当前位置:文档之家› 趣谈:物理学家的九个等级

趣谈:物理学家的九个等级

趣谈:物理学家的九个等级
趣谈:物理学家的九个等级

趣谈:物理学家的九个等级

杂谈 2009-01-01 23:07:28 阅读627 评论8 字号:大中小订阅

搞笑,网络乱弹,可以部分当真,呵呵。

评定标准:

1. 研究成果的质量高

2. 研究成果的数量多

3. 研究成果影响深远。

排名中考虑的主要是物理成果本身,其突破的难度和对物理学进化的意义。如果其成果能对基础物理学、或更进一步基本哲学有深远影响,那该物理学家的名次就更靠前;

排名对其研究成果的实用价值考虑的较少,如伦琴发现X射线,在对科学发展上和在应用上都非常非常重要,但根据上述评判标准,伦琴本人的位置并不十分靠前。

排名时考虑了该物理学家在作出其伟大创造中的原创性,或说其跳跃性。如从旧量子论到量子力学,没法靠演绎得出,只能靠海森伯的直觉飞跃。而从非相对论性量子力学到相对论性量子力学,后者是前者的发展的自然要求和思维的延伸,其跳跃性不如从旧量子论到量子力学,因此无论是薛定锷,还是克莱因和戈登,还是狄拉克,都想到并找到了相对论性量子力学方程,它们在物理学的真正发展(原理上的从无到有)上的重要性都不如原始的非相对论量子力学方程重要(不指其实用性,而指其突破的难度和对物理学的进化的重要性)。

超一流:牛顿,爱因斯坦(不分先后)

第一流:整个物理学史中最优秀的

法拉第,海森伯(此二人不分先后,但高于后面的)

伽利略、麦克斯韦,玻耳兹曼、普朗克、阿基米德、开普勒、卢瑟福、玻尔。

第二流:整个物理学史中非常出色的:

赫兹、薛定锷、泡利、惠更斯、菲涅耳、克劳修斯、基尔霍夫、开尔文、费密、朗道、洛伦兹、狄拉克、费因曼、波恩,等。

第三流:诺贝尔奖得主级别中比较出色的物理学家

托马斯扬、迈克尔逊、布洛赫、盖尔曼等等,其数量就比二流物理学家更多了。

第四流:诺贝尔奖得主中一般的物理学家。

第五流:做出了接近诺贝尔奖的重要的基础工作的,如朗之万、索末菲、外斯、迈特纳、韦斯可夫,以及那些验证了别人预言的比较重要的物理现象的那些人。

第六流:做出了学科中较重要的工作的,如奥本海墨(波恩-奥本海墨近似),黄昆等,人数就比上一级更多了。

第七流:一般的科学院院士级别的物理学家。

第八流:博导级的物理学教授(当然中国的一般教授还比不上美国名牌大学的助教)。

第九流:有所发现的物理学工作者。

对海森伯和狄拉克以及费因曼得相对位次说几句。

海森伯,能从非常纷繁芜杂的庞大数据中找出全新的物理规律,那是非常困难的,比演绎法要艰难得多,以至有人说:海森伯处理实验数据的能力,也许只有开普勒可以与之相比。

狄拉克和费因曼虽然都very creative,粗略分可以进入一流物理学家的行列,但要“严格”分,只能是二流,因为虽然其工作很重要,但其基本原理是别人发现的,他们在别人的基本原理上开展工作,或推广,或进行公理化,或进行系统化严格化,而没有真正为物理学增加的基本原理。相对第一流物理学家来说其创造性not orignal enough ,包括费因曼,其量子力学的第三种形式也就是另一种形式,费因曼图也可以从海森伯对核力作解释的意象图中找到影子,他关于弱相互作用的理论也不是独一无二的。总之,他们正如狄拉克自己所说的:“自从海森伯发现了量子世界的非对易规律后,第二流的物理学家可以做第一流的工作了。”

另外,关于法拉第和麦克斯韦的相对位次,我认为法拉第显然应该靠前,因为,虽然电流的磁效应是奥斯特发现的,但电动机是法拉第的贡献,发电机也是,而这两者构成了以电气为标志的第二次工业革命的基础;不仅如此,除了电解定律,法拉第磁致旋光效应之外,法拉第还贡献了场观念,成为麦克斯韦发展电磁理论的基础。

麦克斯韦写出的包括4个方程的方程组中,其中三个完全是别人的贡献,剩下的一个方程只有位移电流是他的创造(虽然简洁、对称、优美),我倒觉得他的速度分布率公式确是神来之笔。作为实验物理学家,能象法拉第那样做出那么多贡献,已经是非常难得了。

我敢说,如果爱因斯坦是实验物理学家,他肯定取得不了那么广泛的成就,虽然爱因斯坦本人在实验物理上也卓有发现(如爱因斯坦-德哈斯回转磁效应、爱因斯坦和西拉德发明了电磁泵)。而象吉布斯那样,有了亥姆霍兹自由能函数,他再定义吉布斯自由能,虽然在应用上方便,但对物理学本质上的进化贡献很小。

理论物理学家经常用漂亮堂皇的语言夸大理论在物理学中的重要性,好像实验物理学家的工作只是陪衬而已。杨振宁教授在北大作“物理学与美”演讲时,也是极力褒扬狄拉克,而

相对贬低海森伯。

另外,海森堡应该是整个物理学史中最优秀的物理学家,作为物理学家数学能力固然重要,但物理学的直觉才是衡量一个物理学家是否真正优秀的准则,法拉第连一元二次方程都不会解但是他的直觉即便比起牛顿也丝毫不差,难能可贵的是海森堡本人在不知道有矩阵这么一个数学概念的情况下居然自己建立起了和矩阵代数没有本质区别的代数操作。至于麦克斯韦和狄拉克,因为家庭出身好,受的教育不错,数学功底很好,但物理直觉比起以上两人还是要差。

最后,我还是觉得,牛顿比爱因斯坦更出色,因为牛顿居然能为了要建立牛顿力学创建微积分,而爱因斯坦建立一个广义相对论还要找他朋友补习黎曼几何。

历 最伟大的物理学家排名

历史上最伟大的物理学家排名1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。 2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。

十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。 爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。他创立了相对论宇宙学,建立了静态有限无边的自洽的动力学宇宙模型,并引进了宇宙学原理、弯曲空间等新概念,大大推动了现代天文学的发展。 3:麦克斯韦(经典电动力学、经典统计力学) 詹姆斯·克拉克·麦克斯韦,英国物理学家、数学家。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论遇见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思

高二物理会考基本知识点

高二物理会考------基本知识点2013-12--29 第一章力学 一、力:力士物体间的相互作用; 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;(1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等; (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; (C)滑动摩擦力的大小F滑=μF N压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之和; (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 二、、既有大小又有方向的物理量叫矢量,(如:力、位移、速度、加速度、动量、冲量)标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量) 三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

国内外著名物理学家

1世界著名物理学家及其贡献 艾萨克·牛顿 牛顿爵士是一位英格兰物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述,成为了现代工程学的基础。[1] 2阿尔伯特·爱因斯坦 爱因斯坦——物理学家,美籍德裔犹太人,现代物理学的开创者和奠基人,相对论、‘质能关系’的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。曾被美国《时代》周刊评选为“世纪伟人”。

3伽利略·伽利雷 伽利略是意大利物理学家、天文学家和哲学家,近代实验科学的先驱者。1590年,伽利略在比萨斜塔上做了“两个铁球同时落地”的著名实验,从此推翻了亚里斯多德“物体下落速度和重量成比例”的学说。他创制了天文望远镜来观测天体,他发现了月球表面的凹凸不平,并亲手绘制了第一幅月面图。先后发现了木星的四颗卫星、土星光环、太阳黑子、太阳的自转、金星和水星的盈亏现象等等。开辟了天文学的新时代。 4托马斯·爱迪生 爱迪生(1847~1931)是美国电学家和发明家,被誉为“世界发明大王”。他除了在留声机、电灯、电话、电报、电影等方面的发明和贡献以外,在矿业、建筑业、化工等领域也有不少著名的创造和真知灼见。

5詹姆斯·瓦特 瓦特是英国著名的发明家,是工业革命时期的重要人物。1763年瓦特到格拉斯大学工作,修理教学仪器。在大学里他经常和教授讨论理论和技术问题。1781年瓦特制造了从两边推动活塞的双动蒸汽机。1785年,他也因蒸汽机改进的重大贡献。 6迈克尔·法拉第 法拉第(Michael Faraday,1791-1867)英国著名物理学家、化学家。在化学、电化学、电磁学等领域都做出过杰出贡献。在电学方面,法拉第研究负载直流电的导体与附近磁场之间的关系,在物理学中建立起磁场这个概念。他发现了电磁感应、抗磁性及电解。另外,他也发现磁场能对光线产生影响,进而发现两者间的基本关系。另外,法拉第还发明了一种依电磁转动的装置,为电动机的前身。[1]

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

2017高中物理会考知识点归纳

高中物理学业水平考试要点解读 第一章 运动的描述 第二章 匀变速直线运动的描述 要点解读 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律

著名物理学家及其贡献

著名物理学家及其贡献 爱迪生:他以罕见的热情及惊人的精力,在一生中完成发明2000多项,其中申请专利登记的达1328项。主要研究领域在电学方面。在他掌握电报技术后,就日夜苦心钻研,完成了双路及四路电报装置及自动发报机。1877年改进贝尔电话装置,使电话从传送2~3英里扩大到107英里,同年发明留声机。在这期间,他付出巨大精力,研制白炽电灯。除电弧灯外,过去的“电灯”往往亮一下就烧毁了,为寻找合适的灯丝,曾对1600多种耐热材料及6000多种植物纤维进行实验,终于在1879年10月21日用碳丝做成可点燃40小时的白炽电灯。其后又不断反复改进、完善,又完成了螺纹灯座、保险丝、开关、电表等一系列发明,在此基础上完成了照明电路系统的研制。在实践中提出电灯的并联连接,直流输电的三线系统,建成了当时功率最大的发电机。1888年起研制电影,1893年建立第一座电影摄影棚。是他最先提出将电影手段用于教育,并用两个班进行试验。他的其它重大发明还有铁镍蓄电池等。 爱因斯坦:一生中开创了物理学的四个领域:狭义相对论、广义相对论、宇宙学和统一场论。他是量子理论的主要创建者之一。他在分子运动论和量子统计理论等方面也作出重大贡献。 安德森:美国物理学家,科学院院士,从事的是X射线,γ射线、宇宙射线和基本粒子物理学方面的研究工作。1932年他利用云宝在宇宙射线中发现了正电子(参见“正电子的发现”),并因此荣获1936年诺贝尔物理学奖、1933年,他又独立地从γ光子中发现了产生电

子一正电子对的现象,1937年,安德森和他的合作者尼德梅耶(S.H.Ne -ermever)发现了μ子并测量了它的质量 安培:法国物理学家,主要科学工作是在电磁学上,实验研究结果:通电螺线管与磁体相似;两个平行长直载流导线之间存在相互作用。进而他用实验证明,在地球磁场中,通电螺线管犹如小磁针样取向。一系列实验结果,提供给他一个重大线索:磁铁的磁性,是由闭合电流产生的。提出分子电流假说,终于得出了两个电流元间的作用力公式。他把自己的理论称作“电动力学”。安培在电磁学方面的主要著作是《电动力学现象的数学理论》,它是电磁学的重要经典著作之一。此外,他还提出,在螺线管中加软铁芯,可以增强磁性。1820年他首先提出利用电磁,现象传递电报讯号。 奥斯特:丹麦物理学家,长期探索电与磁之间的联系。1820年4月终于发现了电流对磁针的作用,即电流的磁效应。同年7月21日以《关于磁针上电冲突作用的实验》为题发表了他的发现。这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。 巴耳末:瑞士数学兼物理学家,发表了氢光谱波长的公式(巴耳末公式),后刊载在1885年《物理、化学纪要》杂志上。巴耳末公式是一个经验公式。它对原子光谱理论和量子物理的发展有很大的影响,为所有后来把光谱分成线系,找出红外和紫外区域的氢光谱线系(如莱曼系、帕邢系、布拉开系等)作出了楷模,对N.玻尔建立氢原子理论也起了重要的作用。

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643 年1月4日--1727 年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005 年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比 阿尔伯特·爱因斯坦更具影响力。 2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein ,1879年3月14日-1955 年4月18日),举世闻名的德裔美国科学

家,现代物理学的开创者和奠基人。 爱因斯坦 1900年毕业于苏黎世工业大学, 1909年开始在 大学任教, 1914年任威廉皇家物理研究所所长兼柏林大学教授。 后因二战爆发移居美国, 1940 年入美国国籍。 十九世纪末期是物理学的变革时期, 爱因斯坦从实验事实出发, 从新考查了物理学的基 本概念, 在 理论上作出了根本性的突破。 他的一些成就大大推动了天文学的发展。 他的量子 理论对天体物理学、 特别 是理论天体物理学都有很大的影响。 理论天体物理学的第一个成熟 的方面——恒星大气理论, 就是在量子 理论和辐射理论的基础上建立起来的。 爱因斯坦的狭 义相对论成功地揭示了能量与质量之间的关系, 解决 了长期存在的恒星能源来源的难题。 近 年来发现越来越多的高能物理现象, 狭义相对论已成为解释这种现 象的一种最基本的理论工 具。其广义相对论也解决了一个天文学上多年的不解之谜, 并推断出后来被验证了 的光线弯 曲现象,还成为后来许多天文概念的理论基础。 爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。 他创立了相对论宇宙学, 建立了 静态有限无边 的自洽的动力学宇宙模型, 并引进了宇宙学原理、 弯曲空间等新概念, 大大推 动了现代天文学的发展。 3:麦克斯韦 ( 经典电动力学、经典统计力学 ) 詹姆斯·克拉克·麦克斯韦,英国物理学家、 数学家。麦 克斯韦主要从事电磁理论、分子物 理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电 磁场理论,将电 学、磁学、 光学统一起来, 是 19 世纪物理学发展的最光辉的成果,是科学史上最伟大的综

往届上海普通高中会考物理真题及答案

往届上海普通高中会考物理真题及答案 考生注意: 1、试卷满分100分,考试时间90分钟。 2、本考试分设试卷和答题纸。试卷包括四大题,第一大题和第二大题均为单项选择题,第三大题为填空题,第四大题为综合应用题。 3、答题前,务必在答题纸上填写姓名、报名号、考场号和座位号,并将核对后的条形码贴在指定位置上。作答必须涂或写在答题纸上,在试卷上作答一律不得分。 4、第一大题和第二大题的作答必须用2B铅笔涂在答题纸上相应的区域,第三大题和第四大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔)。 5、第24、25、26题要求写出必要的文字说明、方程式和重要的演算步骤。 一、单项选择题(共18分,每小题2分。每小题只有一个正确选项) 1.国际单位制中,属于基本单位的是() (A)千克(B)特斯拉(C)牛顿(D)库仑 2.下列各种射线中,属于电磁波的是() (A)α射线(B)β射线(C)γ射线(D)阴极射线 3.如图,质量为m的物体沿倾角为α的固定光滑斜面下滑,则物 体对斜面压力的大小为()

(A)mg sinα(B)mg cosα (C)mg tanα(D)mg cotα 4.静电场的电场线() (A)可以相交(B)是闭合的曲线 (C)起始于正电荷,终止于负电荷(D)是点电荷在电场中运动的轨迹 5.如图,O点为弹簧振子的平衡位置,小球在B、C间做无摩擦 的往复运动。若小球从C点第一次运动到O点历时0.ls,则小 球振动的周期为() (A)0.1s (B)0.2s (C)0.3s (D)0.4s 6.如图,一固定光滑斜面高为H,质量为m的小物体沿斜面从顶 端滑到底端。在此过程() (A)物体的重力势能增加了mgH (B)物体的重力势能减少了mgH (C)重力对物体做的功大于mgH (D)重力对物体做的功小于mgH 7.质量为2kg的质点仅受两个力作用,两个力的大小分别为16N和20N。则该质点加速度的最大值为()

高中物理涉及科学家及其成就

高中物理涉及科学家及其成就 1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。发现摆震动的等时性;伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量G。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础;研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。

高中物理会考试题分类汇编

高中物理会考试题分类汇编 (一)力 1.(95A)下列物理量中,哪个是矢量( ) A.质量 B.温度 C.路程 D.静摩擦力 2.(93A)如图1-1所示,O 点受到F 1和F 2两个力的作用,其中力F 1 沿OC 方向,力F 2沿OD 方向。已知这两个力的合力F =5.0N ,试用作图法求出F 1和F 2,并把F 1和F 2的大小填在方括号内。(要求按给定的标度作图,F 1和F 2的大小要求两位有效数字) F 1的大小是____________;F 2的大小是____________。 3.(94B)在力的合成中,合力与分力的大小关系是( ) A.合力一定大于每一个分力 B.合力一定至少大于其中一个分力 C.合力一定至少小于其中一个分力 D.合力可能比两个分力都小,也可能比两个分力都大 4.(96A)作用在同一个物体上的两个力,一个力的大小是20N ,另一个力的大小是30N ,这两个力的合力的最小值是____________N 。 5.(96B)作用在一个物体上的两个力、大小分别是30N 和40N ,如果它们的夹角是90°,则这两个力的合力大小是( ) A.10N B.35N C.50N D.70N 6.(97)在力的合成中,下列关于两个分力与它们的合力的关系的说法中,正确的是( ) A.合力一定大于每一个分力 B.合力一定小于每一个分力 C.合力的方向一定与分力的方向相同 D.两个分力的夹角在0°~180°变化时,夹角越大合力越小 7.(97)关于作用力和反作用力,下列说法正确的是 ( ) A.作用力反作用力作用在不同物体上 B.地球对重物的作用力大于重物对地球的作用力 C.作用力和反作用力的大小有时相等有时不相等 D.作用力反作用力同时产生、同时消失 8.(98)下列说法中,正确的是 ( ) A.力的产生离不开施力物体,但可以没有受力物体 B.没有施力物体和受力物体,力照样可以独立存在 C.有的物体自己就有一个力,这个力不是另外的物体施加的 D.力不能离开施力物体和受力物体而独立存在 9.(98)大小分别为15N 和20N 的两个力,同时作用在一个物体上,对于合力F 大小的估计,正确的说法是( ) A.15N ≤F ≤20N B.5N ≤F ≤35N C.0N ≤F ≤35N D.15N ≤F ≤35N 10. F 1、F 2的合力为F ,已知F 1=20N ,F =28N ,那么F 2的取值可能是 ( ) A.40N B.70N C.100N D.6N D 图1-1

高中物理会考(学业水平考试)公式及知识点总结

高中物理会考公式概念总结 一、直线运动: 1、匀变速直线运动: (1)平均速度 t x v = (定义式) 平均速度的方向即为运动方向 v -平均速度 国际单位:米每秒m/s 常用单位:千米每时 km/h 换算关系 1m/s=3.6km/h (2)加速度t v v t v a 0t -=??= 加速度描述速度变化的快慢,也叫速度的变化率 {以Vo 为正方向,a 与Vo 同向(做加速运动)a>0;反向(做减速运动)则a<0} 注:主要物理量及单位:初速度(0v ):m/s ; 加速度(a):m/s 2; 末速度(t v ):m/s ; 时间(t):秒(s); 位移(x):米(m ); 路程(s):米(m ); 三个基本物理量:长度 质量 时间 对应三个基本单位:m kg s (3) 基本规律: 速度公式 at v v t +=0 位移公式 2012x t at v = + 几个重要推论: (1)ax v v t 2202=- (o v 初速度,t v 末速度 匀加速直线运动:a 为正值,匀减速直线运动(比如刹车):a 为负值,) (2) A B 段中间时刻的即时速度: *(3) AB 段位移中点的即时速度: V =022t t V V x V t +== 2 s V =注意 都是在什么条件下用比较好?(在什么条件不知或不需要知道或者也用不到时,该用哪个公式?) (5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: (a 一匀变速直线运动的加速度,T 一每个时间间隔的时间) (用来求纸带问题中的加速度,注意单位的换算) (6)自由落体: ①初速度Vo =0 ②末速度gt V t = ③下落高度221gt h = (从Vo 位置向下计算) ④推论22t V gh = 全程平均速度 2 t V V =平均 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a =g =9.8m/s 2≈10m/s 2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 二、相互作用: 1、重力G =mg (方向竖直向下,g =9.8m/s 2≈10m/s 2,作用点在重心,重心不一定在物体上,适用于地球表面附近) 2、弹力,胡克定律:x F k =弹(x 为伸长量或压缩量;k 为劲度系数,只与弹簧的原长、粗细和材料有关) 2aT x =?

物理学史名人排行榜

1.艾萨克·牛顿 艾萨克·牛顿——英格兰物理学家、数学家、天文学家、自然哲学家。杰出贡献是对万有引力和三大运动定律进行了描述,这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。 2.阿尔伯特·爱因斯坦 爱因斯坦——美籍德裔犹太人,现代物理学的开创者和奠基人,相对论的提出者,“决定论量子力学诠释”的捍卫者,他在科学史中有着不可磨灭的地位和影响。 3.詹姆斯·麦克斯韦 麦克斯韦——19世纪伟大的英国物理学家、数学家。他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他为物理学树起了一座丰碑。 4.尼尔斯·玻尔 尼尔斯·亨利克·戴维·玻尔——丹麦物理学家。他通过引入量子化条件,提出了玻尔模型来解释氢原子光谱,提出互补原理和哥本哈根诠释来解释量子力学,对二十世纪物理学的发展有深远的影响。 5.阿基米德 阿基米德——古希腊伟大的数学家、力学家。阿基米德对数学和物理的发展做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感,他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。 6.维尔纳·海森堡 维尔纳·卡尔·海森堡——德国物理学家。量子力学是整个科学史上最重要的成就之一,他的《量子论的物理学基础》是量子力学领域的一部经典著作。 7.伽利略·伽利雷 伽利略——意大利物理学家、天文学家和哲学家,将定量分析引入物理学,爱因斯坦认为是他开创了近现代物理学的研究方法。他创制了天文望远镜来观测天体,他发现了月球表面的凹凸不平,并亲手绘制了第一幅月面图。先后发现了木星的四颗卫星、土星光环、太阳黑子、太阳的自转、金星和水星的盈亏现象等等。这些发现开辟了天文学的新时代。 8.安德烈·玛丽·安培 安德烈·玛丽·安培——法国物理学家,安培在他的一生中,只有很短的时期从事物理工作,可是他却能以独特的、透彻的分析,论述带电导线的磁效应,因此称他是电动力学的先创者,他是当之无愧的。

2021-2022年高中会考物理试题 含答案

2021年高中会考物理试题 含答案 2.下列用电器中,主要利用电流热效应工作的是 A .电风扇 B .计算机 C .电烙铁 D .电视机 3.在物理学史上,首先提出万有引力定律的科学家是 A .牛顿 B .焦耳 C .安培 D .伏特 4.如图l 所示,力F 1、F 2是两个相互垂直的共点力,其中F 1=3N ,F 2=4N ,则F 1、F 2的合力大小为 A .2N B .5N C .10N D .12N 5.如图2所示,一根劲度系数为k 、原长为x 0的轻质弹簧,其左端固定在墙上,右端与一个小球相连.当弹簧被拉伸至长度为x 时(在弹性限度内),弹簧对小球的弹力大小为 A .k x 0 B .k x 2 C .k (x -x 0) D .k (x -x 0)2 6.真空中有两个静止的点电荷,它们之间静电力的大小为F .若保持这两个点电荷之间的

距离不变,将它们的电荷量都变成原来的一半,则改变电荷量后这两个点电荷之间静电力的大小为 A.16F B.9F C.D. 7.如果不计空气阻力,下列过程中机械能守恒的是 A.货箱沿斜面匀速向上滑动的过程B.电梯匀速上升的过程 C.小孩沿滑梯匀速下滑的过程D.抛出的棒球在空中运动的过程 8.如图3所示,一通电直导线位于匀强磁场中,导线与磁场方向垂 直.磁场的磁感应强度B=0.1T,导线长度L=0.2m.当导线中的电 流I=lA时,该导线所受安培力的大小为 A.0.02N B.0.03N C.0.04N D.0.05N 9.如图4所示,虚线MN为一小球在水平面上由M到N的运动轨 迹,P是运动轨迹上的一点.四位同学分别画出了带有箭头的线 段甲、乙、丙、丁来描述小球经过P点时的速度方向.其中描述 最准确的是 A.甲B.乙 C.丙D.丁 10.如图5所示,一物体静止在水平面上,在水平恒力F作用下由静止开始运动,前进距离为x时,速度达到v,此时力F的功率为 A.Fv B.Fx C.2 Fv D.2 Fx 11.在xx年世界蹦床锦标赛中,中国队包揽了女子单人蹦床比赛的金牌和 银牌.对于运动员身体保持直立状态由最高点下落至蹦床的过程(如图6 所示),若忽略空气阻力,关于运动员所受重力做功、运动员的重力势能, 下列说法中正确的是 A.重力做负功,重力势能增加 B.重力做负功,重力势能减少 C.重力做正功,重力势能减少 D.重力做正功,重力势能增加 12.甲、乙两车在路口等候绿灯.绿灯亮后,两车同时由静止加速.甲车经过4.0s加速到10m/s后做匀速运动,乙车经过4.0s加速到15m/s后做匀速运动.若将两车的加速过程均视为匀加速直线运动,对于两车加速过程中的加速度大小,下列说法中正确的是A.甲车的加速度大于乙车的加速度 B.甲车的加速度小于乙车的加速度

高中阶段常见的物理学家及其贡献

高中阶段常见的物理学家及其贡献2012-2-2 14:03阅读(23) 下一篇:今天,是一个中点 |返回日志列表 ?赞 ?转载(5) ?分享 ?评论 ?复制地址 ?更多 1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。13、安培:法国科学家;提出了著名的分子电流假说。14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;

中外著名物理学家

中外著名物理学家 一、卡诺(SadiCarnot,1796—1832年)法国军事工程师、物理学家。1796年6月1日生于巴黎。1824年卡诺发表《论火的动力》,文章中指出了提高热机效率的方向。他引入工作循环的概念,这就是所谓的“卡诺循环”。还以热质为基础证明效率最高的热力学发动机,它的所有的工作循环都是可逆的。显然,热质的观念是错误的,但他提出的原理却是正确的。他说:在用理想气体所作的由体积的等温变化和绝热变化组成的循环过程中,如果冷凝器的温度高于绝对零度,就无法避免热量从热源传递到冷凝器。这一原理后来被克劳修斯和开尔文加以论证,推广为热力学第二定律。1832年8月24日卡诺在巴黎去世。值得一提的是他在逝世之前已经发现了热功转化的规律,放弃了他原来信奉的热质说。 二、托马斯·杨(ThomaxYoung,1773—1829年)英国医生兼物理学家,光的波动说的奠基人之一。1773年6月13日生于萨默塞特郡的米菲尔顿。他从小就有神童之称,兴趣十分广泛。后来进入伦敦的圣巴塞罗缪医学院学医,21岁时,即以他的第一篇医学论文成为英国皇家学会会员。为了进一步深造,他到爱丁堡和剑桥继续学习,后来又到德国哥廷根去留学。在那里,他受到一些德国自然哲学家的影响,开始怀疑起光的微粒说。1801年进行了著名的杨氏干涉实验,为光的波动说的复兴奠定了基础。1829年5月10日杨氏在伦敦逝世。 科学成就:1.著名的杨氏干涉实验,为光的波动说奠定一基础。2.对人眼感知颜色的研究,建立三原色原理3.对弹性力学的研究:托马斯·杨对弹性力学很有研究,特别是对胡克定律和弹性模量。后人为了纪念杨氏的贡献,把纵向弹性模量(正应力与线应变之比)称为杨氏模量。他还首先使用运动物体的能量一词来代替活力。 三、里特(JohannWilhelmRitter,1776—1810年)德国物理学家。1776年12月16日诞生于德国西里西亚的海诺夫附近的沙米茨。里特从小在拉丁语学校念书,14岁辍学后去里格尼茨的一家药店当学徒。他在学卖药的5年中,贪婪地阅读了化学等方面的书籍。1796年考入耶拿大学。进大学不久,他的才能就被冯·洪堡德(1769—1859)教授发现。在教授的指导下,里特开始独立地进行电学的研究。1797年到1804年,年轻的里特在化学和电生理学方面作出了出色的成果,博得欧洲学术

TOP20 物理学家简介

物理学家简介 1 伽利略 伽利略·伽利莱(Galileo Galilei,1564年2月15日-1642 年1月8日),意大利物理学家。其成就包括改进望远镜 和其所带来的天文观测,以及支持哥白尼的日心说。史蒂 芬·霍金说,“自然科学的诞生要归功于伽利略。”阿尔伯 特·爱因斯坦称他为现代科学之父。 伽利略的所有试验中,最著名的该算是“质量相异者同时落 地”,这个试验推翻了亚里士多德的关于落体速度与其质量 成正比的理论。 2 牛顿 艾萨克·牛顿(Sir Isaac Newton,1643年1月4日-1727 年3月31日),英格兰物理学家。他在1687年发表的论 文《自然哲学的数学原理》里,对万有引力和三大运动定 律进行了描述。这些描述奠定了此后三个世纪里物理世界 的科学观点,并成为了现代工程学的基础。 一则著名的故事称,牛顿在受到一颗从树上掉落的苹果启 发后,阐示出了他的万有引力定律。漫画作品更认为,掉 落的苹果正好砸中了牛顿的脑门,它的碰撞让他不知何故 地明白了引力。 3 托马斯·杨 托马斯·杨(Thomas Young,1773年6月14日-1829 年5月29日),英国医生、物理学家,光的波动说的奠基 人之一。托马斯·杨在物理学上作出的最大贡献是关于光 学,特别是光的波动性质的研究。1801年他进行了著名的 杨氏双缝实验,证明光以波动形式存在,而不是牛顿所想 象的光粒子(Corpuscles)。二十世纪初物理学家将杨的 双缝实验结果和爱因斯坦的光量子假说结合起来,提出了 光的波粒二象性,后来又被德布罗意利用量子力学引申到 所有粒子上。

奥古斯丁·菲涅耳(Augustin Fresnel,1788年5月10日 -1827年7月14日),法国物理学者,是波动光学理论的 主要创建者之一。菲涅耳专门对光的属性做理论与实验研 究。 他的发现与数学演绎,发扬光大托马斯·杨的实验工作,将光 的波动学扩展至更多的光学现象。 5 法拉第 迈克尔·法拉第(Michael Faraday,1791年9月22日- 1867年8月25日),英国物理学家,也精于化学,在电 磁学及电化学领域有所贡献。 虽然法拉第只受过很少的正式教育,这使得他的高等数学知 识(例如微积分)相对有限,但不可否认,法拉第仍是历史 上最有影响力的科学家之一。某些科学史学家认为他是科学 史上最优秀的实验主义者。 6 麦克斯韦 詹姆斯·麦克斯韦(英语:James Clerk Maxwell),1831 年6月13日-1879年11月5日),英国理论物理学家 和数学家。经典电动力学的创始人,统计物理学的奠基人 之一。麦克斯韦被普遍认为是对二十世纪最有影响力的十 九世纪物理学家。他对基础自然科学的贡献仅次于艾萨 克·牛顿、艾尔伯特·爱因斯坦。

2017年高中物理会考知识点总结

2017高中物理会考知识点总结 第1章力 一、力:力是物体间的相互作用。 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; (1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等; (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之和; (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 二、矢量:既有大小又有方向的物理量。如:力、位移、速度、加速度、动量、冲量 标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量 三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零; 1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向; 2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向; 3、处于平衡状态的物体在任意两个相互垂直方向的合力为零; 第2章直线运动 一、机械运动:一物体相对其它物体的位置变化,叫机械运动; 1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止); 2、质点:只考虑物体的质量、不考虑其大小、形状的物体; (1)质点是一理想化模型; (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时; 如:研究地球绕太阳运动,火车从北京到上海; 3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

相关主题
文本预览
相关文档 最新文档