当前位置:文档之家› 等差数列的性质以及常见题型

等差数列的性质以及常见题型

等差数列的性质以及常见题型
等差数列的性质以及常见题型

等差数列的性质以及常见题型

上课时间: 上课教师: 上课重点:掌握等差数列的常见题型,准确的运用等差数列的性质 上课规划:掌握等差数列的解题技巧和方法 一 等差数列的定义及应用

1.已知数列{}n a 的通项公式为23+-=n a n ,试问该数列是否为等差数列。

2.已知:z

y x 1

,1,1成等差数列,求证:z

y

x y x z x z y +++,,也成等差数列。

思考题型;已知数列{}n a 的通项公式为qn pn a n +=2(,,R q p ∈且p,q 为常数)。 (1)当p 和q 满足什么条件时,数列{}n a 是等差数列? (2)求证:对于任意实数p 和q ,数列{}n n a a -+1是等差数列。

二 等差数列的性质考察

(一)熟用d m n a d n a a m n )()1(1-+=-+=,m

n a a d m

n --=

问题 (注意:知道等差数列中的任意项和公差就可以求通项公式) 1、等差数列{}n a 中,350a =,530a =,则=9a . 2、等差数列{}n a 中,3524a a +=,23a =,则6a = . 3、已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = .

4、一个等差数列中15a = 33,25a = 66,则35a =________________.

5、已知等差数列{}n a 中,q a p =,p a q =,则____=+q p a . (二)公差d 的巧用 (注意:等差数列的项数)

1、已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差等于_____

2、等差数列123,,,,n a a a a L 的公差为d ,则数列1235,5,5,,5n a a a a L 是(

A .公差为d 的等差数列

B .公差为5d 的等差数列

C .非等差数列

D .以上都不对

3、等差数列{}n a 中,已知公差12

d =,且139960a a a +++=L ,则12100a a a +++=L

A .170

B .150

C .145

D .120

4.已知y x ≠,且两个数列y a a a x m ,,,,21???与y b b b x n ,,,,21???各自都成等差数列,

121

2b b a a --等于 ( ) A n m B 11++n m C m n D 1

1++m n 5.一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差d 为( )

A -2

B -3

C -4

D -5

(三)t s n m a a a a t s n m +=+?+=+性质的应用 (注意:角标的数字)

1. 等差数列{}n a 中,若45076543=++++a a a a a ,则_____82=+a a 。

2.等差数列{}n a 中,若4507654=+++a a a a ,则_____10=S 。

3.等差数列{}n a 中,若2013=S 。则_______7=a 。

4.等差数列{}n a 中,若1011=a ,则_______21=S 。

5.在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+=_______。

6.等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则_____20=S 。

7.在等差数列{}n a 中,4512a a +=,那么它的前8项和8S 等于_______。

8.如果等差数列{}n a 中,34512a a a ++=,那么127a a a +++=

L

_______。

9.在等差数列{}n a 中,已知1234520a a a a a ++++=,那么3a 等于_______。 10.等差数列{}n a 中,它的前5项和为34,最后5项和146,所有项和为234,则

_______7=a .

11.已知数列{a n }的前n 项和S n =n 2+3n +1,则a 1+a 3+a 5+…+a 21=_______。

12.{a n }为等差数列,a 1+ a 2+ a 3=15,a n + a n -1+ a n -2=78,S n =155,则n = _______。 (四)方程思想的运用

(注意:联立方程解方程的思想)

1.已知等差数列{a n }中,S 3=21,S 6=24,求数列{a n }的前n 项和n S

2. 已知等差数列{a n }中,1673-=a a ,064=+a a ,求数列{a n }的前n 项和n S

(五)n n n n n S S S S S 232,,--也成等差数列的应用

1、等差数列前m 项和是30,前2m 项和是100,则它的前3m 项和_______。

2、等差数列{a n }的前n 项的和为40,前2n 项的和为120,求它的前3n 项的和为_______。

3.已知等差数列{a n }中,,12,493==S S 求15S 的值.

4.已知等差数列{a n }中,,4,2654321=++=++a a a a a a 则181716a a a ++的值

5.a 1,a 2 , a 3,…… a 2n +1 为 等差数列,奇数项和为60,偶数项的和为45,求该数列的项数.

6.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有_______。

7.在等差数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是_______。 (六)1

21

2-=

-n S a n n 的运用 1.设n S 和n T 分别为两个等差数列{}{}n n b a ,的前n 项和,若对任意*n N ∈,都有

71

427

n n S n T n +=

+ ,则1111b a = ________ 。 2.设n S 和n T 分别为两个等差数列{}{}n n b a ,的前n 项和,若对任意*n N ∈,都有

n n T s =3413-+n n ,则7

7b a

= ________ 。 3.有两个等差数列{}n a ,{}n b ,

其前n 项和分别为n S ,n T ,若对n +∈N 有72

23

n n

S n T n +=

+

成立,求55

a b =( )。

(七)n a 与n S 的关系问题;

1.数列{}n a 的前n 项和23n S n n -=,则n a =___________

2.数列{}n a 的前n 项和21n S n n ++=,则n a =___________

3.数列{}n a 的前n 项和22n S n n -=,则n a =___________

4.数列{}n a 的前n 项和24n S n n +=3,则n a =___________

5.数列{}n a 的前n 项和1n n S -=2,则n a =___________

6.数列}24{-n 的前n 项和n S =______.

7. 数列}84{+-n 的前n 项和n S =______.

8. 数列}{n a 的前n 项和2n S =8n -10.则______=n a (八)巧设问题;

一般情况,三个数成等差数列可设:d a a d a +-,,;四个数成等差数列可设:d a d a d a d a 3,,,3++--.

1.三个数成等差数列,和为18,积为66,求这三个数.

2.三个数成等差数列,和为18,平方和为126,求这三个数.

3.四个数成等差数列,和为26,第二个数和第三个数的积为40,求这四个数.

4.四个数成等差数列,中间两个数的和为13,首末两个数的积为22,求这四个数.

5.一个等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32:27,求公差

(九).最值问题:;

1.在等差数列}{n a 中,6,801-==d a ,求n S 的最大值.

2.在等差数列}{n a 中,5,801-==d a ,求n S 的最大值.

3.在等差数列}{n a 中,6,801=-=d a ,求n S 的最小值.

4.在等差数列}{n a 中,5,801=-=d a ,求n S 的最小值.

5.等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大

6.在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值

7.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.

8.在等差数列{a n }中,若93a a =,公差d <0,那么使其前n 项和S n 为最大值的自然数n 的值是__.

(十)累加法的应用-------裂项相消

1.已知数列{a n }满足:1,1211=+=--a n a a n n ,求n a .

2.已知数列{a n }满足:1,1411=-=-+a n a a n n ,求n a .

3.已知数列{a n }满足:4,1211=+-=-+a n a a n n ,求20a .

4.在数列{a n }中,)11ln(,211n

a a a n n ++==+,求a n .

(十一)由n a 求n a 的前n 项和

1.数列{}n a 的前n 项和24n S n n =-,则1210||||||a a a +++=L _______.

2.数列{}n a 的前n 项和24n S n n =-,n n

b a =,则数列{}n b 的前n 项和n T =_______.

3.数列{}n a 中,148,2a a ==,满足*2120,n n n a a a n N ++-+=∈. (1)求通项n a ;(2)设12n n S a a a =+++L ,求n S ; (3)设()

**121

,,,12n n n n b n N T b b b n N n a =

∈=+++∈-L ,是否存在最大的整数m ,

使得对于任意*n N ∈,均有32

n m

T >成立,若有求之,若无说明理由.

(十二)由n S 得n a 的题型、 直接法

1.已知正项数列}{n a 的前n 项和为n S ,3

2

1=

a ,且满足211322++=+n n n a S S )(*N n ∈。

(1)求数列}{n a 通项公式n a ; (2)求证:当2≥n 时,2222234111194

n a a a a ++++

倒数法

1.已知数列{}n a 中,a n ≠0,a 1=2

1,a 1+n =n

n

a a 21+(n ∈N +),求a n

2.已知数列{}n a 的前n 项和为n S ,且满足)2(02,2

111≥=+=-n S S a a n n n

(I )判断?

??

???n S 1是否为等差数列?并证明你的结论;(II ) 求n S 和n a ;

(III )求证:n

S S S n

41212

2221-≤+++Λ。

3.已知函数b

ax x

x f +=)((a,b 为常数,0≠a )满足1)2(=f 且x x f =)(有唯一解。

(1)求)(x f 的解析式

(2)如记)(1-=n n x f x ,且11=x ,*∈N n ,且n x 。

数列与函数

1.已知二次函数()y f x =x x x f 23)(2-=,数列{}n a 的前n 项和为n S ,点

(,)()n n S n N *∈均在函数()y f x =的图像上。

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1n n n a a 3b +=

,n T 是数列{}n b 的前n 项和,求使得20

n m

T <对所有n N *∈都成立的最小正整数m ;

倒序相加 2.设函数()2

41

+=

x x f , (1) 证明:对一切R x ∈,f(x)+f(1-x)是常数;

(2)记()()()+∈+??

? ??-++??

?

??+??

? ??+=N n f n n f n f n f f a n

,11......210,求n a ,并求出数列{a n }的前n 项和。

思维扩展题型

数列{a n }满足n n a n n a a )(,1211λ-+==+)3,2,1(???=n ,λ是常数。 (1)当12-=a 时,求λ及3a 的值。

(2)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式:若不可

能,说明理由。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

等差数列常用性质

合作探究: 问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件? 由定义得A-a =b -A ,即: 2b a A += 反之,若2 b a A += ,则A-a =b -A 由此可可得:,,2b a b a A ?+=成等差数列 也就是说,A =2 b a +是a ,A ,b 成等差数列地充要条件 问题2:在直角坐标系中,画出通项公式为53-=n a n 地数列地图象,这个图象有什么特点? (2)在同一直角坐标系中,画出函数y=3x-5地图象,你发现了什么?据此说说等差数列q pn a n +=地图象与一次函数y=px+q 地图象之间有什么关系?定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 地等差中项 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 例1在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a . 分析:要求一个数列地某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中地至少一项和公差,或者知道这个数列地任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手……例2 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a 分析:要求通项,仍然是先求公差和其中至少一项地问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来精品文档收集整理汇总例3已知数列{n a }地通项公式为q pn a n +=,其中p,q 为常数,那么这个数列一定是等差数列吗? 分析:判定{n a }是不是等差数列,可以利用等差数列地定义,也就是看)1(1>--n a a n n 是不是一个与n 无关地常数. 等差数列地常用性质: 1.若数列{a n }是公差为d 地等差数列: (1)d>0时,{a n }是 ;d<0时,{a n }是 ;d=0时,{a n }是 ; (2)d= = = (m ,n ∈N +) (3)通项公式地推广:a n =a m + d (m ,n ∈N +). 精讲点评: 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

《等差数列》市级公开课教案及说明

《等差数列一》教案及设计说明 课题:等差数列(一) 重庆市第十八中学詹远美 [教学目标] 1?知识目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。 2?能力目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。 3?情感目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。 [教学重难点] 1.教学重点:等差数列的概念的理解,通项公式的推导及应用。 2.教学难点:(1 )对等差数列中“等差”两字的把握; (2 )对等差数列函数特征的理解; (3)用不完全归纳法推导等差数列的通项公式。 [教学过程] 一.课题引入 1.复习回顾:(上节课我们学习了数列的定义及通项公式,那么什么叫数列?什么是数列a n的通项公 式) 从函数的观点看,数列可看成是定义域为N*(或它的子集1,2,|||, n )的函数,当自变量从小到大 的依次取值时,所对应的一列函数值。数列的通项公式a n f n是该函数的解析式。 2.创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子) ①德国数学家高斯八岁时计算1+2+3+?…+100=?时,所用到的数列:1 , 2, 3, 4, ... , 100 ②姚明刚进NBA —周里每天训练发球的个数依次是:6000, 6500, 7000 , 7500, 8000, 8500, 9000 ③匡威运动鞋(女)的尺码(鞋底长,单位是cm): 22- 23 23丄24 24- 25 25- ,26 2 ' 2' ' 2' ' 2 引导学生观察:上面的数列①、②、③有什么共同特点? 对于数列(1),从第2项起,每一项与前一项的差都等于 ________________________ ; 对于数列(2),从第2项起,每一项与前一项的差都等于 ________________________ ; 对于数列(3),从第2项起,每一项与前一项的差都等于 ________________________ ; 发现这些数列有一个共同特点:从第二项起,每一项与前一项的差等于同一个常数,我们把有这一特 点的数列叫做等差数列(板书课题)。 二、新课探究 (一)等差数列的定义 1、(完善黑体字形成)等差数列的定义 如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个 常数叫做等差数列的公差,通常用字母d来表示。 上面三个数列都是等差数列,公差依次是_______________ , ______ , ______ 。

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

等差数列的性质

(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式为S n =na 1+n (n ﹣1)d 或者S n = 性质:①若项数为() *2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1 n n S a S a +=奇偶. ②若项数为() *21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, 1 S n S n = -奇偶(其中n S na =奇,()1n S n a =-偶). 【例题精讲】 例1、若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列 例2、等差数列{a n }前n 项和为S n ,且﹣ =3,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 例3、设S n 是等差数列{a n }的前n 项和,若,则 =( ) A .1 B .2 C .3 D .4 例4、在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B.-4 C .5 D.-5

等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:

数列系列等差数列的性质

数列系列 等差数列的性质 一、思维导图 ????????????????????????????++++++++++--? ????=+=+=+=++=++=+????????? ??+=?? ? ??????=-=-+=+= -++成等差数列 成等差数列 成等差数列则是等差数列若片段和性质当心则时若则若下标和性质即的等差中项和是中等差数列或则成等差数列若等差中项等差数列的性质6425319638527412321212 2,,,,,}{:2,2,:2:}{2222 ,,a a a a a a a a a a a a a a a S S S S S ,a a a a a a a a p n m a a a a q p n m a a a ,a a ,a a a b A b a A b a A b a A , b A a n n n n n n n n p n m q p n m n m n m n m n m n

二、例题精析 1、(2018商洛模拟)等差数列}{n a 中,,12031581=++a a a 则1092a a -的值为__________ [解析]:已知,24,1202338881581=∴=+=++a a a a a a 242,281091089==-∴+=a a a a a a 2、(2018温州模拟)已知等差数列}{n a 的公差不为零,且242a a =,则3 21642a a a a a a ++++的值是__________ [解析]:2323332 224321642=?==++++a a a a a a a a a a ,下标和性质 3、(2017中原区校级月考)已知}{n a 为等差数列,,7,22683==+a a a 则=5a __________ [解析]:已知1572222,22655683=-=-=∴=+=+a a a a a a ,下标和性质 4、(2018南关区校级期末)在等差数列}{n a 中,102,a a 是方程0722=--x x 的两根,则=6a __________ [解析]:已知4 1)(21,21211026102=+=∴=-- =+a a a a a ,下标和性质 5、(2018塑州期末)在等差数列}{n a 中,若,39741=++a a a ,33852=++a a a 则=++963a a a _____ [解析]:设27,39332,963=∴+=?∴=++x x x a a a ,片段和性质 6、(2017商丘期末)等差数列}{n a 中,0>n a 且,301021=+++a a a 则=+65a a __________ [解析]:已知,6,30)(5101651011021=+=+∴=+=+++a a a a a a a a a 下标和性质 7、(2018太原期末)在等差数列}{n a 中,若,9531=++a a a ,21654=++a a a 则=7a __________ [解析]:已知,3,9333531=∴==++a a a a a ,7,21355654=∴==++a a a a a 92357=-=a a a

等差数列常考题型归纳总结很全面

等差数列及其前n项和 教学目标: 1、熟练掌握等差数列定义;通项公式;中项;前n项和;性质。 2、能熟练的使用公式求等差数列的基本量,证明数列是等差数列,解决与等差数列有关的简单问题。 知识回顾: 1. 定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等丁同一个常数,那么这个数列就叫等差数歹0,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为a n a n1 d(n 2)或a n1 a n d (n 1)。(证明数歹0是等差数歹0的关键) 2. 通项公式: 等差数列的通项为:a n a i (n i)d,当d 0时,a n是关丁n的一次式,它的图象是一条直线上自然数的点的集合。推广:a n a m (n m)d 3. 中项: 如果a , A , b成等差数列,那么A叫做a与b的等差中项;其中A J。 2 4. 等差数列的前n项和公式 S n座U na i虹皂d可以整理成&= Sn2+(a i d)n。当d』时是n的一个常数 2 2 2 2 项为0的二次函数。 5. 等差数列项的性质 (1) 在等差数歹0 a n中,若m , n , p , q N且m n p q ,则a m a n a p a q ;特别的,若m , p , q N 且2m p q ,则2a m a p a q。 (2) 已知数列a n , b n为等差数列,S n,T n为其前n项和,则冬 b n T2n 1 (3) 若等差数列的前n项和为Sn,则Sn,S2n Sn,S3n S2n,也成等差数列,公差d' n2d ; S,(n 1) a n (4) S n & 1 , (n 2). (5)若数列{%}是公差为d的等差数列,则数列斜也是等差数列,且公差为 考点分析 考点一:等差数列基本量计算 例1、等差数列{a n}中,a i 3a8血120,贝U 3a’ a,的值为

等差数列的基本性质

等差数列 一、等差数列的定义以及证明方法: 1、定义:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. 注意一些等差数列的变形形式,如: 111n n d a a +-=(d 为常数,此时,数列{1 n a }为等差数列) d =(d 为常数,此时,数列??为等差数列) …… 2、证明方法: (1)定义法:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2 (3)通项公式法:若数列{a n }的通项公式为a n =pn+q 的一次函数,则数列{a n }为等差数列. (4)若数列{a n }的前n 项和为S n =An 2+Bn ,则数列{a n }为等差数列. 【例题1】【2013年,北京高考(文)】给定数列a 1,a 2,a 3,……,a n ,……,对i =1,2,……,n-1,该数列的前i 项的最大值记为A i ,后n –i 项a i+1,a i +2,……,a n 的最小值记为B i ,d i =A i –B i . (I)设数列{a n }为3,4,7,1,求d 1,d 2,d 3的值. (II)设d 1,d 2,……,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,a 3,……,a n -1是等差数列.

3、等差数列的通项公式: (1)等差数列的通项公式:a n =a 1+(n-1)d 累加法和逐项法:对于形如() 1n n a a f n --=的形式,我们一般情况下,可以考虑使用逐项法或者累加法,从而达到求a n 的目的. 变形形式: a n =a m +(n-m )d 由以上公式可以得到:n m a a d n m -= - (2)等差数列通项公式的一些性质: ①若实数m,n,p,q 满足:m+n=p+q ,则:n m p q a a a a +=+;特别的,若m+n=2p ,则: 2n m p a a a +=; ②若数列{a n }为等差数列,则下标成等差数列的新数列仍然成等差数列; ③若数列{a n }为等差数列,数列{b n }为等差数列,则数列{pa n +qb n }还是等差数列; ④当d >0时,{a n }为递增数列;当d =0时,数列{a n }为常数列;当d <0时,数列{a n }为递减数列; 【例题1】【2015届黑龙江省双鸭山一中高三上学期期末考试,3】在等差数列{}n a 中,首项 01=a ,公差,0≠d 若7321a a a a a k ++++=Λ,则k =( ) A . 22 B . 23 C . 24 D. 25 【变式训练】【2015届吉林省东北师大附中高三上学期第三次摸底考试,3】设等差数列{}n a 的前n 项和为n S ,若151,15a S ==,则6a 等于 ( ) A .8 B .7 C .6 D .5 4、等差数列的求和问题:——方法:倒序相加 ()()()111111222 n n n n n n S a a a a n d na d -= +=++-=+???? (1)在等差数列{a n }中,k S ,2k k S S -,32k k S S -成等差数列;或者:()233k k k S S S -=; (2)奇偶项问题: 在等差数列中,若项数为偶数项,即:当n=2m (n,m ∈N*)时,有:S 偶-S 奇=md , 1 = m m S a S a +奇偶;

高二数学 等差数列的定义及性质

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同 一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数 列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其中任意三 个就可以列方程组求出另外两个(俗称“知三求二’).

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=?+

2.2等差数列的概念、通项公式、性质练习含答案

2.2 等差数列概念、通项公式、性质 第1课时 等差数列的概念及通项公式 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,…. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 题型二 等差中项 例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中, (1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10. 跟踪训练3 (1)求等差数列8,5,2,…的第20项; (2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 等差数列的判定与证明 典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1. (1)证明:数列???? ??a n 3n 是等差数列;

(2)求数列{a n }的通项公式. 典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式. 【课堂练习】 1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13 的等差数列 C .公差为-13 的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)?{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)?{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)?{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量. 【巩固提升】 一、选择题 1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )

等差数列的性质练习 含答案

时间:45分钟满分:100分 课堂训练 1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( ) A.数列{a n}一定不是等差数列 B.数列{a n}是以k为公差的等差数列 C.数列{a n}是以b为公差的等差数列 D.数列{a n}不一定是等差数列 【答案】B 【解析】a n+1-a n=k(n+1)+b-kn-b=k. 2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( ) A.100 B.120 C.140 D.160 【答案】B 【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120. 3.在等差数列{a n}中,a15=33,a25=66,则a35=________. 【答案】99 【解析】a15,a25,a35成等差数列, ∴a35=2a25-a15=99. 4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式. 【分析】关键是求出数列{a n}的首项和公差. 【解析】由于数列为等差数列,因此可设等差数列的前三项为

a -d ,a ,a +d ,于是可得??? ?? a -d +a +a +d =21, a -d a a +d =231, 即????? 3a =21, a a 2-d 2 =231, 即????? a =7, d 2 =16, 由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1. 【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成: a -2d ,a -d ,a ,a +d ,a +2d . 课后作业 一、选择题(每小题5分,共40分) 1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1 【答案】 A 【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)= 1 2×(3+5)=4. 2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13 的值为( ) A .20 B .30 C .40 D .50 【答案】 C 【解析】 ∵a 3+a 11=a 5+a 9=2a 7,

高中数学必修等差数列知识点总结和题型归纳

二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( ) A .49 B .50 C . 51 D .52 3.等差数列 1,- 1,- 3,?,- 89的项数是( ) 等差数列 一.等差数列知识点: 知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d 2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2 对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 : ⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示: S n 是其前 n 项的和, k N ,那么 S k , S 2k S k , S 3k S 2k 成 S 3k a 1 a 2 a 3 S k a k a k 1 S 2k a 2k S k a 2k 1 S 3k S 2k a 3k ①若项数为 2n n * , 则 S 2n n a n a n 1 , 且 S 偶 S 奇 S 奇 nd , 奇 an . ②若项数为 2n 1 n S 偶 a n 1 S 奇 n (其中 S 奇 na n , S 偶 n 1 a n ). S 偶 n 1 奇 等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n , 等于( )

相关主题
文本预览
相关文档 最新文档