当前位置:文档之家› 汽车驱动桥壳的有限元法分析及提高强度措施

汽车驱动桥壳的有限元法分析及提高强度措施

汽车驱动桥壳的有限元法分析及提高强度措施
汽车驱动桥壳的有限元法分析及提高强度措施

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

汽车驱动桥设计

徐州工程学院成人教育学院 图书分类号: 密级: 毕业设计(论文) 汽车驱动桥设计Automobile driving axle design 姓名史志伟 学号070900074 专业机械设计制造及其自动化 指导教师李志 2011年11月18日

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键字:轻型货车;驱动桥;主减速器;差速器

Abstract Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed,bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given ,firstly determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words light truck drive axle single reduction final drive

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

驱动桥有限元分析(1)

基于ANSYS的汽车驱动桥壳的有限元分 析 武汉理工…-icad 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均 使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重 力之差,受力如图1所示。

14断开式桥壳有限元分析方法--王希诚

断开式驱动桥有限元研究 王希诚 东风汽车公司技术中心

断开式驱动桥有限元研究 The Finite Element Analysis Method of the Divide Axle 王希诚 (东风汽车集团技术中心) 摘要:本文以某越野车断开式驱动桥为研究对象,利用HyperWorks进行仿真计算。通过与该桥壳破坏试验结果的对比分析,验证该断开式桥壳分析方法的可行性。 关键词:有限元断开式桥壳 Abstract By using the HyperWorks simulation, the paper is studied the divide axle. Compared with the result of the destructive test, confirms the feasibility of the analysis method. Keyword:FEM,Divide Axle 1 前言 断开式驱动桥总是与独立悬挂相匹配,又称为独立悬挂驱动桥。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况与对各种地形的适应性比较好,由此可大大地减小汽车在不同路面上行驶时的振动和车厢倾斜;提高汽车的行驶平顺性和平均行驶速度;减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对平顺性要求较高的一部分轿车及一些越野车。越野车对越野性能要求比较高,开发的新一代越野车多采用断开式驱动桥。 鉴于目前重型货车多采用非断开式驱动桥,CAE仿真分析的工作者就非断开式驱动桥展开了很多工作;但断开式驱动桥的有限元分析工作却仅在各单位内部开展。为了丰富各种桥壳的分析方法,特写此文,希望能达到抛砖引玉的作用。 2 模型介绍 2.1 处理软件说明

汽车驱动桥的基本结构及发展方向

万方数据

重型汽车驱动桥的基本结构及发展方向 作者:高志刚 作者单位:河北省张北县交通局,076450 刊名: 科学与财富 英文刊名:SCIENCES & WEALTH 年,卷(期):2010,(8) 被引用次数:0次 相似文献(10条) 1.期刊论文刘永辉.朱小波重型汽车驱动桥的基本结构及发展方向-科技经济市场2006(8) 全面阐述了重型汽车驱动桥的基本结构及发展趋势. 2.期刊论文金荣植新型重型汽车驱动桥锥齿轮材料17Cr2Mn2TiH钢-汽车工艺与材料2008(9) 对采用我国新研制的17Cr2Mn2TiH钢生产的重型汽车驱动桥圆锥齿轮进行了台架寿命试验,结果表明,该齿轮完全可以达到重型汽车驱动桥齿轮的相关技术要求.同时,采用17Cr2Mn2TiH钢替代含Ni较高的17CrNiM06H、20CrNi3H等钢,不仅大大降低了齿轮钢材成本,而且热处理工艺简单.因此可以大大降低其制造成本.这是目前我国重型汽车驱动桥齿轮行业摆脱制造成本过高的一种很好尝试. 3.会议论文严欣贤.周跃良.白志成重型汽车主减速器疲劳寿命试验扭矩的确定研究2005 本文通过对重型汽车驱动桥的疲劳寿命试验方法的研究,在指出传统等幅加载方法不足的的基础上,根据汽车齿轮的疲劳寿命与应力的关系曲线重新确定了重型车驱动桥疲劳寿命试验方法,其它类型的车辆的驱动桥疲劳台架试验可参考该方法确定驱动桥的疲劳试验载荷. 4.期刊论文严伯昌重型汽车驱动桥总成的检修-工程机械与维修2007(11) 重型汽车驱动桥总成主要由驱动桥壳体、主减速器总成(含差速器)、轮边减速器总成、制动钳以及全浮式左右半轴等部分组成.任何壳体类零件出现微小裂纹或壳体轻微变形均可导致零件间相对位置精度及齿轮间的啮合关系发生改变,从而降低驱动桥的作业效率和使用寿命,影响整机的使用性能和作业能力.因此应做好以下几个部件的检修. 5.期刊论文金荣植重型汽车驱动桥齿轮材料与工艺对疲劳性能影响的探讨-汽车工艺与材料2009(11) 对于重型汽车驱动桥齿轮一般需进行疲劳性能考核.试验方法是将被考核齿轮以总成形式安装在总成试验台上,使其在与实际工作条件接近一致的情况下运行. 6.学位论文李欣重型货车驱动桥桥壳结构分析及其轻量化研究2006 驱动桥桥壳是汽车上重要的承载件和传力件,作为具有广泛应用市场的非断开式驱动桥的桥壳不仅支承汽车重量,将载荷传递给车轮,而且还承受由驱动车轮传递过来的牵引力、制动力、侧向力、垂向力的反力以及反力矩,并经悬架传给车架或车身。并且在汽车行驶过程中,由于道路条件的千变万化,桥壳受到车轮与地面间产生的冲击载荷的影响,可能引起桥壳变形或折断。因此,驱动桥壳应具有足够的强度、刚度和良好的动态特性,合理地设计驱动桥壳也是提高汽车平顺性的重要措施。 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低,由于与带轮边减速器的驱动桥相比,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加,结构简单。因此,未来重型车车桥将由典型的斯太尔双级减速驱动桥向单级桥方向发展。本文正是以新型的10T级的单级减速驱动桥的桥壳为研究对象。 本文的重点是:以有限元静态分析、动态分析及机械结构优化设计理论为基础,将CAD软件UG和有限元分析软件ANSYS结合起来,完成了从驱动桥壳三维建模到有限元分析的整个过程,得出了驱动桥壳在四种典型工况下的应力分布和变形结果及它在自由约束状态的前16阶固有频率和振型,计算证明,该桥壳满足强度要求,可以认为它在汽车各种行驶条件下是可靠的,并且不会引起共振。在此基础上,应用ANSYS的优化模块对其进行结构优化,优化结果表明,桥壳质量有了明显的减少,最大等效应力接近许用应力,大大提高了材料的利用率,且应力分布更加合理。其中,本文总结了使用以上软件建立模型及有关分析和优化工况的规范化步骤,以达到提高工作效率的目的,得到了有益于工程实际的结论。 研究结果表明,利用CAD建模技术和CAE分析技术可以显著提高汽车驱动桥桥壳的设计水平、缩短设计周期、降低开发成本并提高产品竞争力。该方法具有普遍性,可以为其他类型的驱动桥桥壳的设计和分析提供借鉴和参考。 7.期刊论文赵娜.李静.ZHAO Na.LI Jing新型独立悬架断开式重型驱动桥-农业装备与车辆工程2009(12) 自行设计的独立悬架断开式重型驱动桥由主减速器、差速器、半轴、油气弹簧、上下摆臂和桥壳等组成.其应用提高了重型汽车的动力性、平顺性和通过性. 8.期刊论文范翠玲.牟均发.Fan Cuiling.Mou Junfa TL3400系列非公路用自卸车-工程机械2007,38(10) TL3400系列非公路用自卸车是陕西同力重工有限公司在吸收国内外重型汽车、工程机械先进技术基础上,历时近三年研发成功的具有自主知识产权、适应于多种特定用途的经济适用型非公路运输车辆.为土方运输和各种露天矿剥岩、矿石运输提供了经济、高效、低耗的运输设备.介绍TL3400系列非公路自卸车的主要技术指标,结构及特点.该车具有适应重载工况而特殊设计的悬挂系统、16t级加强型宽体工程驱动桥、14.00-20型宽大工程轮胎,使得该车具有超强的承载能力,同时提供了超强的附着能力,保证了车辆的制动稳定性和良好的通过性,采用了大速比工程驱动桥,其输出转矩比同功率公路车大30%以上,爬坡能力强劲,重载起步顺畅.转向系统采用了机械式液压内助力加外助力的结构,保证重型车转向操纵的轻便性和准确性. 9.期刊论文杨金文.YANG Jin-wen冲焊式153载重汽车驱动后桥壳加工工艺的改进-机械工程师2009(7) 153载重汽车驱动桥是重型汽车选用较广的驱动后桥,而冲焊桥壳具有外观好、重量轻、清洁度高、故障率低等优点.文中介绍了改善桥壳外观、提高焊接质量、减少生产过程中的桥壳变形、提高桥壳加工精度的工艺改进. 10.期刊论文王元荪重型汽车专利摘编(六)-重型汽车2005(6) 专利名称:一种铸态高屈服强度球墨铸铁材料 专利申请号:200310114496.7 公开号:CN1554793 申请人:中国重型汽车集团有限公司 本发明属于铸造材料的技术领域,特别涉及一种铸态高屈服强度球墨铸铁材料.用于重型汽车大吨位、高牵引力的驱动桥差速器壳.本发明的球墨铸铁材料,其化学成分的重量百分比为,C:3.5~ 3.8%,Si:2.0~2.5%,Mn:0.4~0.6%,Cu:0.5~0.7%,Mo:0.25~0.35%,Ni:0.3~0.5%,P≤0.06%,S≤0.03%,Ti≤0.05%,Cr≤0.1%,余量为Fe. 本文链接:https://www.doczj.com/doc/877902415.html,/Periodical_kxycf201008018.aspx

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析 牟建宏 (西南大学工程技术学院,北碚 400715) 摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS 0引言 驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介 1.1有限元法的定义 有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。 1.2有限元法的基本原理 将连续的求解域离散为一组单元的组合体,用在每个单元假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。 1.3有限元分析的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析 JIU JIANG UNIVERSITY 毕业论文 题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院 专业车辆工程 姓名 班级 指导教师 摘要 本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。因此,驱动桥壳的研究对于整车性能的控制是很重要的。 本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为 桥壳设计提出可行的措施和建议。 【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析

Abstract This graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage. The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys. 【Key words】 Finite element method,UG,ANSYS,Drive axle housing,Static analysis,Modal analysis 目录 前言 1 第一章绪论 2

轿车差速器的设计与桥壳有限元分析

轿车差速器设计及驱动桥壳的有限元分析 ee (ee) 指导老师:ee [摘要]本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明,通过运用PRO/E软件对差速器进行三维建模工作,差速器的非标准零件的设计计算,比如行星齿轮,半轴齿轮,垫圈,还有十字轴,通过这一系列的计算,得到了详细准确的设计参数,为PRO/E的差速器建模工作奠定了基础,工程图的制定则是根据对所测绘零件的技术要求的分析,进一步巩固和完善所学的机械制图知识,结合已学的专业知识,合理的选择装配公差、加工余量,涉及的专业知识广泛,对提高自身的专业知识应用能力有重大的意义。对差速器的工作状况进行运动仿真,运动仿真是运用三维建模后装配,并使用销钉、刚性等各种连接后加上各类运动副,如齿轮副、凸轮机构等,添加伺服电机对所设计的装配体进行运动学分析通过仿真输出数据与理论数据进行比较,并检查干涉,修改不合理零部件。并对驱动桥壳的工况进行有限元分析,有限元结构分析则是通过对零件三维模型的载荷,约束等情况的分析,结合所学有限元理论,对零件的强度在PRO/E的结构分析模块下做校核,并根据计算的应力对零部件做相应的改进设计,为企业生产提供理论基础。 [关键词]行星齿轮,半轴齿轮,十字轴,运动仿真,有限元分析

The Design of Vehicle’s Differential and the Finite Element Analysis about the Driving Axle Housing ee (ee ) Tutor: ee Abstract:The design of the main drivers on the installation of the bridge in between the two axle differential design, mainly related to the differential structure of non-standard parts such as gear parts and standards for design and calculation, but also introduced the development of differential status and the type of differential. For differential selection and the principle of the program have also made a brief note. Building the differential’s 3D modeling through the use of PROE sofeware , differential calculation in the design of non-standard parts, such as planetary gear, axle shaft gear, the gasket , and cross axis, through a series of calculation, get the accurate and detailed design parameters, for PRO/E differential modeling work laid a foundation , formulation is based on the engineering drawing for the parts of surveying and mapping analysis of the technical requirements of the further consolidate and improve the knowledge of mechanical drawing, combining has to learn professional knowledge , Reasonable selective assembly tolerance allowance involves extensive professional knowledge, to improve their professional knowledge application ability is of great significance. On the working conditions of differential motion simulation, motion simulation is to use 3 d modeling after assembly, and use the pin after connected rigid, etc and all kinds of motion pair, such as gear CAM mechanism, etc. Add by design of the servo motor assembly kinematic analysis by comparing the simulation output data with theoretical data, and check the interference, modify unreasonable parts. And carries on the finite element analysis on the operation condition of the drive axle housing, the finite element structure analysis is based on a load of parts 3 d model, the constraints such as case analysis, combined with the finite element theory, we learned about the strength of the parts under the structure analysis module of PRO/E to do checking. And according to the calculation of the stresses on the parts to do the corresponding improvement design .Provides the theoretical foundation for the enterprise production Keywords:planetary gear , axle shaft gear, universal joint pin, exercise simulation, finite element analysis

汽车驱动桥设计

车辆工程专业课程设计 学院机电工程学院班级 12级车辆工程 姓名黄扬显学号 20120665130 成绩指导老师卢隆辉 设计课题某型轻型货车驱动桥设计 2015 年11 月15 日

整车性能参数(已知) 驱动形式: 6×2后轮 轴距: 3800mm 轮距前/后: 1750/1586mm 整备质量 4310kg 额定载质量: 5000kg 空载时前轴分配轴荷45%,满载时前轴分配轴荷26% 前悬/后悬: 1270/1915mm 最高车速: 110km/h 最大爬坡度: 35% 长宽高: 6985 、2330、 2350 发动机型号: YC4E140—20 最大功率: 99.36kw/3000rmp 最大转矩: 380N·m/1200~1400mm 变速器传动比: 7.7 4.1 2.34 1.51 0.81 倒档传动比: 8.72 轮胎规格: 9.00—20 离地间隙: >280mm

1总体设计 (3) 1.1 非断开式驱动桥 (3) 1.2 断开式驱动桥 (4) 2 主减速器设计 (4) 2.1 主减速器结构方案分析 (4) 2.1.1 螺旋锥齿轮传动 (4) 2.2 主减速器主、从动锥齿轮的支承方案 (5) 2.2.1 主动锥齿轮的支承 (5) 2.2.2 从动锥齿轮的支承 (5) 2.3 主减速器锥齿轮设计 (5) 2.3.1 主减速比i0的确定 (6) 2.3.2 主减速器锥齿轮的主要参数选择 (7) 2.4 主减速器锥齿轮的材料 (8) 2.5 主减速器锥齿轮的强度计算 (9) 2.5.1 单位齿长圆周力 (9) 2.5.2 齿轮弯曲强度 (9) 2.5.3 轮齿接触强度 (10) 2.6 主减速器锥齿轮轴承的设计计算 (10) 2.6.1 锥齿轮齿面上的作用力 (10) 2.6.2 锥齿轮轴承的载荷 (11) 2.6.3 锥齿轮轴承型号的确定 (13) 3 差速器设计 (15) 3.1 差速器结构形式选择 (15) 3.2 普通锥齿轮式差速器齿轮设计 (15) 3.3 差速器齿轮的材料 (17) 3.4 普通锥齿轮式差速器齿轮强度计算 (18) 4 驱动桥壳设计 (19) 4.1 桥壳的结构型式 (19) 4.2 桥壳的受力分析及强度计算 (20) 致谢 (22) 参考文献 (23)

五菱之光微型客车后驱动桥设计开题报告 (30)

毕业设计(论文)开题报告 题目:五菱之光微型客车后驱动桥设计

一.毕业设计(论文)综述 1.题目背景和研究意义 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力和横向力[1]。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。随着高等级公路的发展,汽车的车速正在日益提高,同时节约能源,减少污染的环境意识使得发动机又正向着大转矩和低转速的方向发展。为适应以上情况,汽车驱动桥的减速比应该减小,此时不必在桥中采用双级减速。因而目前在国外的公路型车上已广泛地采用单级减速桥,单级桥具有成本低,质量轻,维修保养简单,传动效率高,噪音小,温升低和整车油耗低等优点。目前,国外单级驱动桥与双级驱动桥应用比例约为8:2[2]。 随着中国公路建设水平的不断提高,公路运输车辆正向大吨位,多轴化,大马力方向发展,使得重型车桥总成也向传动效率高的单级减速方向发展单级驱动桥结构简单,机械传动效率高,易损件少,可靠性高。由于单级桥传动链减少,摩擦阻力小,比双级桥省油,噪声也小过去,单级桥因为桥包尺寸大,离地间隙小,导致通过性较差,应用范围相对较小,但是现在公路状况已经得到了显著改善,重型汽车使用条件对通过性的要求降低这种情况下,单级桥的劣势得以忽略,而其优势不断突出[3]。陕汽总厂现有驱动桥结构中除了引进的斯太尔轮边行星式双级减速桥技术性比较先进外,其它类品种均不能令人满意,虽然斯太尔轮边桥有一定的优势,但显然其结构复杂,成本较高,而且它不适用于客车[4],所以对驱动桥的研究有重要意义。 2.国内外相关研究情况 虽然驱动桥现状有所改观,但由于我国汽车行业起步晚,而且多数技术依赖于进口,所以,想达到全盘优化还存在着很多困难[5]。例如:缺乏设计和研发能力;基础材料水平比较落后,主要体现在材料分类和使用方面比较粗放;技工技术的欠缺也是一大障碍,驱动桥内重要部分是减速器,主要是主动锥齿轮和起差速作用的行星齿轮,因此齿轮的加工技术和热处理能力从很大程度上决定了车桥的稳定性和可靠性,齿轮的材料和加工精度决定着车桥的承载能力和使用寿命[6]。 此次课题对驱动桥的研究,主要是在驱动桥满足汽车使用要求和结构强度要求的基础上,设计出结构合理,体积小,质量轻的驱动桥,实现轻量化和汽车通过性以及对道路环境适应性的优化。驱动桥设计应当满足如下基本要求[7]: 1)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 2)外形尺寸要小,保证有必要的离地间隙。 3)齿轮及其他传动件工作平稳,噪音小。

相关主题
文本预览
相关文档 最新文档