厚

度。对该区进行计算机模拟做傅立叶变换,得到图中的衍射斑点,再对它做反傅立叶变换,得到图3

(c )的调幅组织的晶格条纹相,从中可以看出,调幅组织的晶格相晶面间距比基体晶面间距大35%,这是由于Al 的原子半径为0.1432nm ,Mg 的原子半径0.1602nm ,Mg 、Si 原子在α(Al )中(200)晶面偏聚,使晶格产生畸变造成的

图3 高分辨的计算机模拟分析

3 结论

(1)经过半连续铸造的两种铝合金组织,电解加

钛的铸造组织比熔配加钛更为细小;电解加钛抑制铝晶粒生长,细化晶粒,其综合力学性能优于熔配铝

合金。把电解低钛铝合金应用于6009合金是可行的。

(2)电解低钛铝合金和熔配加钛主要强化相为Mg 2Si 。电解低钛铝合金Mg 2Si 相较熔配加钛合金Mg 2Si 相分布均匀、弥散。

(3)高分辨电镜分析表明电解低钛6009合金时

效组织中,Mg 和Si 原子在铝基体的(200)

面上偏聚,形成明显的调幅分解组织。

参考文献:

〔1〕鲁薇华,王汝耀,杨涤心,等.电解Al -Si -Ti 合金金相组织和性

能〔J 〕.特种铸造及有色合金,1999,20(1):10-12.

〔2〕马润香,谢敬佩,刘怀喜,等.电解低钛铝合金在变形合金6063中

的应用研究〔J 〕热加工工艺,2004,33(4):49-50.

〔3〕刘忠侠,宋天福,谢敬佩,等,低钛铝合金的电解生产与晶粒细化〔J 〕.中国有色金属学报,2003,13(05):1256-1260.

〔4〕王永海,张发明.变形铝合金的细化处理〔M 〕.北京:冶金工业出

版社,1988.79-80.

〔5〕范广新,王明星,刘志勇,等.电解加钛与熔配加钛对工业纯铝晶

粒细化的作用〔J 〕.中国有色金属学报,2004,14(2):250-254.〔6〕李普超,汪明朴,孙孝华,等.Al -Mg -Si 合金的时效研究〔J 〕.中

南工业大学学报,1998,29(3):262-265.

〔7〕刘宗昌,任慧平,宋义全.金属固态相变教程〔M 〕.北京:冶金工业

出版社,2003.166-167.

〔8〕王蓉.电子衍射物理教程〔M 〕.北京:冶金工业出版社,2002.121

-124.

(责任编辑 郝文儒)

?征订启示?

《中国再生铝技术与市场》论文集开始征订

近年来,再生铝产业的发展已经成为众所瞩目的关注焦点。2006年,我国再生铝产量达235万吨,到2010年,我国再生金属产量将达到740万吨,占有色金属总产量的30%。怎样才能把宝贵的资源用到正确的地方并且用好,涉及技术、经济、装备、工艺制度、预处理手段等诸多方面。为此,《资源再生》杂志社综合了与再生铝有关的技术报告、论文、国内外进展、政策法规、专用设备、环境保护、市场分析等内容,整理和编纂了《中国再生铝的技术与市场》,收录文章和报告共105篇,计44万字。我们相信,这部专辑将对您的事业发展有所裨益。有意购买者请与《资源再生》编辑部联系。

书名:《中国再生铝的技术与市场》定价:500.00元(含邮寄费)

账户名:北京华夏恒远广告有限公司开户行:中国民生银行北京平安里支行汇款账号:0115014170006421

汇款地址:北京市海淀区蓟门里北乙11号烟树商务楼209室邮政编码:100088

收款人:《资源再生》编辑部

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

铝合金及热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

铝合金时效过程

铝合金时效过程85-3 顾景诚 一、前言 铝合金时效现象是在1906年由德国的Wilm发现的。他在九月一个星期六的上午将Al-4%Cu-0.5%Mg合金于水中淬火后,下午进行硬度测定,过了星期天,星期一上午继续测定硬度,发现硬度显著增加,原以为硬度计失灵,但是,反复验证结果总是一样。Wilm将此结果于1911年以《含镁铝合金的物理冶金学研究》为题发表出来。从此以后,人们对铝合金时效现象做了大量研究工作。时效处理已成为铝合金强化的重要手段。今天,铝合金材料应用这样广泛,成为仅次于钢铁,而且正以它无与伦比的优点来代替木材、铜材、钢铁等,都应当归功于时效现象的应用。 经过半个多世纪,各国学者共同努力,对各种铝合金系的析出行为、析出理论、析出与合金性能的关系,做了大量研究工作。尤其是随着现代科学技术的发展、电子显微技术、电子微区分析、热差分析、X射线衍射技术的应用,对析出相的形核、成长、长大做出了定量研究,使我们对时效现象的本质有了进一步认识。最近,日本高桥恒夫等用高能电子显微镜对铝铜合金的时效过程的晶格直接摄影,摄取了G P(1)区和G P(2)区的结构。但是,从各国开发新结构铝合金材料来看,利用时效现象来提高时效硬化型铝合金的性能也并非顺利,这说明对铝合金时效现象本质应做进一步探讨。 作者于1983年7月在沈阳听了日本高桥恒夫教授关于铝合金时效析出问题的讲座。高桥先生介绍了他们试验室的最新研究成果和有关铝合金时效析出的现代理论。结合其他一些文献现将讲座主要内容介绍如下。 二、过饱和固溶体的结构

在变形铝合金范围内,合金成分基本上处在α-Al的固溶体范围内。对于时效型变形铝合金,它们的成分在室温和略高温度下都稍微超过它的固溶极限,而在高于某一温度却小于固溶极限,也就是说在这一温度之上呈固溶状态。将高温的固溶状态通过强制冷却,在常温下仍保持固溶状态,这种做法称之为固溶处理。所得到的固溶体称为过饱和固溶体。 过饱和固溶体是一种不稳定的组织,不仅溶质原子呈过饱和状态,而空位也呈过饱和状态。这些过饱和空位,有的同溶质原子结合形成科垂耳气团,有的向晶界逃逸,有的互相结合,塌陷后形成位错环。 以过饱和形式存在于铝基体中的溶质原子更容易发生偏聚。例如,在Al-Cu 合金中,Cu原子容易发生“Knot”偏聚,其形式有各种各样,同时,在热力学上也是不稳定的,时而形成,时而解散。但是,将在有利于形成CuAl 的位置上 2 出现“Knot”的几率高。 时效处理之前,由于溶质原子扩散,将在最易析出的晶面上沿某一晶体方向生成所谓“Knot”的原子集团,而在“Knot”周围发生晶格畸变,这就引起固溶硬化,也使电阻增加。这个“Knot”有时也称为原子群(group)或原子链(cluster),目前也有称之为集合体(complex)的[1]。浓度起伏所引起的这些溶质原子的集合体可能成为时效时GP区和析出粒子的核心。 过饱和固溶溶质原子的偏聚与空位浓度有关,而过饱和空位在铝基体中的分布也是遵循数理统计规律的。空位浓度也存在起伏。一般说来,在溶质原子周围的空位浓度高于其他地方,同时,在空位浓度大的地方也易于富集溶质原子,因为溶质原子的富集是通过扩散来实现的,扩散就是原子位移,而位移是通过同铝原子或空位交换位置来实现的,与空位交换位置是容易的。因此,淬火固定的过饱和空位的浓度以及它的分布状态对过饱和固溶体的稳定性和时效处理时GP区和析出相粒子的大小、弥散性和分布状态影响很大。 总之,过饱和固溶体的组织存在溶质原子的过饱和及空位的过饱和,由于溶

铝合金最佳固溶时效强化工艺参数的研究

实验十铝合金最佳固溶时效强化工艺参数的研究 —Al—Si-Cu-Mg-Mn系合金最佳固溶时效强化工艺参数的测定 一、实验目的: 通过Al—Si-Cu-Mg-Mn的成分配制—合金的熔炼—合金的固溶时效—显微组织分析—机械性能测定,最终测得最佳的铝合金固溶与时效温度及热处理时间的工艺参数。 二、原理概述: 从过饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚焦区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。具有这种转变的最基本条件是,合金在平衡状态图上有固溶度的变化,并且固溶度随温度降低而减少,如图1所示。如果将C0成分的合金自A单相α固溶体状态缓慢冷却到固溶度线(MN)以下温度(如T3)保温时,β相将从α相中脱溶析出,α相的成分将沿固溶度线变化为平衡浓度C1,这种变化可表示为:α(C0)→α(C1)+β。β为平衡相,可以是端际固溶体,也可以是中间相,反应产物为(α+β)双相组织,将这种双相组织加热到固溶度线以上某一温度,(如T1)保温足够时间,将获得均匀的单相固溶体α相,这种处理称为固溶处理。 图1固溶处理与时效处理的工艺过程示意图 若将经过固溶处理的C0成分合金急冷,抑制α相分解,则在室温下获得亚稳的过饱和α相固溶体。这种过饱和固溶体在室温或在较高温度下等温保持时,亦将发生脱溶,但脱溶往往不是状态图中的平衡相,而是亚稳相或溶质原子聚焦区。这种脱溶可显著提高合金的强度和硬度,称为沉淀强化或时效强化,是强化合金材料的重要途径之一。 固溶加时效是提高合金强度的一种重要途径,它不同于钢材的强化,钢在淬火后可立即获得很高的硬度和强度。铝合金淬火后,硬度和强度并不立即升高,但塑性较高,但把这种淬火后的铝合金放置一些时间(4~6天)后,强度和硬度显著提高,而塑性明显降低。人们把淬火后的铝合金性能随时间而发生显著提高的现象称为时效。时效可以在室温发生,也可以在高于室温的某一温度范围(100~200℃)内发生。前者称自然时效,后者称人工时效。 本实验采用Al—Si-Cu-Mg-Mn进行温时效,在不同的温度下等温,然后测定合金的硬度,绘制时效硬化曲线。 Al—Si-Cu-Mg-Mn系合金经熔炼,金属模铸造,固溶时效处理后,合金强度为460~500MPa,同时还具有良好的流动性和优良的铸造性能。本合金基本成分为9.5%Si、4%Cu、0.5%Mg、0.5%Mn,由于这种合金不像Al-Cu及Al—Zn-Cu高强度铸造铝合金那样受到热裂

变形铝合金时效热处理相关知识汇总精品

【关键字】台阶、方法、条件、机制、有效、深入、继续、尽快、平衡、良好、加深、发现、了解、研究、措施、稳定、基础、倾向、制度、作用、标准、结构、关系、形成、满足、强化、调整、改善、加快、取决于、提高、转变、减轻、有序化 变形铝合金时效热处理相关知识汇总(1)时效 aging 经固溶处理或冷变形后的合金,在室温或高于室温下,组织和性能随时间延续而变化,硬度、强度增高,塑性、韧性降低的现象。在室温下发生时效称自然时效。高于室温发生时效称人工时效。时效现象除铝铜合金外,在钢、铜合金,铁基、镍基、钴基高温合金中普遍存在,是提高合金强度的重要方法。低碳钢冷变形后在常温长时放置即出现屈服强度提高。硬铝合金经高温(520℃)淬火后在100~200℃时效,可获得最佳的强化效果。马氏体时效钢,沉淀硬化不锈钢,铁基、镍基、钴基高温合金均可在固溶处理后选择不同温度时效处理,可以从中获得最佳的组织和性能。 (2)时效处理 aging treatment 过饱和固溶体合金在室温或加热至一定温度保温,使溶质组元富集或析出第二相的热处理工艺。常温下时效称自然时效。高于室温加热时效称人工时效。时效析出第二相获得强化的现象称时效强化。低于或高于强化峰值温度的时效分别称为亚时效与过时效处理。形变后时效称形变时效或直接时效。在应力下时效称应力时效。强化效果取决于析出第二相的类型、数量、尺寸、形态、稳定性等因素。广泛用于铝合金、钛合金、高温合金、沉淀硬化钢、马氏体时效钢等。铝合金时效硬化峰值出现在溶质组元的富集G-P区(Ⅱ)末期。时效处理是强化合金的有效方法,可显著提高合金的强度和硬度,调整时效温度、时间可使合金的组织、性能满足使用要求,获得高的屈服强度、

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

铝合金时效处理相关

铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si 系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。 二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3种。1)不完全人工时效:把铸件加热到150-170℃,保温3-5h,以获得较好抗拉强度、良好的塑性和韧性,但抗蚀性较低的热处理工艺;2)完全人工时效:把铸件加热到175-185℃,保温5-24h,以获得足够的抗拉强度(即最高的硬度)但延伸率较低的热处理工艺;3)过时效:把铸件加热到190-230℃,保温4-9h,使强度有所下降,塑性有所提高,以获得较好的抗应力、抗腐蚀能力的工艺,也称稳定化回火。

铝合金热处理状态定义

铝合金T状态含义如下: T1-----铝材从高温热加工冷却下来,经自然时效所处的充分稳定的状态。适用于热挤压的不进行冷加工的材料,或矫直等冷加工对其标定力学性能无影响的产品。 T2-----铝材从高温热加工冷却后冷加工,然后再进行自然时效的状态。如为了提高强度,对热挤压产品进行冷加工,在通过自然时效可达到充分稳定的状态,也适用于矫直加工会影响其标定力学性能的产品。 T3-----固溶处理后进行冷加工,然后通过自然时效所达到的一种状态。适用于固溶处理后通过冷加工能提高其自然时效状态的强度性能的产品,或矫直能影响其标定力学性能的产品; T31-----固溶热处理,冷加工月1%变形量,然后自然时效; T351-----固溶热处理,通过可控的拉伸量消除应力(薄板的永久变形量0.5%~3.0%,厚板的1.5%~3%,棒材的冷精轧量即冷精整变形量1%~3%,手锻件或环锻件及轧制环的永久变形量1%~5%),然后自然时效。拉伸后不再进行矫直;T3510-----固溶热处理,通过可控的拉伸量对挤压材消除应力(挤压管、棒、型材的永久变形量1%~3%,拉伸管的永久变形量0.5%~3%),然后自然时效。拉伸后不再进行矫直; T3511-----同T3510状态,但拉伸后作了镜面矫直,以达到标准规定的尺寸偏差精度; T352-----固溶热处理,压缩永久变形量1%~5%以消除应力,然后自然时效;T354-----固溶热处理,在精整模内冷整形以消除应力,然后自然时效,适用于模锻件; T36-----固溶热处理,冷加工约6%变形量,然后自然时效; T37-----固溶热处理,冷加工约7%变形量,然后自然时效; T39-----固溶热处理,适量的冷加工变形以满足既定的力学性能要求,冷加工可在自然时效前进行,也可在其后进行。 T4-----固溶热处理与自然时效。 T41-----在热水中淬火的状态,以防止变形与产生较大的热应力,此状态用于锻件; T42-----固溶热处理与自然时效,适用于自退火状态或F状态固溶热处理的实验材料,也适用于用户将任何状态的材料固溶热处理与自然时效; T451-----固溶热处理,通过一定量的拉伸以消除应力(薄板的永久变形量0.5%~3.0%,厚板的1.5%~3%,棒材轧制永久变形量或冷精整相等的变形量,自由锻件、环锻件和轧制环的1%~5%),然后自然时效。拉伸后不得作进一步的矫直; T4510-----固溶热处理,一定量的拉伸以消除应力(挤压管、棒、型材的永久变形量1%~3%,拉拔管的永久变形量0.5%~3%),然后自然时效,拉伸后不得作进一步的矫直; T4511-----同T4510状态,但拉伸后作了镜面矫直,以达到标准规定的尺寸偏差精度; T452-----固溶热处理,压缩永久变形量1%~5%以消除应力,然后自然时效;T454-----固溶热处理,在精整模内冷整形以消除应力,然后自然时效,适用于模锻件; T5-----从热加工温度冷却后再进行人工时效。

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

各国铝合金牌号对照表及铝合金不同时效方法比较

各国铝合金牌号对照表及铝合金不同时效方法比较 1.各国铝合金牌号对照表 2.几种高性能铝合金简介 7075:锌是7075中主要合金元素,向含3%-7.5%锌的合金中添加镁,可形成强化效果显著的MgZn2,使该合金的热处理效果远远胜过于铝-锌二元合金。提高合金中的锌、镁含量,抗拉强度会得到进一步的提高,但其抗应力腐蚀和抗剥落腐蚀的能力会随之下降。经受热处理,能到达非常高的强度特性。7075材料一般都加入少量铜、铬等合金,该系当中以7075-T651铝合金尤为上品,被誉为铝合金中最优良的产品,强度高、远胜任何软钢。此合金并具有良好机械性及阳极反应。代表用途有航空航天、模具加工、机械设备、工装夹具,特别用于制造飞机结构及其他要求强度高、抗腐蚀性能强的高应力结构体。 6061:该合金的主要合金元素是镁与硅,并形成Mg2Si相。若含有一定量的锰与铬,可以中和铁的坏作用;有时还添加少量的铜或锌,以提高合金的强度,而又不使其抗蚀性有明显降低;导电材料中还有少量的铜,以抵销钛及铁对导电性的不良影响;锆或钛能细化晶粒与控制再结晶组织;为了改善可切削性能,可加入铅与铋。在Mg2Si固溶于铝中,

使合金有人工时效硬化功能。 6061-T651是6061合金的主要合金,是经热处理预拉伸工艺生产的高品质铝合金产品,其强度虽不能与2XXX系或7XXX系相比,但其镁、硅合金特性多,具有加工性能极佳、优良的焊接特点及电镀性、良好的抗腐蚀性、韧性高及加工后不变形、材料致密无缺陷及易于抛光、上色膜容易、氧化效果极佳等优良特点。 代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 2024铝合金属Al-Cu-Mg系铝合金,主要特征及应用范围:这是一种高强度硬铝,可进行热处理强化,在淬火和刚淬火状态下塑性中等,点焊焊接良好,用气焊时有形成晶间裂纹的倾向,合金在淬火和冷作硬化后其可切削性能尚好,退火后可切削性低:抗腐蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀能力。用途主要用于制作各种高负荷的零件和构件(但不包括冲压件锻件)如飞机上的骨架零件,蒙皮,隔框,翼肋,翼梁,铆钉等150℃以下工作零件。 3.铝合金的基本状态 4.T细分状态代号说明与应用

变形铝合金时效热处理相关知识汇总

变形铝合金时效热处理相关知识汇总(1)时效 aging 经固溶处理或冷变形后的合金,在室温或高于室温下,组织和性能随时间延续而变化,硬度、强度增高,塑性、韧性降低的现象。在室温下发生时效称自然时效。高于室温发生时效称人工时效。时效现象除铝铜合金外,在钢、铜合金,铁基、镍基、钴基高温合金中普遍存在,是提高合金强度的重要方法。低碳钢冷变形后在常温长时放置即出现屈服强度提高。硬铝合金经高温(520℃)淬火后在100~200℃时效,可获得最佳的强化效果。马氏体时效钢,沉淀硬化不锈钢,铁基、镍基、钴基高温合金均可在固溶处理后选择不同温度时效处理,可以从中获得最佳的组织和性能。 (2)时效处理 aging treatment 过饱和固溶体合金在室温或加热至一定温度保温,使溶质组元富集或析出第二相的热处理工艺。常温下时效称自然时效。高于室温加热时效称人工时效。时效析出第二相获得强化的现象称时效强化。低于或高于强化峰值温度的时效分别称为亚时效与过时效处理。形变后时效称形变时效或直接时效。在应力下时效称应力时效。强化效果取决于析出第二相的类型、数量、尺寸、形态、稳定性等因素。广泛用于铝合金、钛合金、高温合金、沉淀硬化钢、马氏体时效钢等。铝合金时效硬化峰值出现在溶质组元的富集G-P区(Ⅱ)末期。时效处理是强化合金的有效方法,可显著提高合金的强度和硬度,调整时效温度、时间可使合金的组织、性能满足使用要求,获得高的屈服强度、蠕变强度、疲劳性能等。含铜4%的铝合金经自然时效后强度为400MPa,比退火状态强度大一倍。时效硬化合金使用时,使用温度不应超过其时效温度。

(3)时效硬化 age hardening 经固溶处理的过饱和固溶体在室温或室温以上时效处理,硬度或强度显著增加的现象。原因是过饱和固溶体在时效过程中发生沉淀、偏聚、有序化等反应的产物,增加了位错运动的阻力形成的。位错与析出产物交互作用下硬化机制有位错剪切析出相粒子,基体与粒子间相界面积增加,使外力转变为界面能; 析出相与基体的层错能差异; 基体与析出粒子的切变模量不同。另外,析出相与基体共格应变场交互作用;参数不匹配;有序共格沉淀硬化作用;位错运动产生反相畴界,使位错不能通过析出相而弯曲绕过形成位错环也可产生硬化。控制时效温度、时间等条件可使合金获得不同的组织结构和强化效果。 (4)自然时效 natural aging 过饱和固溶体(主要是某些铝合金) 在室温(10~40℃)停放一段时间的过程称为自然时效。在室温下停放时,强度随时间的延续缓慢上升,达到一定数值后趋于稳定; 与此同时,合金的塑性逐渐减小。在硬度及强度明显增大前的一段时间内,塑性也较高,可进行成型加工及矫正等工序,然后再自然时效一段时间,待硬度(强度) 达稳定值后即可投入安装使用。对明显硬化前的时间间隔较短的合金,还可采用冷冻方法延迟时效过程,以便进行加工及矫正。自然时效倾向较小的合金则需采用人工时效进行强化。 (5)人工时效 Artificial ageing 将经过固溶处理的合金加热到低于溶解度曲线的某一温度保温一段时间,使第二相在该温度下发生脱溶,合金的强度和硬度升高。人工时效所需时间较短,但强化效果较差。在工业上比自然时效应用更加广泛。

铝合金的时效强化是如何进行和完成的

铝合金的时效强化是如何进行和完成的 经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效硬化。这是铝合金强化的重要方法之一。 由定义可知,铝合金时效强化的前提,首先是进行淬火,获得饱和单相组织。在快冷淬火获得的固溶体,不仅溶质原子是过饱和的,而且空位(晶体点缺陷)也是过饱和的,即处于双重过饱和状态。以Al -4%Cu 合金为例,固溶处理后,过饱和α固溶体的化学成分就是合金的化学成分,即固溶体中钢含量为4%。由Al-Cu 相图可知,在室温平衡态下,α固溶体的含铜量仅为0.5%,故3.5%Cu过饱和固溶于α相中。当温度接近纯铝熔点时,空位浓度接近10-3数量级,而在常温下,空位浓度为10-11数量级,二者相差10-8级。经研究可知;铝合金固溶处理温度越高,处理后过饱和程度也越大,经时效后产生的时效强化效果也越大。因此固溶处理温度选择原则是:在保证合金不过烧的前提下,固溶处理温度尽可能提高。 固溶处理后的铝铜合金,在室温或某一温度下放置时,发生时效过程。此过程实质上是第二相Al2Cu 从过饱和固溶体中沉淀的过程。这种过程是通过成型和长大进行的,是一种扩散型的固态相变。它依下列顺序进行:a过→G.P区→θ’’相→θ’相→θ相 G.P区就是指富溶质原子区,对Al-Cu合金而言,就是富铜区。铝钢合金的G.P区是铜原子在(100)晶面上偏聚或从聚而成的,呈圆片状。它没有完整的晶体结构,与母相共格。200℃不再生成G.P 区。室温时效的G.P区很小,直径约50A,密度为1014-1015/mm3,G.P区之间的距离为20-40 ?。130℃时效15h后,G.P 区直径长大到90 ?,厚为4-6 ?。温度再高,G.P区数目开始减少。它可以在晶面处引起弹性应变。θ’’相是随时效温度升高或时效时间延长,G.P区直径急剧长大,且铜、铝原子逐渐形成规则排列,即正方有序结构。在θ’’过渡相附近造成的弹性共格应力场或点阵畸变区都大于G.P区产生的应力场,所以θ’’相产生的时效强化效果大于G.P区的强化作用。θ’相是指当继续增加时效时间或提高时效温度,θ’’相转变成为θ’相。θ’相属正方结构,θ’在(001)面上与基体铝共格,在z轴方向由于错配度过大,在(001)和(100)面上共格关系遭到部分破坏。θ相是平衡相,θ相的成分是Al2Cu,为正方有序结构。由于θ相完全脱离了母相,完全丧失了与基体的共格关系,引起应力场显著减弱。这也就意味着合金的硬度和强度显著下降。 影响时效强化效果的因素有哪些? 时效是按一定顺序进行的,强化效果受以下因素影响: (1) 时效温度。固定时效时间,对同一成分的合金而言,时效温度与时效强化效果(硬度)之间关系。在某一时效温度时,能获得最大硬化效果,这个温度称为最佳时效温度。不同成分的合金获得最大时效强化效果的时效温度是不同的。统计表明,最佳时效温度与合金熔点之间存在如下关系: T0 = (0.5 – 0.6)T (2) 时效时间。硬度与强度峰值出现在θ’’相的末期和θ’过渡相的初期,θ’后期已过时效,开始软化。当大量出现θ相时,软化已非常严重。故在一定的时效温度内,为获得最大时效强化效果,应有一最佳时效时间,即在θ’’产生并向θ’转变时所需的时间。 (3) 淬火温度、淬火冷却速度和淬火转移时间。实践证明,淬火温度越高,淬火冷郄速度越快,淬火中间转移时间越短,所获得的固溶体过饱和程度越大,时效进行后强化效果越大。 (4) 时效工艺。时效可选单级或分级时效。单级时效指在室温或低于100℃温度下进行的时效过程。它工

铝合金的热处理及硬度

铝合金的硬度 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下:1070-H14(纯铝) 2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号 -Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号

2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效 处理及软烧等处理,以获取所需要的强度及性能。这些处理的过程称 之为调质,调质的结果便是鍊度。 鍊度符号定义 F 制造状态的鍊度 无特定鍊度下制造的成品,如挤压、热轧、锻造品等。 H112 未刻意控制加工硬化程度的制造状态成品,但须保证机械性质。 O 软烧鍊度 完全再结晶而且最软状态。如系热处理合金,则须从软烧温度缓慢冷却,完全防止淬水效果。 H 加工硬化的鍊度 H1n:施以冷加工而加工硬化者 H2n:经加工硬化后再施以适度的软烧处理 H3n:经加工硬化后再施以安定化处理 n以1~9的数字表示加工硬化的程度 n=2 表示1/4硬质 n=4 表示1/2硬质 n=6 表示3/4硬质 n=8 表示硬质 n=9 表示超硬质 T T1:高温加工冷却后自然时效。挤型从热加工后急速冷却,再经常温十效硬化处理。亦可施以不影响强度的矫正加工,这种调质适合於热加工后冷却便有淬水效果的合金如:6063。 T3:溶体化处理后经冷加工的目的在提高强度、平整度及尺寸精度。 T36:T3经6%冷加工者。 T361:冷加工度较T3大者。 T4:溶体化处理后经自然时效处理。 T5:热加工后急冷再施以人工时效处理。 人工时效处理的目的在提高材料的机械性质及尺寸的安定性适用於热加工冷却便有淬水效

影响铝合金时效的因素

影响铝合金时效的因素 作者:工艺科:陈慧发布时间:2007.11.10, 00:00, 星期六 固溶淬火后铝合金的强度、硬度随时间延长而显著提高的现象,称为时效,铝合金时效硬化是一个相当复杂的过程,目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果,它不仅取决于合金元素的组成、时效工艺,还取决于合金在生产过程中所产生的缺陷状态,特别是空位、位错的数量和分布等,一般来说,铝合金的时效主要受以下因素的影响。 1)合金化学成分的影响 一种合金能否通过时效来强化,首先取决于组成合金的元素能否溶解于固溶体以及固溶度随温度变化的程度。如硅、锰在铝中的固溶度比较小,且随温度变化不大,而镁、锌虽然在铝基固溶体中有较大的固溶度,但它们与铝形成的化合物的结构与基体差异不大,强化效果甚微。因此,二元铝-硅、铝-锰、铝-镁、铝-锌通常都不采用时效强化处理;而有些二元合金,如铝-铜合金,及三元合金或多元合金,如铝-镁-硅、铝-铜-镁-硅合金等,它们在热处理过程中有溶解度变化和固态相变,则可通过热处理进行强化。 2)合金的固溶处理工艺影响 为获得良好的时效强化效果,在不发生过热、过烧及晶粒长大的条件下,淬火加热温度应高些,保温时间也要长些,这有利于获得最大过饱和度的均匀固溶体;另外在淬火冷却过程中不能析出第二相,否则在随后时效处理时,已析出相将起晶核作用,造成局部不均匀析出而降低时效强化效果。 3)时效温度的影响 在不同温度时效时,析出相的临界晶核大小、数量、成分以及聚集长大的速度不同,若温度过低,由于扩散困难,GP区不易形成,时效后强度、硬度低,当时效温度过高时,扩散易进行,过饱和固溶体中析出相的临界晶核尺寸大,时效后强度、硬度偏低,即产生过时效。因此,各种合金都有最适宜的时效温度。 4)铝合金的回归现象 经淬火自然时效后的铝合金(如铝-铜)重新加热到200~250℃,然后快冷到室温,则合金强度下降,重新变软,性能恢复到刚淬火状态;如在室温下放置,则与新淬火合金一样,仍能进行正常的自然时效,这种现象称为回归现象。在理论上回归处理不受处理次数的限制,但实际上,回归处理时很难使析出相完全重溶,造成以后时效过程中析出相呈局部析出,使时效强化效果逐次减弱。同时在反复加热过程中,固溶体晶粒有越来越大的趋势,这对性能不利。因此回归处理仅用于修理飞机用的铆钉合金,即可利用这一现象,随时进行铆接,而对其它铝合金很少有使用价值。 时效是提高可热处理强化铝合金力学性能的重要手段,只有摸清了时效强化的规律及其对于不同合金组织与性能的影响,我们才能利用这一工艺来提高铝合金的综合性能,以获得预期的效果。

实验二十五 铝合金时效硬化曲线的测定

实验二铝合金时效硬化曲线的测定 一、实验目的 1. 掌握铝合金淬火及时效操作方法。 2. 了解时效温度、时间对时效强化影响规律。 3. 加深对时效强化及其机理的理解。 二、实验原理 淬火时效是铝合金改善力学性能的主要热处理手段。淬火就是将高温状态迅速冷却到低温,钢的淬火是为了获得马氏体,而铝的淬火是为了获得过饱和固溶体,为随后时效所准备的过饱和固溶体。铝合金的淬火常称为固溶处理;铝合金的时效是为了促使过饱和固溶体析出弥散强化相。室温放置过程中使合金产生强化的效应称为自然时效;低温加热过程中使合金产生强化的叫人工时效。固溶与时效处理的示意图如图1-1所示。 图1-1 固溶时效处理示意图 从过饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相的过程,属于扩散型相变。 下面以Al-Cu二元合金为例,来讨论铝合金的时效过程,一般分为四个阶段:α过G.P区θ"相θ'相θ相 G.P区就是指富溶质原子区。是溶质原子在一定镜面上偏聚或从聚而成的,呈圆片状。它没有完整的晶体结构,与母相共格。在一定温度上不再生成G.P区。室温时效的G.P区很小。在较高温度时效一定时间后,G.P区直径长大,厚度增

加。温度升高,G.P区数目开始减少。 θ"相是随时效温度升高或时效时间延长,G.P区直径急剧长大,且溶质、溶剂原子逐渐形成规则排列,即正方有序结构。在θ"相过渡相附近造成的弹性共格应力场或点阵畸变区都大于G.P区产生的应力场,所以θ"相产生的时效强化效果大于G.P区的强化作用。 θ'相是当继续增加时效时间或提高时效温度时由θ"相转变而成。θ'相属正方结构,θ'相在一定面上与基体铝共格,在另一晶面上共格关系遭到部分破坏。 θ相是平衡相,为正方有序结构。由于θ相完全脱离了母相,完全失去与基体的共格关系,引起应力场显著减弱。这也就意味着合金的硬度和强度下降。 图1-2 时效时铝-铜合金的硬度与时间关系 时效强化效果与加热温度和保温时间有关。当温度一定时,随着时效时间延长,时效曲线上出现峰值,超过峰值时间,析出相聚集长大,强度下降,此时为过时效。随着时效温度提高,峰值强度下降,出现峰值的时间提前。 三、实验材料及设备 1.2024铝合金试样。 2.材料:金相砂纸、研磨膏、抛光呢、4%硝酸酒精、氢氟酸、盐酸、酒精、脱脂棉等 3.主要设备:箱式电阻炉、淬火水槽、抛光机、砂轮机、布什硬度计等。 四、实验内容与步骤

相关主题
文本预览
相关文档 最新文档