当前位置:文档之家› 太阳能光伏发电系统的组成

太阳能光伏发电系统的组成

太阳能光伏发电系统的组成
太阳能光伏发电系统的组成

太阳能光伏发电系统的组成

太阳能光伏发电系统是利用太阳能电池的光伏效应,将太阳光辐射能直接转换成电能的一种新型发电系统。一套基本的光伏发电系统一般是由太阳能电池板、太阳能控制器、逆变器和蓄电池(组)构成。

太阳能电池板:太阳能电池板是太阳能光伏发电系统中的核心部分,其作用是将太阳能直接转换成电能,供负载使用或存贮于蓄电池内备用。

太阳能控制器:太阳能控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗,尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。

逆变器:逆变器的作用就是将太阳能电池阵列和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。蓄电池(组):蓄电池(组)的作用是将太阳能阵列发出的直流电直接储存起来,供负载使用。在光伏发电系统中,蓄电池处于浮充放电状态,当日照量大时,除了供给负裁用电外,还对蓄电池充电;当日照量小时,这部分储存的能量将逐步放出。

太阳能光伏发电系统的分类

根据不同场合的需要,太阳能光伏发电系统一般分为独立供电的光伏发电系统、并网光伏发电系统、混合型光伏发电系统三种。

(1)独立供电的光伏发电系统

独立供电的太阳能光伏发电系统如图2-6所示。整个独立供电的光伏发电系统由太阳能电池板、蓄电池、控制器、逆变器组成。太阳能电池板作为系统中的核心部分,其作用是将太阳能直接转换为直流形式的电能,一般只在白天有太阳光照的情况下输出能量。根据负载的需要,系统一般选用铅酸蓄电池作为储能环节,当发电量大于负载时,太阳能电池通过充电器对蓄电池充电;当发电量不足时,太阳能电池和蓄电池同时对负载供电。控制器一般由充电电路、放电电路和最大功率点跟踪控制组成。逆变器的作用是将直流电转换为.与交流负载同相的交流电。

图2-6独立运行的太阳能光伏发电系统结构框图

(2)并网光伏发电系统

图2-7并网光伏发电系统结构框图

并网光伏发电系统如图2-7所示,光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能。目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节。带有蓄电池环节的并网光伏发电系统称为可调度式并网光伏发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某些家庭用户来说具有重要意义。此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害的高次谐波分量从而提高电能质量。不带有蓄电池环节的并网光伏发电系统称为不可调度式并网光伏发电系统,在此系统中,并网逆变器将太阳能电池板产生的直流电能转

化为和电网电压同频、同相的交流电能,当主电网断电时,系统自动停止向电网供电。当有日照照射、光伏系统所产生的交流电能超过负载所需时,多余的部分将送往电网;夜间当负载所需电能超过光伏系统产生的交流电能时,电网自动向负载补充电能。

(3)混合光伏发电系统

图2-8为混合型光伏发电系统,它区别于以上两个系统之处是增加了一台备用发电机组,当光伏阵列发电不足或蓄电池储量不足时,可以启动备用发电机组,它既可以直接给交流负载供电,又可以经整流器后给蓄电池充电,所以称为混合型光伏发电系统。

图2-8混合型光伏发电系统结构框图

2.5太阳能光伏发电系统的特点

(1)无枯竭危险;(2)绝对千净(无污染,除蓄电池外);(3)不受资源分布地域的限制;

(4)可在用电处就近发电;(5)能源质量高;(6)获取能源花费的时间短;(7)供电系统工作可靠;

不足之处是:

(1)照射的能量分布密度小;(2)获得的能源与四季、昼夜及阴晴等气象条件有关;

太阳能光伏系统设计

太阳能光伏系统总体设计原则

太阳能光伏发电系统的设计分为软件设计和硬件设计,且软件设计先于硬件设计。软件设计主要包括:负载用电量的计算,太阳能电池方阵辐射量的计算,太阳能电池、蓄电池用量的计算以及两者之间相互匹配的优化设计,太阳能电池方阵安装倾角的计算,系统运行情况的预测和系统经济效益的分析等。硬件设计主要包括:负载的选型及必要的设计,太阳能电池和蓄电池的选型,太阳能电池支架的设计,逆变器的选型和设计,以及控制、测量系统的选型和设计。对于大型太阳能光伏发电系统,还有光伏电池方阵场的设计、防雷接地的设计。由于软件设计牵涉到复杂的太阳辐射量、安装倾角以及系统优化的设计计算,一般是由计算机来完成的;在要求不太严格的情况下,也可以采取估算的办法。

太阳能光伏发电系统设计的总原则是,在保证满足负载供电需要的前提下,确定使用最少的太阳能电池组件功率和蓄电池容量,以尽量减少初始投资。系统设计者应当知道,在光伏发电系统设计过程中做出的每个决定都会影响造价。由于不适当的选择,可轻易地使系统的投资成倍地增加,而且未必就能满足使用要求。在决定要建立一个独立的太阳能光伏发电系统之后,可按下述步骤进行设计:计算负载,确定蓄电池容量,确定太阳能电池方阵容量,选择控制器和逆变器,考虑混合发电的问题等。

在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量;年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。

太阳能光伏发电系统的容量设计

容量设计的主要目的就是要计算出系统在全年内能够可靠工作所需的太阳电池组件和蓄电池的数量。同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量减少系统成本。蓄电池设计方法

蓄电池的设计思想是保证在太阳光照连续低于平均值的情况下负载仍能可以正常工作。在进行蓄电池设计时,我们需要引入一个不可缺少的参数:自给天数,即系统在没有任何外来能源的情况下负载仍能正常工作的天数。这个参数让系统设计者能够选择所需使用的蓄电池容量大小。

一般来讲,自给天数的确定与两个因素有关:负载对电源的要求程度;光伏系统安装地点的气象条件,即最大续阴雨天数。通常可以将光伏系统安装地点的最大续阴雨天数作为系统设计中使用的自给天数,但还要综合考虑负

载对电源的要求。对于负载对电源要求不是很严格的光伏应用,我们在设计中通常取自给天数为3~5天。对于负载要求很严格的光伏系统,我们在设计中通常取自给天数为7~14天。所谓负载要求不严格的系统通常是指用户可以稍微调节一下负载要求从而适应恶劣天气带来的不便;而严格系统指的是用电负载比较重要,例如常用于通信、导航或者重要的健康设施,如医院、诊所等。此外还要考虑光伏系统的安装地点,如果在很偏远的地区,必须设计较大的蓄电池容量,因为维护人员要到达现场需要花费很长时间。

蓄电池的设计包括电池容量设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。

(1)基本公式

第一步,将每天负载需要的用电量乘以根据实际情况确定的自给天数就可以得到初步的蓄电池容量。

第二步,将第一步得到的蓄电池容量除以蓄电池的允许最大放电深度。因为不能让蓄电池在自给天数中完全放电,所以需要除以最大放电深度,得到所需要的蓄电池容量。最大放电深度的选择需要参考光伏系统中选择使用的蓄电池的性能参数,可以从蓄电池供应商得到详细的有关该蓄电池最大放电深度的资料。通常情况下,如果使用的是深循环型蓄电池,推荐使用80%的放电深度(DOD);如果使用的是浅循环蓄电池,推荐选用伸用50%DOD 。设计蓄电池容量的基本公式如下:

?=自给天数日平均负载数

蓄电池容量最大放电深度

下面介绍确定蓄电池串并联的方法。每个蓄电池都有它的标称电压。为了达到负载工作的标称电压,我们将蓄

电池串联起来给负载供电,需要串联的蓄电池的个数等于负载的标称电压除以蓄电池的标称电压。

=负载标称电压

串联蓄电池数蓄电池标称电压

(2)设计修正

以上给出的只是蓄电池容量的基本估算方法,在实际情况中还有很多性能参数会对蓄电池容量和使用寿命产生

很大的影响。为了得到正确的蓄电池容量设计,上面的基本方程必须加以修正。

对于蓄电池,蓄电池的容量不是一成不变的,蓄电池的容量与两个重要因素相关:蓄电池的放电率和环境温度。

首先,我们考虑放电率对蓄电池容量的影响。蓄电池的容量随着放电率的改变而改变,随着放电率的降低,放电电流变小,放电时间就越长,蓄电池的容量也会相应增加。这样就会对我们的容量设计产生影响。进行光伏系统设计时就要为所设计的系统选择在恰当的放电率下的蓄电池容量。通常,生产厂家提供的是蓄电池额定容量是l0h 放电率下的蓄电池容量。但是在光伏系统中,因为蓄电池中存储的能量主要是为了自给天数中的负载需要,蓄电池放电率通常较慢,光伏供电系统中蓄电池典型的放电率为100~200h 。在设计时我们要用到在蓄电池技术中常用的平均放电率的概念。光伏系统的平均放电率公式如下:

?=自给天数负载工作时间

平均放电率(小时)最大放电深度

上式中负载工作时间可以用下述方法估计:对于只有单个负载的光伏系统,负载的工作时间就是实际负载平均

每天工作的小时数;对于有多个不同负载的光伏系统,负载的工作时间可以使用加权平均负载工作时间,加权平均负载工作时间的计算方法如下:

?=∑∑负载功率负载工作时间

加权平均工作时间负载功率

根据上面两式就可以计算出光伏系统的实际平均放电率,根据蓄电池生产商提供的该型号电池在不同放电速率

下的蓄电池容量,就可以对蓄电池的容量进行修正。

温度对蓄电池容量的影响:蓄电池的容量会随着蓄电池的温度的变化而变化,当蓄电池温度下降时,蓄电池的

容量会下降。通常,铅酸蓄电池的容量是在25℃时标定的。随着温度的降低,0℃时的容量大约下降到额定容量的90%,而在-20℃的时候大约下降到额定容量的80%,所以必须考虑蓄电池的环境温度对其容量的影响。

如果光伏系统安装地点的气温很低,这就意味着按照额定容量设计的蓄电池容量在该地区的实际使用容量会降

低,也就是无法满足系统负载的用电需求。在实际工作的情况下就会导致蓄电池的过放电,减少蓄电池的使用寿命,增加维护成本。这样,设计时需要的蓄电池容量就要比根据标准情况(25℃)下蓄电池参数计算出来的容量要大,只有选装相对于25℃时计算容量多的容量,才能够保证蓄电池在温度低于25℃的情况下,还能完全提供所需的能量。

蓄电池生产商一般会提供相关的蓄电池温度一容量修正曲线。在该曲线上可以查到对应温度的蓄电池容量修正

系数,除以蓄电池容量修正系数就能对上述的蓄电池容量初步计算结果加以修正。

因为低温的影响,在蓄电池容量设计上还必须要考虑的一个因素就是修正蓄电池的最大放电深度,以防止蓄电

池在低温下凝固失效,造成蓄电池的永久损坏。铅酸蓄电池中的电解液在低温下可能会凝固,随着蓄电池的放电,蓄电池中不断生成水稀释电解液,导致蓄电池电解液的凝结点不断上升,直到纯水的0℃。在寒冷的气候条件下,如果蓄电池放电过多,随着电解液凝结点的上升,电解液就可能凝结,从而损坏蓄电池。即使系统中使用的是深循环工业用蓄电池,其最大的放电深度也不要超过80%。图3-1给出了一般铅酸蓄电池的最大放电深度和蓄电池温度的关系,系统设计时可以参考该图得到所需的调整因子。

在设计时要使用光伏系统所在地区的最低平均温度,然后从图9或者是由蓄电池生产商提供的最大放电深度一

蓄电池温度关系图上找到该地区使用蓄电池的最大允许放电深度。通常,只是在温度低于-8℃时才考虑进行校正。

图3-1铅酸蓄电池最大放电深度--温度曲线

(3)完整的蓄电池容量设计计算

考虑到以上所有的计算修正因子,我们可以得到如下蓄电池容量的最终计算公式。

?=?自给天数日平均负载

蓄电池容量(指定放电率)最大允许放电深度温度修正因子

a 、最大允许放电深度

浅循环蓄电池的最大允许放电深度为50%,深循环蓄电池的最大允许放电深度为80%。如在严寒地区,要考虑

低温防冻问题,对此进行修正。设计时可以适当地减小这个值,扩大蓄电池的容量,以延长蓄电池的使用寿命。 b 、温度修正系数

当温度降低的时候,蓄电池的容量将会减少。温度修正系数的作用就是保证安装的蓄电池容量要大于按照25℃

标准情况算出来的容量值,从而使得设计的蓄电池容量能够满足实际负载的用电需求。

c 、指定放电率

指定放电率是考虑慢的放电率将会从蓄电池得到更多的容量。使用供应商提供的数据,可以选择适于设计系统

的在指定放电率下的合适蓄电池容量。如果在没有详细的有关容量一放电速率的资料的情况下,可以粗略的估计认为,在慢放电率(C/ 100到C/300)的情况下,蓄电池的容量要比标准状态多30%。

d 、蓄电池组并联设计

当计算出了所需的蓄电池的容量后,下一步就是要决定选择多少个单体蓄电池加以并联得到所需的蓄电池容量。在实际应用当中,要尽量减少并联数目。也就是说最好是选择大容量的蓄电池以减少所需的并联数目。这样做的目的就是为了尽量减少蓄电池之间的不平衡所造成的影响,因为一些并联的蓄电池在充放电的时候可能会与之并联的蓄电池不平衡。并联的组数越多,发生蓄电池不平衡的可能性就越大。一般来讲,建议并联的数目不超过4组。 太阳能电池阵列设计

(1)基本公式

太阳电池组件设计的基本思想就是满足年平均日负载的用电需求。计算太阳电池组件的基本方法是用负载平均

每天所需要的能量(安时数)除以一块太阳电池组件在一天中可以产生的能量(安时数),这样就可以算出系统那个需要并联的太阳电池组件数,使用这些组件并联就可以产生系统负载所需要的电流。将系统的标称电压除以太阳电池组

件的标称电压,就可以得到太阳电池组件需要串联的太阳电池组件数,使用这些太阳电池组件串联就可以产生系统负载所需要的电压。基本计算公式如下:h h ??日平均负载(A )

并联组件数量=

组件日输出(A )

系统电压(V )串联组件数量=组件电压(V ) (2)光伏组件方阵设计的修正

太阳电池组件的输出,会受到一些外在因素的影响而降低,根据上述基本公式计算出的太阳电池组件,在实际情况下通常不能满足光伏系统的用电需求,为了得到更加正确的结果,有必要对上述基本公式进行修正。

将太阳电池组件输出降低10%

实际情况工作下,太阳电池组件的输出会受到外在环境的影响而降低。泥土、灰尘的覆盖和组件性能的慢衰变

都会降低电池组件的输出。通常的做法是在计算的时减少太阳电池组件的输出10%来解决上述的不可预知和不可量化的因素。可以看成是光伏系统设计时需要考虑的工程上的安全系数。又因光伏供电系统的运行还依赖于天气状况,所以有必要对这些因素进行评估和技术估计,因此设计上留有一定的余量将使得系统可以长期正常使用。

将负载增加10%以应付蓄电池的库仑效率

在蓄电池的充放电过程中,铅酸蓄电池会电解水,产生气体逸出,这也就是说太阳电池组件产生的电流中将有

一部分不能转化储存起来而是耗散掉。所以可以认为必须有一小部分电流用来补偿损失,我们用蓄电池的库仑效率来评估这种电流损失。不同的蓄电池其库仑效率不同,通常可以认为有5%~10%的损失,所以保守设计中有必要将太阳电池组件的功率增加10%,以抵消蓄电池的耗散损失。

(3)完整的太阳电池组件设计计算

考虑到上述因素,必须修正简单的太阳电池组件设计方式,将每天的负载除以蓄电池的库仑效率,这样就增加了每天的负载,实际上给出了太阳电池组件需要负担的真正负载;将衰减因子乘以太阳电池组件的日输出,这样就考虑了环境因素和组件自身衰减造成的太阳电池组件日输出的减少,给出了一个在实际J 隋况下太阳电池组件输出的保守估计量。综合考虑以上因素,可以得到下面的计算公式:

h h ????日平均负载(A )

并联组件数量=

库仑效率[组件日输出(A )衰减因子]

系统电压(V )串联组件数量=组件电压(V ) 蓄电池和光伏组件方阵设计的校核

有必要对光伏组件方阵和蓄电池的设计计算进行校核,以进一步了解系统运行中可能出现的情况,保证光伏组件方阵的设计和蓄电池的设计可以协调工作。校核蓄电池平均每天的放电深度,保证蓄电池不会过放电

计算公式如下,但是如果自给天数很大,那么实际的每天DOD 可能相当小,不需要进行校核计算。

=日负载蓄电池日放电深度设计蓄电池的总容量=?日负载设计并联蓄电池数蓄电池容量

校核光伏组件方阵对蓄电池组的最大充电率

另外一个校核计算就是校核设计光伏组件方阵给蓄电池的充电率。在太阳辐射处于峰值时,光伏组件方阵对于

蓄电池的充电率不能太大,否则会损害蓄电池。蓄电池生产商将提供指定型号蓄电池的最大充电率,计算值必须小于该最大充电率。下面给出了最大充电率的校核公式,用总的蓄电池容量除以总的峰值电流即可。

=设计蓄电池总容量最大充电率设计光伏阵列的峰值电流?=?并联蓄电池数蓄电池容量并联光伏组件数组件峰值电流

太阳能电池方阵倾角的确定

如果采用计算机辅助设计软件,应当进行太阳能电池方阵倾角的优化计算,要求在最佳倾角时冬天和夏天辐射量的差异尽可能小,而全年总辐射量尽可能大,二者应当兼顾。这对于高纬度地区尤为重要,高纬度地区的冬季和夏季水平面太阳辐射量差异非常大(我国黑龙江省相差约5倍),如果按照水平面辐射量进行设计,则蓄电池的冬季存

储量要远远大于阴雨天的存储量,造成蓄电池的设计容量和投资都加大。选择了最佳倾角太阳能电池方阵面上的冬夏季辐射量之差就会变小,蓄电池的容量也可以减少,系统造价降低,设计更为合理。

如果不用计算机进行倾角优化设计,也可以根据当地纬度由下列关系粗略确定固定太阳能电池方阵的倾角:

纬度0°~25°,倾角等于纬度;纬度26°~400°,倾角等于纬度加5°~10°;纬度41°~550,倾角等于纬度加10°~15° ; 纬度>55°,倾角等于纬度加15°~20°。

太阳能电池方阵平面上的辐射量射量计算

一般来讲,太阳能电池方阵面上的辐射量要比水平面的辐射量高5%一15%不等;纬度越高,倾斜面比水平面

增加的辐射量越大。最后要将辐射量换算成每日的峰值日照。换算公式如下:峰值日照小时数=辐射量(cal/2cm )?0.0116。其中,峰值日照定义为:1 cal=4.1868J=4.1868Ws ;1 00mW/2cm =0.1 W/2cm 。

太阳能电池方阵前后间距的计算

当光伏电站功率较大时,需要前后排布置太阳能电池方阵。当太阳能电池方阵附近有高大建筑物或树木时,需

要计算建筑物或前排方阵的阴影,以确定方阵间的距离或太阳能电池方阵与建筑物的距离。

一般的确定原则为:冬至当天早9: 00至下午3: 00,太阳能电池方阵不应被遮挡。计算公式如下:

光伏方阵间距或可能遮挡物与方阵底边的垂直距离应不小于D ;

0.707tan[arcsin(0.648cos sin )]H D ?-0.399?=

式中:?---纬度(在北半球为正、在南半球为负);H---光伏方阵或遮挡物与可能被遮挡组件底边的高度差。

控制器

控制器的最主要的功能就是通过检测蓄电池的电压或荷电状态,判断蓄电池是否已经达到过充点或过放点,并

根据检测结果发出继续充、放电或终止充、放电的指令。控制器的功能除了监测判断是否继续充放电,为了保护系统正常运行还要对充放电过程进行保护。利用太阳能电池自身的光敏特性就可以实现光控功能。

控制器的几个重要指标

控制器除应具有防蓄电池过充功能、过放功能、防负载短路的功能外,还有以下的几个重要指标。

(1)控制器本身自耗电要低。特别是在小系统的应用中成为一个重要指标,世界通行的标准是自耗电流小于额定工作电流的1%,因此电路的设计与低功耗器件的选择非常重要。

(2)回路压降要低。世界通行的标准是回路压降应小于系统电压的5%,这跟电路的设计与开关器件的选择密切相关。

(3)放PV 组件或蓄电池反接保护。可在蓄电池负极端与蓄电池正极相串联的熔断器间并接一大功率二极管。

(4)防反充保护。在太阳电池正极输入端串接防反充二极管或者其他开关方式防蓄电池电流倒流。

(5)防雷击保护。PV 系统若安装在易遭雷击的地方时可在控制器输入端并接压敏电阻或增设其它防雷措施。

逆变器

逆变器按输出类型,又分为电压型逆变器和电流型逆变器。

电压型逆变器一般需要在直流侧接有平波电容,根据器件的开关动作,输出一连串的方波电压,方波的幅值箝

位在直流电压上,逆变器是个电压源。该逆变器以对角线Q1和Q4、对角线Q2和Q3构成两组联动开关,两组开关交替开通,其结果是在负载端输出分别为正负的方波电压。以单相电压型逆变器为例,其主电路结构如图3-6所示,具体器件的开关顺序选择,根据控制目的的不同为存在多种控制方式,如方波逆变控制、正弦波PWM 逆变控制等。

图3-6单相全桥电压型逆变器的主电路

逆变器的几个重要指标

(1)要有较高的逆变效率

大功率逆变器在满载时,效率必须在90%或95%以上。中小功率的逆变器在满载时也应在85%或者90%以上。这里电路的设计与器件的选择以及系统负载的匹配性好坏对逆变器效率有较大的影响。

(2)要有较高的可靠性和可恢复性

目前光伏发电系统主要用于边远地区,多电站无人值守和维护,这就要求逆变电源具备一定的抗干扰能力、环境适应能力、瞬时过载能力以及各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。(3)要求直流输入电压有较宽的适应范围

太阳电池的端电压随负载和日照强度而变化,蓄电池虽对太阳电池的电压具有钳位作用,但蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在11~17V 之间变化,这就要逆变电源必须在较大的直流输入电压范围内保持正常工作,并保证交流输出电压的稳定。

(4)在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。

这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求。另外,当中、大容量的光伏发电系统并网运行时,为避免对公共电网的电力污染,也要求逆变器电源输出正弦波电流,并且“孤岛”检测保护相应快、可靠性好。

以上几条是作为逆变电源设计与采购的主要依据,也是评价逆变电源技术性能的重要指标,应高度重视。

线路设计

逆变器输出的220V AC电能通过低压架空线路送到终端用户。导线采用220VLJ型铝导线,导线截面积满足用户负荷要求。本设计方案主干线选用25平方毫米钢芯铝绞线,分支线路采用6平方毫米单芯铝线。在线路两端架设7米高水泥杆,杆与杆之间距离为50米,杆头选用镀锌角铁横担,并配套绝缘瓷座。供电半径200米以内,要求远端压降不得高于5%。入户后每户设有一个配电盘,内设保险,开关及插座。如果使用埋地电缆则应选用恺装VV22型聚氯乙烯电缆,线径6平方毫米,穿墙必须使用穿线管保护,在电站输出端安装电能计量装置。

光伏系统的其它硬件设计

光伏系统设计中除了蓄电池容量和太阳电池组件大小设计之外,还要考虑如何选择合适的系统设备,及如何选择合乎系统需要的太阳电池组件、蓄电池、逆变器、控制器、电缆、组件支架、汇线盒、柴油机/汽油机、风力发电机(风光互补系统),对于大型太阳能光伏供电站,还包括输配电工程部件,如变压器、避雷针、负荷开关、空气断路器、交直流配电柜,以及系统的基础建设、控制机房的建设和输配电建设、接地和防雷设计等问题。上述各种设备的选取需要综合考虑系统所在地的实际情况、系统的规模、客户的要求等因素。

根据基本原理,在此基础上设计出一款符合项目要求的光伏系统,该系统具有以下特点:

1系统简单,容易实现,成本也比较低。2用体积小、功能全、价格便宜而且使用ATMEGA系列单片机作为控制芯片,从而简化了控制器电路设计,同时提高了系统的性价比。3控制器具有防过充、防反充、短路保护、温度补偿等保护功能。4逆变器采用高频逆变,全桥逆变电路和正弦波调制方式,输出的电能质量较好,带动负载能力较强。

独立光伏系统设计方法

1影响设计的诸多因素

太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。

太阳能电池方阵的光电转换效率,受到电池本身的温度、太阳光强和蓄电池电压浮动的影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。

蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变化。蓄电池提供的能量还受环境温度的影响。

太阳能电池充放电控制器由电子元器件制造而成,它本身也需要耗能,而使用的元器件的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。

负载的用电情况,也视用途而定,如通信中继站、无人气象站等,有固定的设备耗电量。而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。

因此,太阳能电源系统的设计,需要考虑的因素多而复杂。特点是:所用的数据大多为以前统计的数据,各个统计出数据的测量以及数据的选择是重要的。

设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。

某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。这些气象数据需取积累几年甚至几十年的平均值。

地球上各地区受太阳光照射及辐射能变化的周期为一天24h。处在某一地区的太阳能电池方阵的发电量也有24h 的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。但是天气的变化将影响方阵的发电量。如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。

2 蓄电池组容量设计

太阳能电池电源系统的储能装置主要是蓄电池。与太阳能电池方阵配套的蓄电池通常工作在浮充的状态下,其电压随方阵发电量和负载用电量的变化而变化。它的容量比负载所需的电量大得多。蓄电池提供的能量还受环境温度的影响。为了与太阳能电池匹配,要求蓄电池工作寿命长且应维护简单。

(1)蓄电池的选用

能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

(2)蓄电池组容量的计算

蓄电池的容量对保证连续供电是很重要的。在一年内,方阵发电量各月份有很大差别。方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。同样,连续阴雨天气期间的负载用电也必须从蓄电池取得。所以,这期间的耗电量也是确定蓄电池容量的因素之一。

因此,蓄电池的容量BC计算公式为:

BC=A×QL×NL×TO/CCAh(1)

式中:A为安全系数,取1.1~1.4之间;QL为负载日平均耗电量,为工作电流乘以日工作小时数;

NL为最长连续阴雨天数;TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。

3太阳能电池方阵设计

(1)太阳能电池组件串联数Ns

将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

计算方法如下:

Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)

式中:UR为太阳能电池方阵输出最小电压;Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;

UD为二极管压降,一般取0.7V;UC为其它因数引起的压降。

蓄电池的浮充电压和所选蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。(2)太阳能电池组件并联数Np

在确定NP之前,我们先确定其相关量的计算方法。

①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:

H=Ht×2.778/10000h(3)

式中:2.778/10000(h·㎡/kJ)为将日辐射量换算为标准光强(1000W/㎡)下的平均日辐射时数的系数。

②太阳能电池组件日发电量Qp

Qp=Ioc×H×Kop×CzAh(4)

式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数(参照表1);Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。

③两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的

蓄电池电量补充起来,需补充的蓄电池容量Bcb为:

Bcb=A×QL×NLAh(5)

④太阳能电池组件并联数Np的计算方法为:

Np=(Bcb+Nw×QL)/(Qp×Nw)(6)

式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载

使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。

(3)太阳能电池方阵的功率计算

根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:

P=Po×Ns×NpW(7)

式中:Po为太阳能电池组件的额定功率。

表1

太阳能家用说明

太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。

晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是99.99998%,也就是一千万个硅原子中最多允许2个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—>冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。

什么是单晶硅太阳能电池板

单晶硅太阳能电池片主要是使用单晶硅来制造,与其他种类的太阳能电池片相比,单晶硅电池片的转换效率最高。在初期,单晶硅太阳能电池片占领绝大部份市场份额,在1998年后才退居多晶硅之后,市场份额占据第二。由于近几年多晶硅原料紧缺,在2004年之后,单晶硅的市场份额又略有上升,现在市面上看到的电池有单晶硅居多。

单晶硅太阳能电池片的硅结晶体非常完美,其光学、电性能及力学性能都非常的均匀一致,电池的颜色多为黑色或深色,特别适合切割成小片制作成小型的消费产品。

单晶硅电池片在实验室实现的转换效率为24.7%.普通商品化的转换效率为10%-18%。

单晶硅太阳能电池片因为制作工艺问题,一般其半成硅锭为圆柱进,然后经过切片->清洗->扩散制结->去除背极->制作电极->腐蚀周边->蒸镀减反射膜等工蕊制成成品。一般单晶硅太阳能电池四个角为圆角。单晶硅太阳能电池片的厚度一般为200uM-350uM厚,现在的生产趋势是向超薄及高效方向发展,德国太阳能电池片厂家已经证实40uM厚的单晶硅可达到20%的转换效率。

什么是多晶硅太阳能电池板

在制作多晶硅太阳能电池时,作为原料的高纯硅不是再提纯成单晶,而是熔化浇铸成正方形的硅锭,然后再加工单晶硅一样切成薄片和进行类似的加工。

多晶硅从其表面很容易进行辨认,硅片是由大量不同大小的结晶区域组成(表面有晶体结晶状),其发电机制与单晶相同,但由于硅片由多个不同大小、不同取向的晶粒组在,其晶粒界面处光电转换易受到干扰,因而多晶硅的转换效率相对较低,同时,多晶硅的光学、电性能及力学性能一致性没有单晶硅太阳能电池好。

多晶硅太阳能电池实验室最高效率达到20.3%,商品化的一般为10%-16%,多晶硅太阳能电池是正方形片,在制作太阳能组件时有最高的填充率,产品相对也比较美观。

多晶硅太阳能电池片的厚度一般为220uM-300uM厚,有些厂家已有生产180uM厚的太阳能电池片,并且向薄发展,更以节约昂贵的硅材料。

怎么区分单晶硅和多晶硅

多晶片是直角的正方形或长方形,单晶的四个角有接近圆形的倒角,一块组件中间有金钱形窟窿的就是单晶,一眼就能看出来

太阳能电池组件分类及制作方法

因为太阳能电池的厚度非常薄,所以其本身易破碎,易被腐蚀,果直接暴露在大气中,其转换效率会因环境的影响而下降,甚至失效;晶体硅太阳能电池单片的工作电压一般为0.5V左右,为达到所需电压及电流的太阳能电池组件,都会先进行相应的串联、并联太阳能电池片,然后经过胶封、层压等方式进行封装成平板式结构再投入使用。太阳能电池的封装一般有以下几种方式:环氧树脂胶封太阳能电池组件、有机硅胶封太阳能电池组件、钢化玻璃层压封闭太阳能电池组件,而小店采用的封装方式正是钢化玻璃层压封闭太阳能电池组件。

1环氧树脂胶封太阳能电池组件(滴胶板)

环氧树脂封装太阳能电池组件工艺简单、材料成本低,在小型组件封闭上使用较多,一些消费类产品及小型灯具上面使用的都为此种组件。但环氧树脂抗热、氧老化、抗紫外线老化的性能相对较差。树脂容易发黄,使用时间一般为一年半至两年左右。一般3W以下功率的太阳能板才会使用这种封装2有机硅胶封太阳能电池

有机硅胶是一种特殊结构的封装材料,它具有耐高温、耐低温、耐老化、耐紫外线、抗氧化、电绝缘等特性。有机硅胶是弹性机,在外力作用下具有变形能力,硅片在经受热胀冷缩时不会损坏,不过耐冲击能力差,在封装时,表层需盖钢化玻璃进么保护。其封装流程与环氧树脂接近,只需增加粘合玻璃的工序。经过此封装太阳能板使用时间可达到8年左右。

3超白钢化玻璃层压封装(层压板)

大功率的太阳能电池组件一般都使用此方式进行封装,此种封装的材料为:超白钢化低铁玻璃、抗紫外线EVA、耐酸、碱的TPT,以过以下步骤:激光切片—>焊接负极—>焊接正极(将电池片焊接成串)—>层叠(玻璃-EVA-太阳能电池-EVA-TPT)—>中测—>压层—>固化—>装铝合金边框、接线盒—>终测。此封装制作太阳能板一般使用寿命可达15年以后,有的甚至达到25年。层压太阳能板使用了铝合金边框,可以方便的进行组合,增容等,一般使用于大型的户用电源及发电站。

太阳能发电系统的组成

太阳能发电系统主要包括:太阳能电池组件、控制器、蓄电池、逆变器、负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

如图所示:

1太阳能电池组件

太阳能电池组件是发电系统中的核心部分,其作用是将太阳的辐射能直接转换为直流电,供负载使用或存贮于蓄电池内备用。一般根据用户需要,将若干太阳能电池板按一定方式连接,组成太阳能电池方阵(阵列),再配上适当的支架及接线盒组成太阳能电池组件。

电池板的种类及特点

2充电控制器

在太阳能发电系统中,充电控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗、尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。高级的控制器可以同时记录并显示系统各种重要数据,如充电电流、电压等。

控制器主要功能如下:

1)过充保护避免蓄电池因充电电压过高而造成损坏。

2)过放保护避免蓄电池因放电到过低的电压而损坏。

3)防反接功能避免蓄电池及太阳能电池板因正负极接反而不能使用甚至酿成事故。

4)防雷击功能避免因雷击而损坏整个系统。

5)温度补偿主要针对温差大的地方,保证蓄电池处于最佳的充电效果。

6)定时功能控制负载的工作时间,避免能源浪费。

7)过流保护当负载过大或短路时,自动切断负载,保证系统的安全运。

8)过热保护当系统工作温度过高时,自动停止给负载供电,故障排除后,自动恢复正常工作。

9)自动识别电压对于不同的系统工作电压,自动识别,无须另外设置。

3.蓄电池

蓄电池作用是将太阳能电池方阵发出直流电贮存起来,供负载使用。在光伏发电系统中,蓄电池处于浮充放电状态。白天太阳能电池方阵给蓄电池充电,同时方阵还给负载用电,晚上负载用电全部由蓄电池供给。因此,要求蓄电池的自放电要小,而且充电效率要高,同时还要考虑价格和使用是否方便等因素。

4逆变器

绝大多数用电器,如日光灯、电视机、电冰箱、电风扇和绝大多数动力机械等都是以交流电工作,要想这类用电器能正常工作,太阳能发电系统需要将直流电变换成交流电,具有这种功能的电力电子设备称作逆变器。逆变器还具有自动稳压功能,可改善光伏发电系统的供电质量。

5太阳能光伏发电需考虑的几个因素

太阳能光伏发电需要综合考虑各种因素,只有掌握了准确的资料后,才能确定电池板的安装方式、最低功率、规格(太阳能电池板每天的有效发电量必须太于负载的用电量)及蓄电池的容量、性能及控制方式。使产品达到最佳性价比。如果对相关因素的估算失误,就会直接影响到独立光伏发电系统性能和造价。

(1)现场的地理位置.。包括:地点、纬度、经度、海拔等。

(2)安装地点的气象条件。包括:逐月太阳能总辐射量,直接辐射量(或日照百分比),年平均气温,最长连续阴雨天数,最大风速及冰雹、降雪等特殊气象情况。

(3)最大负载量。包括:负载每天工作时间及平均耗电量,连续阴雨天需工作的时间。

(4)负载用电特性。由于太阳能电池阵列输出的电流是直流,如果负载是交流的话,需要经过逆变器的转换,才能正常工作,这样太阳能最终供给负载的能量损耗就增大,从而所需太阳能电池就会增大,导致太阳能供电系统造价增大。

(5)交流负载对电源的要求。交流负载除了需要更大的太阳能电池板外,对逆变器的要求也会因负载的不同而不同。一般来讲纯电阻性质的负载例如电热丝,对逆变器要求不高,可用普通的修正波逆变器。而电视、电动机对电源要求相对要高,需要的逆变器功率及输出特性都要高,需用大功率的正弦波的逆变器,才能保证负载能正常工作,不受干扰。负载要求不同,造价也不同。

(6)使用限制。由于部分国家和地区,对蓄电池有特定的环保要求,特别是镍镉电池在欧美国家受到严格限制,还有铅酸电池在运输方面也会受到限制,这些因素都将导致太阳能光电产品的造价增大。6太阳能光电产品的一般要求

(1)防水、防雹、防风。

一般太阳能电池板采用钢化玻璃封装,外框用铝合金封装,能有效抵御冰雹袭击,安装用金属支架固定,能抵御10级以上大风。

(2)防晒、防冻。

一般有通风、散热窗子,以利于蓄电池散热。对于冬季特别寒冷地区,蓄电池采用防凝固的胶体电池。(3)控制保护

为了最大限度延长电池板及蓄电池的使用寿命,一般都有防反充、过充、过放保护电路控制,避免

损坏电池板及蓄电池过早的老化。

(4)零件选择

由于太阳能光电产品使用环境不同,温度相差较大,因此要求零件的工作温度范围要宽。

(5)维护

太阳电池发电系统没有活动部件,不容易损坏,其维护也非常简便。不过也需做定期维护,否则可能影响正常使用,甚至缩短使用寿命。

一般来说,太阳电池板方阵倾角应超过30度,所有灰尘可由雨水冲刷而自行清洁,在风沙较大地区,应当经常清除灰尘,保持方阵表面的干净,以免影响发电量。清洁时可拭去灰尘,有条件时可用清水清洗,再用干净抹布擦干。切勿用腐蚀性溶剂或硬物冲洗擦拭。定期检查所有安装部件的紧固程度。遇到冰雹、狂风、暴雨等异常天气,应及时采用保护措施。经常检查蓄电池的充放电情况,随时观察电极或接线是否有腐蚀或接触不良之处。在一些简单的系统中应根据蓄能情况,控制用电量,防止蓄电池因过放电而损坏。发现有异常情况应当立即检查、维修。

7太阳能光电产品应用需明确的问题

1.太阳能电池峰值功率

普遍存在的一个问题就是:认为只要有阳光就可以输出额定功率,100WP的峰值功率,如果在普通光照条件下,照射10小时,就可发电1000WH,也就是1度电,其实太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM1 5,电池温度25℃条件下,太阳能电池的输出功率。(这个条件大约和我们平时晴天中午前后的太阳光照条件差不多)按广东地区的光照条件,折算成标准光照时间大约为3.3~3.5小时。在阴雨天,太阳电池也可以产生一定的能量,它的功率大约在额定功率的5-15%

2.太阳能发电损耗

通常误认为:太阳能电池组件每天输出的电量会被负载全部利用。实际上,太阳能电池组件安装存在相当大的损耗,大约在15~20%,充电、放电过程中,损耗在20%左右,如果有逆变器,损耗在10%以上,总的来说,太阳能发电利用率大约在50%左右。总之,所有能量转换过程中,都必须遵循能量守恒的定律,绝对不会无中生有,也不会百分百利用。

3.如何降低太阳能发电损耗

一般来讲,为了尽可能降低损耗,常采取如下措施:

⑴太阳能电池组件倾斜,与光线成垂直角度,一般广东地区倾斜35~40度。

⑵太阳能电池所有组件开路电压、短路电流、工作电压、工作电流等参

数尽量一致,连接电缆尽可能粗些、短些。

⑶蓄电池如果采用串联,所有的单元内阻尽量一致,尽可能小。

⑷为了减少线路间的损耗,条件允许的话,尽可能采用高电压、低电流的方案,这样使线路承受的电流尽可能小,从而降低损耗。在设计控制电路时,尽可能采用集成化高的、稳定性好的元器件。

太阳能光电产品计算方法

下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法:

1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):

若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。

2.计算太阳能电池板:

按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充电过程中,太阳能电池板的实际使用功率。

3.充电控制器的选择:

130W的太阳能电池板它的最大输出电流是7.7A。因此应该选取充电电流至少为8A的充电控制器。

4.蓄电池的选择:

若采用12V的蓄电池,其放电深度为50%,则应使用555Wh/12V/50%=90Ah的蓄电池;若选择24V的蓄电池,则蓄电池的容量应为555Wh/24V/50%=45Ah。

太阳能电池的估算与检测

太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14~17%之间,每平方厘米的电池片,其输出功率在14~16mW,每平方米的太阳能电池组件输出功率约120WP.

太阳能电池组件的测试,需用专门的检测设备,在标准的条件下检测。由于检测设备非常昂贵,一般的检测方法是:利用碘钨灯或白炽灯,模拟太阳光,比较样品作对比测试,主要检测其开路电压与短路电流,检测的时候注意控制温度,不能超过25℃。

基本计算公式

功率=电压X电流(W=UI)用电量=功率X时间(Q=Wh)

全国各地光照条件及平均峰值日照时间

表1是不同地区太阳光照条件。

表1

为了更加直观地了解各地每天太阳能辐射的平均分布,表2给出年总辐射量与日平均峰值日照时数(太阳能电池每天可以接受到1000W/m2辐照度的等效时间)对应关系。

表2

率和灯具输入功率之间关系在华东地区大约是2~4:1,具体比例要根据灯具每天工作时间以及对连续阴天雨照明要求决定。

太阳能光伏发电技术及其发展前景

本文由午夜寒光贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 (s' 『 1 Ⅲ…节能减排 :e l { 1 l o n l na l 一 太阳能光伏发电技术及其发展前景 ●湖北十堰刘道春 1 太阳能光伏发电市场前景广阔 当煤炭 , 油等化石能源频频告急 , 源问题日益成石能为制约国际社会经济发展的瓶颈时 ,越来越多的国家开始实行" 阳光计划 " 开发太阳能资源 , 求经济发展的新 , 寻动力 .欧洲一些高水平的核研究机构也开始转向可再生能源 . 国际光伏市场巨大潜力的推动下 , 国的太阳能在各电池制造商争相投入巨资 , 大生产 , 争一席之地 . 扩以 美国推出了" 阳能路灯计划 "旨在让美国一部分城太 , 阳能发电往往指的就是太阳能光伏发电 . 太阳能发电有两种方式 : 种是光一热一电转换方式 , 一种是光一电一另 直接转换方式 . 光一热一电转换方式通过利用太阳辐射 产生的热能发电 .一般是由太阳能集热器将所吸收的热能转换成工质的蒸气 . 驱动汽轮机发电 .与普通的火力再发电一样 .太阳能热发电的缺点是效率很低而成本很高 , 估计它的投资至少要比普通火电站贵 5 1 — O倍 . 一座 l0 MW 的太阳能热电站需要投资 2 ~ 5亿美元 ,平均O0 02 lW 的投资为 2 0 ~ 5 0美元 .因此 . k 002O 目前只能小规模地市的路灯都改为由太阳能供电 , 据计划 , 盏路灯每年根每 可节电 8 0 Wh 日本也正在实施太阳能 " 0k . 7万套工程计 应用于特殊的场合 . 大规模利用在经济上很不合算 , 而还 不能与普通的火电站或核电站相竞争 .光一电直接转换 划 " 准备普及太阳能住宅发电系统 , 是装设在住宅屋 , 主要 方式是利用光电效应 , 太阳辐射能直接转换成电能 , 将它的基本装置就是太阳能电池 .太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件 ,是一 个半导体光电二极管 .当太阳光照到光电二极管上时 , 光电二极管就会把太阳的光能变成电能 , 生电流 .当多个产电池串联或并联起来就可以成为有比较大的输出功率的 顶上的太阳能电池发电设备, 家庭剩余的电量还可以卖给 电力公司 .欧洲则将研究开发太阳能电池列入著名的" 尤里卡 " 科技计划 , 出了 "O万套工程计划 " 日本 , 国高推 l . 韩以及欧洲地区总共8个国家最近决定携手合作 , 亚洲内在 陆及非洲沙漠地区建设世界上规模最大的太阳能发电站 . 他们的目标是将占全球陆地面积约 l , 4的沙漠地区的长时间日照资源有效地利用起来 ,为 3 0万用户提供 1 0万 0 太阳能电池方阵 .太阳能电池是一种大有前途的新型电源 , 有永久性 , 洁性和灵活性三大优点 . 太阳能电池具清

2021年太阳能光伏发电系统基本组成

太阳能光伏发电系统基本组成 欧阳光明(2021.03.07) 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳

的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC 的交流电源。由于太阳能的直接输出一般都是12V DC、24V DC、48V DC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC 逆变器,如将24V DC的电能转换成5V DC的电能(注意,不是简单的降压)。

太阳能光伏发电系统毕业设计

(BIPV)光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成 .................................................... 错误!未定义书签。第3章光伏并网发电系统设计原则与原理 (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司 ........................................................ 错误!未定义书签。 6.1 雄厚的集团背景................................................................................................................................ 错误!未定义书签。 6.2 超强的项目管理能力....................................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队................................................................................................................................ 错误!未定义书签。 6.4 “一揽子交钥匙服务”................................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

太阳能光伏发电基本原理.

太阳能光伏发电基本原理 1. 太阳能光伏发电系统的组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: 光伏电池:光电转换。 控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。 交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 2.太阳能光伏电池板: 太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N结。工作原理和二极管类似。只不过在二极管中,推动P-N结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响P-N结空穴和电子运动的是太阳光子和光辐射热(*。也就是通常所说的光生伏特效应原理。目前光电转换的效率,也就是光伏电池效率大约是单晶硅1 3%-15%,多晶硅11%-13%。目前最新的技术还包括光伏薄膜电池。 1839年,法国物理学家A.E.Becquerel在实验室中发现液体的光生伏特效应(由光照射在液体蓄电池的金属电极板上使得蓄电池电路中的伏特表产生微弱变化至

今,在所有能找到的材料中,由单晶硅做成的P-N结光伏电池是光电转换效率最高的材料。 3.太阳能光伏发电系统的分类: 目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。 A离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。 B光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。 CA, B两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。 光伏产业投资焦点应集中在薄膜光伏电池领域 新能源板块短期面临估值偏高的窘境全球光伏产业维持热络,薄膜光伏电池地位崛起 根据Solarbuzz最新数据,07年全球光伏系统装置容量达2826MW,较06年大增62%,其中德国07年光伏系统 装置容量达1328MW(占比高达47%占居第一位,增速为38%,其次是西班牙的640MW(占比达23%,增速为480%,美国为220MW(占比为8%,增速为57%,日本市场占比持续下降,07年装置容量仅230MW(占比8%,衰退了22%。 07年全球太阳能电池产量达到3436MW,较06年增长了56%,中国厂商07年市占率由06年的20%

光伏系统的组成和原理

光伏系统的组成和原理 光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -维修保养简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电 池寿命可达到25年以上; -根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济

可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图1-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件: ●光伏组件方阵:由太阳电池组件(也称光伏电池组件)按 照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 ●蓄电池:将太阳电池组件产生的电能储存起来,当光照不 足或晚上、或者负载需求大于太阳电池组件所发的电量

太阳能光伏发电系统方案

光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成...............................................错误!未定义书签。第3章光伏并网发电系统设计原则与原理. (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司...................................................错误!未定义书签。 6.1 雄厚的集团背景.................................................................................................................. 错误!未定义书签。 6.2 超强的项目管理能力.......................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队.................................................................................................................. 错误!未定义书签。 6.4 “一揽子交钥匙服务”...................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

光伏发电原理及发电系统简介

光伏发电原理及发电系统简介 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光伏效应 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。电子向带正电的N区和空穴向带负电的P区运动。

通过界面层的电荷分离,将在P区和N区之间产生一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。 二、原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。 (1)光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2)光-电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 三、系统组成 光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。 1、电池方阵

太阳能光伏发电系统

太阳能光伏发电系统.txt真正的好朋友并不是在一起有说不完的话题,而是在一起就算不说话也不会觉得尴尬。你在看别人的同时,你也是别人眼中的风景。要走好明天的路,必须记住昨天走过的路,思索今天正在走着的路。本文由哈哈5790902贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏发电系统 太阳能光伏发电系统是将太阳能转换成电能,并储存能量供给负载电能或逆变并网的系统,按其运行方式可分为两类:独立发电系统和并网发电系统。 一、太阳能光伏发电系统的设计原理 1、独立发电系统 独立发电系统由太阳能电池组件方阵、蓄电池组、控制器组成,可为直流负载供电。如负载为交流型的,发电系统还包括逆变器。 2、并网发电系统 并网发电系统由太阳能电池组件方阵、并网逆变器及连接器组成,可发电并把电能送上电网。并网发电系统还可以为负载供电。 二、系统各部分功能 (一)太阳能电池组件方针:由若干太阳能电池组件串联或并联而成,主要功能为利用太阳能进行发电。(二)蓄电池组:一般采用免维护铅酸蓄电池作为储能装置,用来储蓄太阳能光伏组件发出的电能。(三)控制器:用来充、放电和其他方面的自动控制。(四)逆变器:是将直流和交流相互转换的设备。 三、太阳能发电系统应用实例 1、大型太阳能光伏发电系统 太阳能板功率:4000Wp 并网逆变器: 5000W 负载功率:小于3000W 使用地点:别墅、旅游度假村、草原使用地点牧区、偏远山村、高山岛屿、沙漠区等。 2、小型太阳能发电系统 太阳能板功率:600Wp 蓄电池: 8个12V200Ah 控制器: 24V40A 逆变器: 1000VA 负载功率:小于600W 使用地点:无电山村、学校、医院、使用地点私人住房、边防哨所、部队及野外作业等。 1本文由哈哈5790902贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 太阳能光伏发电系统 太阳能光伏发电系统是将太阳能转换成电能,并储存能量供给负载电能或逆变并网的系统,按其运行方式可分为两类:独立发电系统和并网发电系统。 一、太阳能光伏发电系统的设计原理 1、独立发电系统 独立发电系统由太阳能电池组件方阵、蓄电池组、控制器组成,可为直流负载供电。如负载为交流型的,发电系统还包括逆变器。 2、并网发电系统 并网发电系统由太阳能电池组件方阵、并网逆变器及连接器组成,可发电并把电能送上电网。并网发电系统还可以为负载供电。 二、系统各部分功能 (一)太阳能电池组件方针:由若干太阳能电池组件串联或并联而成,主要功能为利用太阳能进行发电。(二)蓄电池组:一般采用免维护铅酸蓄电池作为储能装置,用来储蓄太阳能光伏组件发出的电能。(三)控制器:用来充、放电和其他方面的自动控制。(四)逆变器:是将直流和交流相互转换的设备。 三、太阳能发电系统应用实例 1、大型太阳能光伏发电系统

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期:2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

光伏发电技术习题及答案期末考试

第一章光伏发电系统习题 一、填空题 1. 太阳能利用的基本方式可以分为、、、。 2. 光伏并网发电主要用于和。 3. 光伏与建筑相结合光伏发电系统主要分为、。 4. 住宅用离网光伏发电系统主要用太阳能作为供电能量。白天太阳能离网发电系统对蓄电池进行;晚间,太阳能离网发电系统对蓄电池所存储的电能进行。 5. 独立光伏发电系统按照供电类型可分为、和,其主要区别是系统中是否有。 6. 太阳能户用电源系统一般由太阳能电池板、和构成。 7. 为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用。 8.太阳能光伏电站按照运行方式可分为和。未与公共电网相联接独立供电的太阳能光伏电站称为。 二、选择题 1.与常规发电技术相比,光伏发电系统有很多优点。下面那一项不是光伏发电系统的优点( )。 A. 清洁环保,不产生公害 B. 取之不尽、用之不竭 C. 不存在机械磨损、无噪声 D. 维护成本高、管理繁琐 2.与并网光伏发电系统相比()是独立光伏发电系统不可缺少的一部分。 A. 太阳能电池板 B.控制器 C. 蓄电池组 D.逆变器

3. 关于光伏建筑一体化的应用叙述不对的是()。 A. 造价低、成本小、稳定性好 B.采用并网光伏系统,不需要配备蓄电池 C.绿色能源,不会污染环境。 D.起到建筑节能作用 4.()是整个独立光伏发电系统的核心部件。 A、充放电控制器 B、蓄电池组 C、太阳能电池方阵 D、储能元件 5.独立光伏发电系统较并网光伏发电系统建设成本、维护成本()A、无法预算B、偏低C、一致D、偏高 6.目前国外普遍采用的并网光伏发电系统是() A、有逆流型并网系统 B、无逆流型并网系统 C、切换型并网系统 D、直、交流型并网系统 三、简答题 1.简述太阳能发电原理。 2.什么是光伏效应? 3.简述光伏系统的组成。 4. BAPV和BIPV有什么区别? 5.目前光伏发电产品主要用于哪些方面。 6.简述太阳能光伏发电系统的种类。 7.简述光伏发电与其他常规发电相比具有的主要特点。 8.根据自己的理解来简述太阳能光伏发电技术在生活中的应用。

什么是光伏发电

光伏发电是利用太阳能电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar Module)是利用半导体材料的电子学特性实现P-V转换的一种材料,在广大的无电地区,该装置可以方便地实现为用户照明及生活供电,也可以与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且具产业化的是“光伏建筑一体化”技术(BIPV),而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统,大型光伏并网技术正在启动。 光伏发电系统形式 主要有两种:1.独立光伏发电系统(离网系统) 2.并网光伏发电系统 在近几年的光伏发电体系中,并网光伏发电系统是主要的发展方向,它可以节省了蓄电池的费用;通过研究理想的最大功率追踪控制技术,也将降低太阳电池发电的成本。 独立系统主要组成部分 1. 光伏阵列 2. 光伏 3. 蓄电池组 4. 逆变器 5. 监控系统 6. 负载 并网系统主要组成部分 1. 光伏阵列 2. 并网逆变器 3. 公共电网 4. 监控系统 光伏阵列 单一组件的发电量是十分有限的,实际运用中,是单一组件通过电缆和汇线盒实现组件的串、并联,组成整个的组件系统,称为光伏阵列。 光伏控制器 光伏控制器是独立光伏发电系统中非常重要的部件控制光伏阵列对蓄电池组进行充电,并控制蓄电池组对后负载的放电,实现蓄电池组的过充和过放保护,对蓄电池进行温度补偿,并监控蓄电池组的电压和启动相关辅助控制。 逆变器 逆变器就是把直流电(例如12VDC)逆变成交流电(例如220VAC)的设备。一般分为独立逆变器和并网逆变器。 监控系统 监控系统是监控整个系统的运行状态,设备的各个参数,记录系统的发电量,环境等的数据,并对故障进行报警。

太阳能光伏并网发电系统

太阳能光伏并网发电系统 摘要:随着经济的发展、社会的进步,电能的消耗越来越大,传统的火电需要燃烧煤、石油等化石燃料,一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。针对上述问题人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能。本文将对太阳能光伏并网发电系统这个新产品进行体系的构建和市场分析,运用产品开发与管理的知识对新产品进行可行性分析,材料分析以及工艺性分析。 关键词:太阳能发电系统产品体系构建市场分析可行性分析 一、产品体系的构建 产品体系由战略层面的文化以及策略层面的价格、包装等一系列要素构成,是企业从操作性角度对产品的审视[1]。 1、产品与文化 文化是产品的一个重要组成部分,属于产品附加利益这一层次。产品文化,是以企业生产的产品为载体,反应物质及精神追求的各种文化要素的总和,是产品价值和文化价值的统一。随着知识经济时代的到来,企业生产的产品决不仅仅是为了满足人们的某种物质生活需要,而是越来越多地考虑人们的精神生活需要,越来越重视产品文化附加值的开发,努力为顾客提供实用的、情感的、心理的等多方面的享受,努力把使用价值和审美价值融为一体,突出产品中的人性化因素[1]。 结合自身的产品,不仅要发掘尽可能多的使用价值,更多的是体现太阳能光伏并网发电系统的文化价值。本产品推崇的太阳不仅仅给世界带来了温暖和光照,即太阳能光伏并网系统结合自身的特点所体现出的文化价值。在当前能源短缺的大环境下,太阳能蕴藏丰富不会枯竭,是理想的清洁能源。由于其安全、干净,不会威胁人类和破坏环境,比传统的煤燃料更环保,所以太阳能更值得推广。对于顾客的情感方面,近阶段,国家电网的供电大多是采用火力发电,势必造成

太阳能光伏发电系统(PVsyst运用)

能源与动力工程学院 课程设计 题目:发电系统设计 课程:太阳能光伏发电系统设计专业:电气工程及其自动化班级:电气 姓名: 指导教师: 完成日期:

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

屋顶光伏电站简介及案例

用户侧并网屋顶光伏电站介绍用户侧并网光伏发电系统 ①太阳电池②开关/保护/防雷③电缆④并网逆变器⑤电度表(光伏电量) 经济和社会效益分析 经济效益 一个10MWp的光伏电站,按系统效率80%,年利用小时数1100小时(江苏地区平均值)计算,一年可发电10000000*1100/1000=1100万度电,按1度电可比原购电价格便宜0.15元,可节省购电用户运营成本近165万元。 10MWp电站总投资约1.2亿左右,根据新能源产业政策,项目建成后税收是三免三减半(每个地区的政策要了解清楚),第四年后建成后每年可缴税约300~400万。

社会效益 每年可节省标准煤约2800t,减排烟尘约700t,减排灰渣约1000t,减排二氧化碳约5960t,减排二氧化硫约56.84t。 屋顶光伏电站案例 盐城阜宁3MWp屋顶光伏发电项目 (中国2009年度最大已并网屋顶光伏电站) 1)项目地址:盐城阜宁3MWp屋顶光伏电站位于阜宁经济开发区荣威塑胶厂。 2)项目规模:3MW(规划9.18MWp)。 3)占地面积:5万平米。 4)组件类型:晶硅电池。 5)组件品牌:常州天合,江苏林洋。 6)逆变器规格:500KW。 7)逆变器品牌:Satcon(美国赛康)。 8)支架类型:固定倾角(30度)支架。 9)支架品牌:中环光伏。 10)接入系统:电站所发电量升压至10kV 直接并入地区电力网。 11)进场施工时间:2009年10月10日。 12)并网时间:2009年12月31日正式并网发电。 13)系统组成:盐城阜宁3MWp屋顶并网光伏电站采用分块发

电,集中并网方案,采用晶硅电池组件。该工程由光伏发电系统、电气系统、接入系统组成,分9个厂房,6个子系统,。每个子系统分别由太阳电池组件、支架、直流防雷汇流箱、并网逆变器、升压变压器等组成。 本项目建设规模为3MW,全部采用固定倾角安装,共安装220W 晶硅太阳能电池13664块。 盐城阜宁3MWp屋顶光伏发电项目运行寿命25年,总体效率为80%,预计电站在25 年运营期内年平均上网电量为337万kW·h,总上网电量为8425 万kW·h,与火电厂相比每年可为电网节约标煤约1028吨,在25年使用期内共节省标煤2.57万吨。项目同时发挥重要的环境效益,每年减轻排放温室效应气体CO2约2743吨;每年减少排放大气污染气体SOx约21吨,NOx约7吨。 项目建设过程图片

太阳能光伏发电技术及其发展现状

太阳能光伏发电技术及其发展现状 0840106215(just) 摘要:随着现代工业的发展,全球能源危机和大气污染问题日益突出,作为清洁能源的太阳能发电已越来越受到重视并得到广泛应用,本文在基于太阳能光伏发电系统组成的基础上,阐述了光伏发电技术的现状,并分析了制约我国太阳能光伏发电的主要因素。 关键词:光伏发电发展现状制约因素 0引言 随着煤炭、石油等现有化石能源的频频告急和全球变暖等生态环境的恶化,使得人类不得不尽快寻找新的清洁能源和可再生资源。太阳能是一种洁净的自然再生能源,取之不尽,用之不竭,而且太阳能是所有国家和地区都能够得以分享的能源。 目前太阳能的利用分为两种形式,一是太阳能的热利用,二是太阳能的光利用。太阳能光伏发电属于太阳能的光利用,可直接将太阳光能转换成电能,是一种不需燃料、无污染获取电能的高新技术,具有安全可靠、无噪声,能量随处可得,不受地域限制,故障率低等诸多优点。因此,太阳能光伏发电技术是这些年来众多利用方式中发展最快、最具活力的研究领域。 1太阳能光伏发电系统的组成 光伏发电系统按其应用形式基本可以分为2大类: 独立光伏发电系统和并网光伏发电系统。光伏发电系统主要由3大部分组成: 光伏阵列; 变换器、控制器等电力电子设备; 蓄电池或其他储能和辅助发电设备。光伏阵列由太阳能电池组件按系统需要串、并联组成, 将太阳能直接转化成电能, 它是光伏系统的核心部件。蓄电池将光伏阵列产生的剩余电量储存起来。在光伏阵列供电不足的情况下, 蓄电池对负载进行辅助供电。变换器通常由DC /DC 变换器及DC /AC逆变器组成, 其功能是将光伏阵列输出的不太稳定的直流转换为高质量的交流电供交流负载使用或者并网。控制器对蓄电池的充放电加以规定控制、并根据负载或电网的需求控制太阳能及蓄电池的电能输出。 2太阳能光伏发电发展现状 2.1全球光伏产业发展现状 自从20世纪70年代全球发生世界性石油危机以来,太阳能光伏发电技术在西方发达国家引起了极大的重视,各国政府从环境保护和能源可持续发展战略的角度出发,纷纷制定政策,鼓励和支持太阳能光伏发电技术。光伏发电技术带来的产业在政策法规的强力助推下,呈快速、增速发展。根据欧洲光伏工业协会(EPIA)的研究报告,全球光伏产业在过去十年高速发展,增长速度逐年递增,从1998年到2008年,全球累计光伏装机容量年均增长率在30%以上,见图1。2008年全球累计装机容量已接近15GW ,比2007年的9GW 增加了5.6GW ,增长率创新高,达到60%. 2.2我国光伏产业发展现状 中国光伏产业在世界光伏市场的拉动下近几年发展迅速。2007 年,中国电池产量达到1 088 MW,占世界总量的29%,跃居世界首位。2008 年,中国电池产量超过2 600 MW,仍为世界首位。2009 年的中国光伏市场经历了从停产、复产、再到扩产的过程,忙得不亦乐乎。尽管市场一度受到经融危机的影响,但从第二季度开始,欧美光伏市场的回暖,各大公司的发货量也随之增加。外加德国政策补贴的下调预期,使得2009 年的第四季度较之往年淡季

太阳能光伏发电系统的组成

太阳能光伏发电系统的组成

太阳能光伏发电系统的组成 太阳能光伏发电系统是利用太阳能电池的光伏效应,将太阳光辐射能直接转换成电能的一种新型发电系统。一套基本的光伏发电系统一般是由太阳能电池板、太阳能控制器、逆变器和蓄电池(组)构成。 太阳能电池板:太阳能电池板是太阳能光伏发电系统中的核心部分,其作用是将太阳能直接转换成电能,供负载使用或存贮于蓄电池内备用。 太阳能控制器:太阳能控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗,尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。 逆变器:逆变器的作用就是将太阳能电池阵列和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。蓄电池(组):蓄电池(组)的作用是将太阳能阵列发出的直流电直接储存起来,供负载使用。在光伏发电系统中,蓄电池处于浮充放电状态,当日照量大时,除了供给负裁用电外,还对蓄电池充电;当日照量小时,这部分储存的能量将逐步放出。

太阳能光伏发电系统的分类 根据不同场合的需要,太阳能光伏发电系统一般分为独立供电的光伏发电系统、并网光伏发电系统、混合型光伏发电系统三种。 (1)独立供电的光伏发电系统 独立供电的太阳能光伏发电系统如图2-6所示。整个独立供电的光伏发电系统由太阳能电池板、蓄电池、控制器、逆变器组成。太阳能电池板作为系统中的核心部分,其作用是将太阳能直接转换为直流形式的电能,一般只在白天有太阳光照的情况下输出能量。根据负载的需要,系统一般选用铅酸蓄电池作为储能环节,当发电量大于负载时,太阳能电池通过充电器对蓄电池充电;当发电量不足时,太阳能电池和蓄电池同时对负载供电。控制器一般由充电电路、放电电路和最大功率点跟踪控制组成。逆变器的作用是将直流电转换为.与交流负载同相的交流电。 图2-6 独立运行的太阳能光伏发电系统结构框图(2)并网光伏发电系统

太阳能光伏发电系统介绍

太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。 一套基本的太阳能发电系统是由太阳电池板、充电控制器、逆变器和蓄电池构成,下面对各部分的功能做一个简单的介绍: 太阳电池板 太阳电池板的作用是将太阳辐射能直接转换成直流电,供负载使用或存贮于蓄电池内备用。一般根据用户需要,将若干太阳电池板按一定方式连接,组成太阳能电池方阵,再配上适当的支架及接线盒组成。 充电控制器 在不同类型的光伏发电系统中,充电控制器不尽相同,其功能多少及复杂程度差别很大,这需根据系统的要求及重要程度来确定。充电控制器主要由电子元器件、仪表、继电器、开关等组成。在太阳发电系统中,充电控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗、尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。如果用户使用直流负载,通过充电控制器还能为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。 逆变器 逆变器的作用就是将太阳能电池方阵和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。 蓄电池组 蓄电池组是将太阳电池方阵发出直流电贮存起来供负载使用。在光伏发电系统中,电池处于浮充放电状态,夏天日照量大,除了供给负 载用电外,还对蓄电池充电。在冬天日照量少时,这部分贮存的电能逐步放出。白天太阳能电池方阵给蓄电池充电,同时方阵还要给负载用电,晚上负载用电全部由 蓄电池供给。因此,要求蓄电池的自放电要小,而且充电效率要高,同时还要考虑价格和使用是否方便等因素。常用的蓄电池有铅酸蓄电池和硅胶蓄电池?熏要求较 高的场合也有价格比较昂贵的镍镉蓄电池。 太阳能光伏电源系统概述 清上园Ⅱ期太阳能光伏电源系统是一种典型的独立光伏发电系统,是以太阳电池作为主供电源,由太阳能电池方阵、接线箱、控制器、逆变器、输出配电柜、蓄电池组和支架等组成的可完全独立运行的交流电源系统,太阳能光伏电源系统为固定安装,供电可用率99.9%以上。 太阳能光伏电源系统的设计计算主要依据现场实际情况,为满足符合能量的需求,在系统设置地点的日照条件和环境温度等情况下,优选出合适的太阳能电池方阵和蓄电池容量,并使系统中所有设备相互匹配,保证系统的合理性和适用性。一个完善的太阳能光伏电源系统需要考虑多种因素进行设计,如电气性能设计、热力设计、机械结构设计等,对地面应用的独立电源系统来说,最主

太阳能光伏发电系统原理

太阳能光伏发电系统原理 光伏发电系统是利用半导体界面的光生伏特效应而将光能直接转变 为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电系统装置。 3.1光电效应概述 光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。 3.2光生伏打效应概述及应用 3.2.1光生伏打效应 是指物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。3.2.2光生伏打效应应用 光生伏打效应主要是应用在半导体的PN结上,把辐射能转换成电能。大量研究集中在太阳能的转换效率上。理论预期的效率为24%。由于半导体PN结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。 3.3太阳能电池及其太阳能组件 3.3.1太阳能电池的工作原理,太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能

电池的工作原理。 3.3.2太阳能电池的生产流程 通常的晶体硅太阳能电池是在厚度 350~450μm的高质量硅片上制成的, 这种硅片从提拉或浇铸的硅锭上锯割而成。如图1 3.3.3 太阳能电池的制造技术 晶体硅太阳能电池的制造工艺流程如图2。提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 具体的制造工艺技术说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。

相关主题
文本预览
相关文档 最新文档