当前位置:文档之家› 弹性力学答疑辅导讲义

弹性力学答疑辅导讲义

---------------------------------------------------------------最新资料推荐------------------------------------------------------

弹性力学答疑辅导讲义

弹性力学答疑辅导讲义第一部分考核方式介绍考核形式:

考试形式:

笔试闭卷第二部分复习指导单项选择题复习指导一、答题技巧单项选择题主要考察学生对基本概念、基本理论的准确理解、记忆能力。

这种题型由题目和四个备选答案组成。

题目描述题意与问题的核心要求,四个备选答案中有且只有一个选项符合题意,其他三个选项为干扰项,用来检测对问题理解的准确性。

考生在解题时,首先应认真审题,弄清题意,其次分析四个备选答案的含义,最终确定一个正确答案。

二、复习重点和难点该题型主要考察教材中每章的基本概念、基本理论,几乎覆盖了考试大纲中提到的每章的所有基本知识点。

三、练习题 1.下列对象不属于弹性力学研究对象的是() A 杆件 B 板壳 C 质点 D 块体 2.所谓完全弹性体是指:

() A. 材料应力应变关系满足胡克定律 B. 材料的应力应变关系与加载时间历史无关 C. 物理关系为非线性弹性关

1 / 8

系 D. 应力应变关系满足线性弹性关系 3.下列哪种材料可

视为各向同性材料() A 木材 B 竹材 C 混凝土 D

夹层板 4.某一平面应力状态,已知?x??,?y??,?xy?0,则与 xy

面垂直的任意斜截面上的正应力和剪应力为() A ?a??,??

0 B ?a?,?? C ?a?2?,??? D ?a??,??? 5.弹性力学与材

料力学的主要不同之处在于()。

A. 任务

B. 研究对象

C. 研究方法

D. 基本假设6.在平面应变问题中(取纵向作 z 轴) A C ?z?0,w?0,?z?0

B ?z?0,w?0,?z?0 ?z?0,w?0,??0 D ?z?0,w?0,?z?0 7.图示

承受均布荷载作用的简支梁,材料力学解答为: () ?x??6qx h3?l?x?y,?y?0,?xy??3q(l?2x)?h2?2?y????h34?? A 满足平衡

微分方程 B 满足应力边界条件 C 满足相容方程 D 不是弹性力

学精确解 8.图示开孔薄板的厚度为 t,宽度为 h,孔的半径为

r,则 b 点的???() A q B qh/(h?2r) C 2q D 3q 9.如

果必须在弹性体上挖空,那么孔的形状应尽可能采用() A正方

形 B 菱形 C 圆形 D 椭圆形10.设有平面应力状态?x?ax?by,?y?cx?dy,?xy??dx?ay??x,其中

a,b,c,d均为常数,?为容重。

该应力状态满足平衡微分方程,其体力是() A X?0,Y?0 B

X?0,Y?0 C X?0,Y?0 D X?0,Y?0 附:

参考答案 1 填空题复习指导一、答题技巧

填空题主要用来考查学生对基础知识掌握的情况和应用基础知识解

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 决实际问题的能力。

在填空题中要填写的,或是重要概念、性质、法则中的关键词语,或是经过分析推理做出的结论,或是综合应用所学知识计算出的结果。

考生在解题时,应认真审题,仔细阅读题目,弄清所填内容的类型(关键词,计算结果等)。

二、复习重点和难点该题型既考察基本概念和基本知识点,又注重对知识点的综合运用。

第一章弹性力学的基本概念及基本假定第二章平面应力问题与平面应变问题的特征第三章按应力求解满足的条件第四章极坐标问题的基本方程和基本条件第五章导数的差分公式第七章空间问题基本方程第八章弹性力学的一般原理第九章薄板小挠度弯曲问题的基本方程和边界条件三、练习题 1.对于多连体变形连续的充分和必要条件是和。

2. 将平面应力问题下的物理方程中的E, ?分别换成和就可得到平面应变问题下相应的物理方程。

3.校核应力边界条件时,应首先校核,其次校核条件。

4.求薄板内力有两个目的:

(1)薄板是按设计的;(2)在板边上,要用的边

3 / 8

界条件代替的边界条件。

5.对于多连体,弹性力学基本方程的定解条件除了边界条

件外,还有。

附:

参考答案 1、几何方程,位移单值条件 2、E/?1??2?,?/?1??? 3、主要边界,次要边界 4、内力,内力,应力 5、位移单值条件 2 判断改错题复习指导一、答题技巧判断改错题首先是对

题目进行分析或者进行简单计算,根据分析计算结果判断题目当中是

否有错(如果需要修改,则找出其中的错误,写出正确的答案)。

二、复习重点和难点该题型主要考察对各知识点的理

解情况:

第一章弹性力学的基本概念及基本假定第二章平面

应力问题与平面应变问题的特征第三章应力边界条件第

四章极坐标问题的基本方程和基本条件第五章变分法的概念

第七章空间问题基本方程、一点应力状态第八章弹性力学的

一般原理第九章薄板小挠度弯曲问题的基本方程三、练

习题 1.应变状态?x?k(x?y),?x?ky,?xy?2kxy,(k?0)是不可能存

在的。

2.在 y=a(常数)的直线上,如 u=0,则沿该直线必有?x?0222 3.曲梁纯弯曲时应力是轴对称的,位移并非轴对称的。

4.位移轴对称时,其对应的应力分量一定也是轴对称的;

反之,应力轴对称时,其对应的位移分量一定也是轴对称的。

---------------------------------------------------------------最新资料推荐------------------------------------------------------

5.对图示偏心受拉薄板来说,弹性力学和材料力学得到的

应力解答是相同的。

附:

参考答案 1.所给应变分量满足相容方程,所以该应变状态

是可能存在的。

2.因为u 与x 无关,所以?x??u ?x|(x,a)?0 3.各截面受相同的弯矩,因此,各截面的应力分布相同,但转角与?

有关。

4.应力轴对称时,应力分量与?无关,位移分量通常与?

有关。

但约束也为轴对称时,位移分量也与?无关,此时为位移轴对称情

况。

3 5.端部法向面力必须沿截面高度按线性规律分布于

端部,否则得到的是圣维南近似解。

计算题复习指导一、答题技巧计算题是对各章

节知识点的综合运用。

考生应深入理解各知识点的基本概念和理论,以及应用条件和场

合。

首先仔细阅读题目,理清题目所给条件和问题,理清所给条件之

间的关系,以及条件与问题之间的关系。

其次在计算过程中,应细心推导化简。

5 / 8

最后给出最终结果或者表达式。

弄清题目要点,抓住所需要的基本概念和基本理论并正确应用,计算认真等是做好计算题应遵循的要点和步骤。

二、复习重点和难点该题型主要注重综合运用所学知识,下面是各章重点部分:

第一章弹性力学的基本概念及基本假定第二章平面问题的基本方程和边界条件,按应力、应变求解平面问题,常体力时应力函数的简化,按位移求解的简化第三章逆法与半逆解法、校核应力边界条件第四章极坐标中按应力函数求解,轴对称问题,相容方程第五章应力函数的差分解法,弹性体的功和能第七章空间问题基本方程、一点应力状态、极坐标下轴对称问题第八章直角坐标系、柱坐标系下的平衡微分方程与边界条件(按应力与应变求解)第九章薄板小挠度弯曲问题的基本方程、挠度与内力的求解三、练习题 1.某一平面问题的应力表达式如下:

?x??xy?Ax,?23y??x32Bxy,?xy??By?Cxy 232 试求 A,B,C 的值(体力不计) 2.列出下图所示问题的全部边界条件( 南原理改用积分的应力边界条件来代替。

,单位厚度)。

在其中的小边界上,采用圣维 3.矩形截面的柱体受到顶部的集中力 2F 和力矩 M 的作用,不计体力,试用应力函数

---------------------------------------------------------------最新资料推荐------------------------------------------------------

4 ?Ay?Bxy?Cxy 23 3 ?Dy 求解其应力分量。

附:

参考答案 1.解:

将题给应力分量表达式代入平面问题的平衡微分方程,得:

A? 16,B?? 13,C? 12 2.(1)y?h/2,

(?y)y?h/2?0,(?yx)y?h/2??? (2)y??h/2,(?y)?y?h/2??q,

(?yx)y??h/2?0 (3)x?0,? 3.解:

应用上述应力函数求解:

(1)代入相容方程???0,满足。

(2)求应力分量,在无体力下, x?A?6Cxy?6Dyy?0 4 h/2?h/2 (?x)x?0dy??P,? h/2?h/2 (?x)x?0ydy??M,? h/2?h/2 (?xy)x?0dy??T 2 ?xy??(B?3Cy) (3)考

察边界条件,在主要边界(y??b/2), y??b/2, y?0 满足:

?xy??q, B? 34 Cb?q 2 (a)在小

边界 x= 0, ? h/2?h/2 (x)x?0dy??F,(Ay?3Dy) 2 b/2-b/2 ??F,得 A ?? Fb 5 ?? h/2h/2?h/2 (x)x?0ydy??M,(A y 2 2 ?2Dy)b/23 b/2-b/2 ??M,得D?? 12MbF3 3 (?xy)x?0dy??F,?(By?Cy) ??F,得B?Cb? 2 (b) ?h/2 再由(a),(b)式解出代入,得应力解答,

-b/2 4 b C? 2Fb 2 (q? b ),

7 / 8

B?? 12 (q? 3Fb ). Fx??b?12b 2 (q? Fb)xy? 12Mb3 y????y?0 ? ??? 3F6F2 xy? 1?2 (qb )?b 2 (q?b )y ?? 6

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部 分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量 应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为 了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途? 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立? 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题? 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么? 答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。在两种平面问题中,平衡微分方程和几何方程都适用。2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为换为,就得到平面应变问题的物理方程。 5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。 在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

清华大学弹性力学讲义chap2_Elasticity of Solids

2.Elasticity of Solids References J.H.Weiner ,Statistical mechanics of elasticity, Wiley, 1981 Green & Zerna ,Theoretical elasticity, 1968 Ashby & Jones ,Engineering materials 2.1 Definition of Elasticity Elasticity σ F Figure 2.1 An elastic response. An elastic response of the material can be abstracted mathematically as ()X F ,T σ= (2.1) where σ denotes the stress tensor, T the response function that depends only on the current values of the deformation gradient X x F ??=, with X denoting the material coordinates of a point while x the spatial coordinates. If the material is homogeneous within the domain under consideration, the explicit dependence on X in (2.1) can be eliminated. Several remarks can be made to the definition in (2.1): (1) In the claim of ()()X t X, F ,T σ=, one pins down an elastic response as the one prtrayed by the current status of deformation, and henceforth irrelevant to the

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

弹性力学简明教程(第四版)-第三章-课后作业题答案

… 第三章 平面问题的直角坐标解答 【3-4】试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计) 【解答】⑴相容条件: 不论系数a 取何值,应力函数3ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 & 上下边界上应力分量均为零,故上下边界上无面力. 左右边界上; 当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ () 0y xy x f τ=== 右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ=== 应力分布如图所示,当l h 时应用圣维南原理可以将分布的面力,等效为 主矢,主矩 y x f x f ¥ 主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。 偏心距e : 因为在A 点的应力为零。设板宽为b ,集中荷载p 的偏心距e :

2()0/6/6 x A p pe e h bh bh σ= -=?= 同理可知,当a <0时,可以解决偏心压缩问题。 / 【3-6】试考察应力函数22 3(34)2F xy h y h Φ= -,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画 出面力的主矢量和主矩),指出该应力函数能解决的问题。 【解答】(1)将应力函数代入相容方程(2-25) 444422420?Φ?Φ?Φ ++=????x x y y ,显然满足 < (2)将Φ代入式(2-24),得应力分量表达式 3 12,0,x y Fxy h σσ=-=2234(1)2==--xy yx F y h h ττ (3)由边界形状及应力分量反推边界上的面力: ①在主要边界上(上下边界)上,2h y =±,应精确满足应力边界条件式 (2-15),应力()()/2/2 0,0y yx y h y h στ=±=±== 因此,在主要边界2h y =±上,无任何面力,即0,022x y h h f y f y ??? ?=±==±= ? ???? ? ②在x=0,x=l 的次要边界上,面力分别为: 22340:0,1-2x y F y x f f h h ?? === ??? 3 221234:,12x y Fly F y x l f f h h h ?? ==- =-- ??? " 因此,各边界上的面力分布如图所示: y

弹性力学作业总结

一、综述 这学期我们有幸跟着邱老师学习了弹性力学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性力学的认识也越发的清晰,我对平面问题、空间问题等基本知识有了较为清晰的了解与掌握,会用逆解法、半逆解法、差分法、变分法和有限元法解决一些基础的弹性力学问题。 弹性力学是固体力学的一个分支,研究弹性体由于外力作用或温度改变等原因而发生的应力、形变和位移。它是学习塑性力学、断裂力学、有限元方法的基础,广泛应用于建筑、机械、化工、航天等工程领域。本课程较为完整的表现了力学问题的数学建模过程,建立了弹性力学的基本方程和边值条件,并对一些问题进行了求解。弹性力学基本方程的建立为进一步的数值方法奠定了基础。二、绪论 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。通过对弹性力学的学习,我感觉整本书就讲了十五个控制方程解十五个未知数。而剩下的问题就是如何求解这些方程的问题,这也是数学和力学结合最紧密的地方。而求解的方法无外乎有:基于位移的求解(位移法)和基于应力的求解(应力函数法),差分法、变分法。而前人的研究大部分都是如何使这些方程求解起来更方便。弹性力学思路清晰,但是方程和公式复杂。 1.工程力学问题建立力学模型的过程,一般要对三方面进行简化:结构简化、材料简化及受力简化。建模过程如右图: 结构简化:如空间问题向平面问题的简 化,向轴对称问题的简化,实体结构向板、 壳结构的简化。 受力简化:根据圣维南原理,复杂力系 简化为等效力系。 材料简化:根据各向同性、连续、均匀 等假设进行简化。

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

弹性力学复习题1

一、名词解释 1. 弹性力学:研究弹性体由于受外力作用或者温度改变等原因而发生的应力、应变和 位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的 面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的 改变,但是远处所受的影响可以不计。 3. 外力:其它物体对研究对象(弹性体)的作用力。外力可以分为体积力和面积力。 4. 体力:分布在物体体积内的力,如重力和惯性力。 5. 面力:分布在物体表面上的力,如流体压力和接触力。 二、填空题 1.弹性力学的基本假设为均匀性、各向同性、连续性、完全弹性和小变形。 2.弹性力学正面是指外法线方向与坐标轴正向一致的面,负面指外法线方向与坐标轴负向一致的面。 3.弹性力学的应力边界条件表示在边界上应力与面力之间的关系式。除应力边界条件外弹性力学中还有位移、混合边界条件。 4.在平面应力问题与平面应变问题中,除物理方程不同外,其它基本方程和边界条件都相 同。因此,若已知平面应力问题的解答,只需将其弹性模量E换为泊松比μ 5.平面应力问题的几何形状特征是一个方向上的尺寸远小于另外两个方向上的尺寸;平面应变问题的几何形状特征是一个方向上的尺寸远大于另外两个方向上的尺寸。 三、单项选择题 1. 下列关于弹性力学问题中的正负号规定,正确的是D。 (A) 应力分量是以沿坐标轴正方向为正,负方向为负 (B) 体力分量是以正面正向为正,负面负向为正 (C) 面力分量是以正面正向为正,负面负向为负 (D) 位移分量是以沿坐标轴正方向为正,负方向为负

2. 弹性力学平面应力问题中应力分量表达正确的是 A 。 (A) 0z σ= (B) [()]/z z x y E σεμεε=-+ (C) ()z x y σμσσ=+ (D) z z f σ= 3. 弹性力学中不属于基本方程的是 A 。 (A) 相容方程 (B) 平衡方程 (C) 几何方程 (D) 物理方程 4. 弹性力学平面问题中一点处的应力状态由 A 个应力分量决定。 (A) 3 (B) 2 (C) 4 (D) 5 四、 问答题 1. 弹性力学的基本假定是什么,各有什么作用? 答:弹性力学中主要引用的五个基本假定及各假定用途为: 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是 连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系, 复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。 因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是 说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然 按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 2. 弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:

弹性力学基础知识点复习

固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 ①变形连续规律弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。 反映变形连续规律的数学方程有两类:几何方程和位移边界条件。几何方程反映应变和位移的联系,它的力学含义是,应变完全由连续的位移所引起,

第10章 弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发 生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学基本概念

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力 体力是作用于物体体积内的外力 应力单位截面积上的内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的 形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变 平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件 平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力 几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式 形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定 边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件 位移边界条件实质上是变形连续条件在约束边界上的表达式 应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号 应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致) 圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界) 圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计 应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件 形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件

弹性力学练习册

南昌工程学院 弹性力学练习册 姓名: 学号: 年级、专业、班级: 土木与建筑工程学院力学教研室

一、选择题 1、 下列材料中,( )属于各向同性材料。 A 、竹材 B 、纤维增强复合材料 C 、玻璃钢 D 、钢材 2、 关于弹性力学的正确认识是( )。 A 、计算力学在工程结构设计的中作用日益重要; B 、弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C 、任何弹性变形材料都是弹性力学的研究对象; D 、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3、 弹性力学与材料力学的主要不同之处在于( )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 4、 所谓“应力状态”是指( )。 A 、斜截面应力矢量与横截面应力矢量不同 B 、一点不同截面的应力随着截面方位变化而改变 C 、三个主应力作用平面相互垂直 D 、不同截面的应力不同,因此应力矢量是不可确定的。 5、 变形协调方程说明( )。 A 、几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B 、微元体的变形必须受到变形协调条件的约束; C 、变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D 、变形是由应变分量和转动分量共同组成的。 6、 下列关于弹性力学基本方程描述正确的是( )。 A 、几何方程适用小变形条件 B. 物理方程与材料性质无关 C. 平衡微分方程是确定弹性体平衡的唯一条件 D. 变形协调方程是确定弹性体位移单值连续的唯一条件 7、 弹性力学建立的基本方程多是偏微分方程,最后需结合( )求解这些微分方程, 以求得具体问题的应力、应变、位移。 A 、几何方程 B 、边界条件 C 、数值方法 D 、附加假定 8、 弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关 系( )。 A 、平衡微分方程、几何方程、物理方程完全相同 B 、平衡微分方程、几何方程相同,物理方程不同 C 、平衡微分方程、物理方程相同,几何方程不同 D 、平衡微分方程,几何方程、物理方程都不同 9、 根据圣维南原理,作用在物体一小部分边界上的面力可以用下列( )的力系代 替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A 、静力等效 B 、几何等效 C .平衡 D 、任意 10、 不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( )。 ①区域内的相容方程; ②边界上的应力边界条件; ③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A 、①②④ B 、②③④ C 、①②③ D 、①②③④ 11、 应力函数必须是( )。 A 、多项式函数 B 、三角函数 C 、重调和函数 D 、二元函数 12、 要使函数3 3 axy bx y Φ=+作为应力函数,则a b 、满足的关系是( )。 A 、a b 、任意 B 、b a = C 、b a -= D 、2a b = 13、 三结点三角形单元中的位移分布为( )。

弹性力学总结

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定 轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降 线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科 技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的 变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以 证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本 方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理 背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示, 一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原 理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问 题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建 立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满 足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分 量发生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为 ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边 界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学简明教程(第四版)_第三章_课后作业题答案

第三章 平面问题的直角坐标解答 【3-4】试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】⑴相容条件: 不论系数a 取何值,应力函数3ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 上下边界上应力分量均为零,故上下边界上无面力. 左右边界上; 当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ () 0y xy x f τ=== 右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ=== 应力分布如图所示,当l h ?时应用圣维南原理可以将分布的面力,等效为主矢,主矩 x f x f 主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。 偏心距e : 因为在A 点的应力为零。设板宽为b ,集中荷载p 的偏心距e : 2()0/6/6 x A p pe e h bh bh σ=-=?= 同理可知,当 a <0时,可以解决偏心压缩问题。

【3-6】试考察应力函数223(34)2F xy h y h Φ= -,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画 出面力的主矢量和主矩),指出该应力函数能解决的问题。 【解答】(1)将应力函数代入相容方程(2-25) 4444 22420?Φ?Φ?Φ ++=????x x y y ,显然满足 (2)将Φ代入式(2-24),得应力分量表达式 3 12,0,x y Fxy h σσ=-=2234(1)2==--xy yx F y h h ττ (3)由边界形状及应力分量反推边界上的面力: ①在主要边界上(上下边界)上,2h y =±,应精确满足应力边界条件式 (2-15),应力() () /2 /2 0,0y yx y h y h στ=±=±== 因此,在主要边界2h y =±上,无任何面力,即0,022x y h h f y f y ??? ?=±==±= ? ???? ? ②在x=0,x=l 的次要边界上,面力分别为: 22340:0,1-2x y F y x f f h h ?? === ??? 3 221234:,12x y Fly F y x l f f h h h ?? ==- =-- ??? 因此,各边界上的面力分布如图所示: ③在x=0,x=l 的次要边界上,面力可写成主矢、主矩形式: x y l /2h /2 h (l h ?

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

相关主题
文本预览
相关文档 最新文档