当前位置:文档之家› 放大电路练习题及标准答案

放大电路练习题及标准答案

放大电路练习题及标准答案
放大电路练习题及标准答案

一、填空题

1.射极输出器的主要特点是电压放大倍数小于而接近于1, 输入电阻高 、 输出电阻低 。 2.三极管的偏置情况为 发射结正向偏置,集电结反向偏置 时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的 输入电阻高 。

4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的 输出电阻低 。

5.常用的静态工作点稳定的电路为 分压式偏置放大 电路。

6.为使电压放大电路中的三极管能正常工作,必须选择合适的 静态工作点 。

7.三极管放大电路静态分析就是要计算静态工作点,即计算 I B 、 I C 、 U CE 三个值。

8.共集放大电路(射极输出器)的 集电极 极是输入、输出回路公共端。

9.共集放大电路(射极输出器)是因为信号从 发射极 极输出而得名。()

10.射极输出器又称为电压跟随器,是因为其电压放大倍数 电压放大倍数接近于1 。

11.画放大电路的直流通路时,电路中的电容应 断开 。

12.画放大电路的交流通路时,电路中的电容应 短路 。

13.若静态工作点选得过高,容易产生 饱和 失真。

14.若静态工作点选得过低,容易产生 截止 失真。

15.放大电路有交流信号时的状态称为 动态 。

16.当 输入信号为零 时,放大电路的工作状态称为静态。

17.当 输入信号不为零 时,放大电路的工作状态称为动态。

18.放大电路的静态分析方法有 估算法 、 图解法 。

19.放大电路的动态分析方法有 微变等效电路法 、 图解法 。

20.放大电路输出信号的能量来自 直流电源 。

二、选择题

1、在图示电路中,已知U C C =12V ,晶体管的=100,'b R =100k Ω。当i U =0V 时,测得U B E =,若要基极电流I B =20μA ,则R W 为 k Ω。A

A. 465

B. 565

2.在图示电路中,已知U C C =12V ,晶体管的=100,若测得I B =20μA ,U C E =6V ,则R c = k Ω。A

3、在图示电路中, 已知U C C =12V ,晶体管的=100,'

B R =100k Ω。当i U =0V 时,测得U B E =,基极电流I B =20μA ,当测得输入电压有效值i U =5mV 时,输出电压有效值'

o U =, 则电压放大倍数u A = 。A

A. -120 D. 120

4、在共射放大电路中,若测得输入电压有效值i U =5mV 时,当未带上负载时输出电压有效值'o U =,负载电阻R L 值与R C 相等 ,则带上负载输出电压有效值o U = V 。A

A. C. 已知图示电路中U C C =12V ,R C =3k Ω,静态管压降U C E =6V ;并在输出端加负载电阻R L ,其阻值为3k Ω。若发现电路出现饱和失真,则为消除失真,可将 。A

A. R W 增大 减小 减小 D. R W 减小

6.已知图示电路中U C C =12V ,R C =3k Ω,静态管压降U C E =6V ;并在输出端加负载电阻R L ,其阻值为3k Ω。若发现电路出现截止失真,则为消除失真,可将 。A

减小 减小 减小 D. R W 增大

7.在固定偏置放大电路中,若偏置电阻R B 的阻值增大了,则静态工作点Q 将 。A

A 、下移;

B 、上移;

C 、不动;

D 、上下来回移动

8.在固定偏置放大电路中,若偏置电阻R B 的值减小了,则静态工作点Q 将 。A

A 、上移;

B 、下移;

C 、不动;

D 、上下来回移动

9.在固定偏置放大电路中,如果负载电阻增大,则电压放大倍数______。A

A. 减小 B. 增大 C. 无法确定

10.分析如图所示电路可知,该电路______。A

A. 不能起放大作用

B.能起放大作用但效果不好

C. 能起放大作用但效果很好

11.测得晶体三极管IB =30μA 时,IC =;IB =40μA 时,IC =3mA ;则该管的交流电流放大系数为________。 A

A. 60 B. 80 C.75 D.100

12.在图示放大电路中,=30,晶体三极管工作在 状态。A

A.放大

B.饱和

C.截止

13.在图示放大电路中,=30,晶体三极管工作在 状态。A

A. 饱和

B. 放大

C.截止

14.在图示放大电路中,=30,晶体三极管工作在 状态。A

A. 截止

B.饱和

C. 放大

14.在图示放大电路中,=30,晶体三极管工作在 状态。A

A. 截止

B.饱和

C. 放大

15.在图示放大电路中,7.0=BE U V ,3.0=CE U V ,晶体三极管工作在 状态。A

A. 饱和

B. 放大

C.截止

16.静态时测得某硅NPN 管的三个电极的电位是:U B =3V ,U E =,U C =,则可判断该管工作在 状态。A

A.放大

B.饱和

C.截止

17.由NPN 管构成的的基本共射放大电路,输入是正弦信号,若从示波器显示的输出信号波形发现底部(负半周)削波失真,则该放大电路产生了 失真。A

A. 饱和

B. 放大

C.截止

18.由NPN 管构成的的基本共射放大电路,输入是正弦信号,若从示波器显示的输出信号波形发现顶部(正半周)削波失真,则该放大电路产生了 失真。A

A. 截止

B.饱和

C. 放大

19.由NPN管构成的的基本共射放大电路,输入是正弦信号,若从示波器显示的输出信号波形发现底部削波失真,这是由于静态工作点电流I C造成。A

A.过大

B.过小

C.不能确定

20.由NPN管构成的的基本共射放大电路,输入是正弦信号,若从示波器显示的输出信号波形发现底部削波失真,这是由于静态工作点电流I C造成。A

A. 过小

B. 过大

C. 不能确定

21.为了提高交流放大电路的输入电阻,应选用电路作为输入级。A

A. 射极输出器

B.共发射极放大电路

C. 功率放大器

22.为了提高交流放大电路的带负载能力,应选用电路作为输出级。A

A. 射极输出器

B.共发射极放大电路

C. 功率放大器

23.某放大电路在负载开路时的输出电压为4V,接入3KΩ的负载电阻后,输出电压降为3V。这说明该放大器的输出电阻为。A

A. 1KΩ

B. 2KΩ

C. 3KΩ

D. Ω

24.图示放大电路,耦合电容C1的极性为。A

A. 左-,右+

B. 左+,右-

C. 不法确定

25.图示放大电路,耦合电容C2的极性为。A

A. 左+,右-

B. 左-,右+

C. 不法确定

26.图示放大电路,耦合电容C2的极性为。A

A. 左-,右+

B. 左+,右-

C. 不法确定

27.图示放大电路,耦合电容C1的极性为。A

A. 左+,右-

B. 左-,右+

C. 不法确定

28.在分压式偏置放大电路中,除去旁路电容C E,下列说法正确的是。A

A. 输出电阻不变

B.静态工作点改变

C. 电压放大倍数增大

D. 输入电阻减小

29.射极输出器。A

A.有电流放大作用,没有电压放大

B. 有电流放大,也有电压放大

C. 没有电流放大,也没有电压放大

30.在基本放大电路中,交流参数r i较大,下列说法正确的是。A

A. 实际加在放大电路的输入电压较大,从而增大输出电压

B. 从信号源取用较大电流,增加了信号源的负担

C.会降低前级放大电路的电压放大倍数

31.引起晶体管放大电路产生非线性失真的原因是。A

A. 静态工作点不合适或输入信号幅值过大

B.β值过小

C. 直流电源U CC值过高

32.在基本放大电路中,提高直流电源UCC的值,其它电路参数不变,则直流负载线的低斜

率。A

A.不变

B.增大

C. 减小

33.对基本放大电路而言,下列说法正确的是。A

A. 输入与输出信号反相

B.输入与输出信号同相

C. 输入电阻较大

34.采用分压式偏置放大电路,下列说法正确的是。A

A. 起到稳定静态工作点的作用

B.带负载能力增强

C. 提高了电压放大倍数

35.对射极输出器而言,下列说法不正确的是。A

A. 电压放大倍数大于1

B.带负载能力强

C.输入与输出信号同相

D. 输出电阻高

36.在基本放大电路中,影响直流负载线斜率大小的是。A

A. R C 的值 的值 C. R B 的值 D.β值

37.图示分压偏置放大电路中,若减小R B2,则集电极电流I C 。A

A. 增大

B. 减小

C.不变

38.图示分压偏置放大电路中,若增大R B2,则集电极电流I C 。A

A.减小

B.增大

C.不变

39.在单级共射极放大电路中,输入电压信号和输出电压信号的相位是 。A

A.反相

B. 同相

C.相差90o

40.在单级射极输出器放大电路中,输入电压信号和输出电压信号的相位是 。A

A.同相

B.反相

C.相差90o

三、计算题

1、共射放大电路中,U CC =12V ,三极管的电流放大系数β=40,r be =1K Ω,R B =300K Ω,R C =4K Ω,R L =4K Ω。求(1)接入负载电阻R L 前、后的电压放大倍数;(2)输入电阻r i 输出电阻r o

解:(1)接入负载电阻R L 前:

A u = -βR C /r be = -40×4/1= -160

接入负载电阻R L 后:

A u = -β

(R C 04.010300123

=?=≈-=B CC B BE CC B R U R U U I mA 5.104.05.37=?==B C I I βmA 65.1412=?-=-=C C CC CE I R U U 2//=='L C L

R R R 75125.37-=-='-=be L u r R A β2001

5.280//-=?-=-=be L C u r R R A βΩ=≈=k 1//i be be B r r R R Ω=≈k 5o C R R 图示电路中,已知U C C =12V ,晶体管的b =100,100=B R k Ω。求

(1)当i U =0V 时,测得U B E =,若要基极电流I B =20μA , 则B

R '和R W 之和R B 等于多少?而若测得U C E =6V ,则R c 等于多少?

(2)若测得输入电压有效值i U =5mV 时,输出电压有效值'o U =,则电压放大倍数u

A 等于多少?若负载电阻R L 值与R C 相等,则带上负载后输出电压有效值o U 等于多少?)

解:(1)565/)(=-=B BE CC B I U U R (Ωk )

3/=-=B CE CC C I U U R β(Ωk )

(2)120005

.06.0-==-=i o u U U A

0.3V U 'o L

C L O =?=U R R R + 5、在共发射极基本交流放大电路中,已知 U CC = 12V ,R C = 4 kW ,R L = 4 kW ,R B = 300 kW ,r b e =1k Ω,β=,试求放大电路的静态值、电压放大倍数及输入电阻和输出电阻。

解: 04.010

300123=?=≈-=B CC B BE CC B R U R U U I (mA ) 5.104.05.37=?==B C I I β(mA )

65.1412=?-=-=C C CC CE I R U U (V )

2//=='L C L

R R R (kW ) 751

)4//4(5.37)

//(-=?-=-=?be L C U r R R A β r i =R B i U &o U &Ω=-=-====-=

k 57002.06.012A 02.0),(2mA,2B BE CC B C B c CE CC C I U U R m I I R U U I β分 1001100i o -=-=-=U U A u Ω=∴?=-=k 1 1

R -100 'L L ,be 'L R r R A u β&而Ω=∴=+=+k 5.1 11 R 1 31 111 L L L c R R R R L 即,7.0=BE U u A V 2CC b2

b1b1B =?+≈V R R R U A 3.117.02e BE BQ E =-=-=≈R U U I I C 40502===βC B I I 2.4)15(3.112)(=+?-=+-=E C C CC CE R R I U U 5.2//=='L C L

R R R 12515.250)(be L c -=?-=-=r R R A u ∥β&7.0=BE U V R R R U

U B B B CC B 58.5221=+=mA R U U I I E BE B E C 2.35

.17.058.5=-=-=≈mA I I C B 048.0662.3===βV I R R U U C E C CC CE 64.82.3)5.13.3(24)(=?+-=+-=7.0=BE U u A V R R R U U B B B CC B 3.422

1=+=mA R U U I I E BE B E C 8.127.03.4=-=-=≈mA I I C B 036.0508.1===βV I R R U U C E C CC

CE 68.1)23(15)(=?+-=+-=10016//350'-=?-=-=be L u r R A β7.0=BE U u A

0u A 21.53.31.53.3//≈+?=='L C L R R R 120'-=-=be

L u r R A β1980-=-=be C u r R A βΩ=≈Ω≈==K R r K R R r r C B B be i 3.3110//33//1////021,7.0=BE U u A 5.13

333//=+?=='L C L R R R 901

3//360'-=?-=-=be L u r R A βΩ=≈Ω≈==K R r K R R r r C B B be i 3110//20//1////021,7.0=BE U u A ,031.01

613007.012)1(mA R R U U I e b BE CC B =?+-=++-=β,mA I I B C 88.1031.060=?==β,

)()(V R I I R I U U E B C C C CC CE 36.41031.088.1388.112=?+-?-=+--=9013//360'-=?-=-=be L u r R A β,,Ω=≈Ω===K R r K R r r C b be i 31300//1//07.0=BE U u A s U i U o U ,9013//360'-=?-=-=?

be L u r R A β,,Ω=≈Ω≈==K R r K R r r C b be i 31300//1//0mV U r R r U s i s i i 326.3109967

.029967.0=?+=+=)3.0300326.390V mV U A U i u o ==?==?∞=L R 5.0=be U u A 2121002020211=?+=?+=CC B B B B U R R R U 1505

.15.450-=?-='-=be L u r R A β&?u A &∞=L R ΩΩ0=be U B B C B B B C E CC R I R I R I R I U ++=+=)1(β37)1(=++=

B C CC B R R U I β1.11037303=??==-B C I I β8.3=-=C E CC CE R I U U u A 40300/.012(/)(=-=-=B BE CC B R U U I 24050=?==B C I I β44212=?-=-=C C CC CE R I U U 1001/)4//4(50/)//(/-=-=-==be L C i o u r R R u u A β∞=L R ΩΩΩΩ0=be U V 。

试计算此放大电路的静态工作点、电压放大倍数u A ,并画出它的微变等效电路。 解:⑴11090

1010211=?+=?+=CC B B B B U R R R U (V) 故 UE =UB -Ube ==(V), IC ≈IE =UE /RE =1(mA) IB =IC /β≈33(μA), UCE =UCC -IC (RC +RE )=5(V)

⑵电压放大倍数1505.15.450-=?-='-=be L u r R A β& (3)

18、△ 图示放大电路中,若测得UB =,UC =3V ,而电源电压为12V ,己知RC =3K Ω,T为硅管,0=BE U .7V ,试求IC =?RE =?该电路的静态工作点是否合适?

解:R C 两端的电压为:U CC -U C =12-3=9V

所以33

312=-=-=C C CC C R U U I (mA ) 5.27.02.3=-=-=BE B E U U U (V )

83.03

5.2===E E E I U R (KΩ) 由于U B >U C ,所以三极管集电结处于正向偏置,三极管处于饱和状态。工作点不合适。

19、△电路如图所示,UCC=12V,RC=3KΩ, 100==ββ,rbe =KΩ,电容C 1、C 2足够大。

(1)要使静态时UCE=6V ,RB的阻值大约是多少?

(2)计算空载时的电压放大倍数u A ;

(3)画出微变等效电路。

解:(1)IC =2mA,IB =20μA,RB =565Ω(或RB ≈600K Ω)

(2)5.1876

.13100-=?-='-=be L u r R A β& (3)微变等效电路如下:

20.射极输出器的直流通路如图所示,已知,U CC =6V ,β=49,RC =2k Ω,RB =100k Ω,取0=be U V 。试计算:(1)各静态值B I 、C I 、CE U ;(2)画画出微变等效电路。

解:(1)03.02)491(10006)1(=?++-=++-=E B BE CC B R R U U I β(mA ) 47.103.049=?==B C I I β(mA )

32)03.047.1(6=?+-=-=E E CC CE R I U U (V)

(2)

(3)

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

超重低音耳机放大器

超重低音耳机放大器 发布:电子diy来源:萬用電路板发布时间:2013-09-05 01:01:22 ?标签:超重低音耳机功放 ?成本:10元 ?人气:2563 ?器件:TDA2822 ?难度:1 ?得分:719分 这不是一款普通的耳机放大器,我在它前级加入低音提升电路后,可以让你使用耳机听到高保真的音响效果,特别是重低音效果,逼真感很强以至于用它听的时间长了会让人感到头晕,使用它必须得注意:你的耳机要能经得住低音的考验! 电路原理图(点击放大) 该电路中,前级采用无源衰减式音调控制电路,后级是用小功放芯片TDA2822M做的功率放大器,以便更强劲地驱动耳机。电路元件除了C5-C8这四个电容使用电解电容外,其它小电容全部使用涤纶电容。按照如上的电路,高低音均提升近10DB。为了增大低音成

分的比例,建议大家把R3和R4短路掉,以减小高音提升量,这时从耳机中出来的声音也更加柔和。如果还要增大低音提升量,可以减少C3和C4的取值。 使用这个超重低音耳机放大器大家必须了解一些问题: 1、耳机的素质,喜欢听低音的朋友,一定不能只在电路上下功夫,耳机的作用更大,一个好的耳机能将电路产生的音频信号淋漓尽致地发挥,听感也更加自然。而有些耳机本不具备很宽的频率响应,再怎么提升音源的低音成分都听不到很明显的效果,这种耳机不要使用。再者,有些国产耳机在低音增强时明显失真了,此时如果长时间在很强低音的情形下,势必会损伤耳机。 2、不要过分追求低音效果,毕竟是耳机不是音响,不能采取像重低音放大器那样的分频放大法,电路能有10DB的提升量就足矣。 3、不要使用大音量,对听力是相当有害的。 作品实物图:

第二章 晶体管及放大电路基础

第二章晶体管及放大电路基础一、教学要求 知识点 教学要求 学时掌握理解了解 晶体管晶体管的结构√电流分配与放大作用√√ 晶体管的工作状态、伏安特性及主要参数√√ 放大电路基础放大电路的组成原则及工作原理√ 放大电路的主要技术指标√ 放大电路 的分析方法 图解法√ 静态工作点估算法√ 微变等效电路法√ 三种基本放大电路比较√ 静态工作点的选择与稳定√√多极放大电路 耦合方式及直接耦合电 路的特殊问题 √ 分析计算方法√ 放大电路的频率响 应 频率响应的基本概念√√ 频率响应的分析计算方 法 √√ 本章的重点是: 晶体管的伏安特性、主要参数;放大电路的组成原则及工作原理、静态工作点的近似估算法、主要动态指标的微变等效电路分析法、静态工作点的选择与稳定、三种基本放大电路的特点;放大电路频率响应的基本概念及分析计算方法。

本章的难点是: 放大电路频率响应的基本概念及分析方法。 三、教学内容 2.1晶体管 1. 晶体管的结构及类型 晶体管有双极型和单极型两种,通常把双极型晶体管简称为晶体管,而单极型晶体管简称场效应管。 晶体管是半导体器件,它由掺杂类型和浓度不同的三个区(发射区、基区和集电区)形成的两个PN结(发射结和集电结)组成,分别从三个区引出三个电极(发射极e、基极b和集电极c)。 晶体管根据掺杂类型不同,可分为NPN型和PNP型两种;根据使用的半导体材料不同,又可分为硅管和锗管两类。 晶体管内部结构的特点是发射区的掺杂浓度远远高于基区掺杂浓度,并且基区很薄,集电结的面积比发射结面积大。这是晶体管具有放大能力的内部条件。 2. 电流分配与放大作用 晶体管具有放大能力的外部条件是发射结正向偏置,集电结反向偏置。在这种偏置条件下,发射区的多数载流子扩散到基区后,只有极少部分在基区被复合,绝大多数会被集电区收集后形成集电极电流。通过改变发射结两端的电压,可以达到控制集电极电流的目的。 晶体管的电流分配关系如下: 其中电流放大系数和之间的关系是=/(1+),=/(1-);I CBO是集电结反向饱和电流,I CEO是基极开路时集电极和发射极之间的穿透电流,并且I CEO=(1+)I CBO。 在放大电路中,通过改变U BE,改变I B或I E,由ΔI B或ΔI E产生ΔI C,再通过集电极电阻R C,把电流的控制作用转化为电压的控制作用,产生ΔU O=ΔI C R C。实质上,这种控制作用就是放大作用。 3. 晶体管的工作状态 当给晶体管的两个PN结分别施加不同的直流偏置时,晶体管会有放大、饱和和截止三种不同的工作状态。这几种工作状态的偏置条件及其特点如表2.1所列。 表2.1 晶体管的三种工作状态 工作状态直流偏置条件各电极之间的电位关系特点

AC-AUDIO H1004四通道耳机放大器 耳机分配器 说明书

Contents 1.OVERVIEW (1) 2.BEFORE YOU START (1) 1)Utilizing the User Manual (1) 2)Safety Precautions (2) 3.INSTALLATION (4) 1)Front panel (4) 2)Rear panel (5) 4.GETTING STARTED (6) 1)Using the MAIN IN connectors (6) 2)Connecting multiple headphones (6) 3)Audio connections (6) 5.SERVICE (7)

1. OVERVIEW Welcome to purchase the equipment by AC-AUDIO! With the H series, you have acquired a high-end headphone amplifier. Both H units were developed with the most demanding applications in mind: professional recording, radio and television studios, as well as CD/digital sound production. They were developed as benchmark units for judging mix-down quality as well as distribution amplifiers for flexible playback applications in studio environments. Balanced inputs and outputs The equipment features electronically servo-balanced inputs and outputs. The servo function automatically recognizes when unbalanced pins are assigned. It internally modifies the nominal signal level, thus preventing any occurrence of signal level difference between inputs and outputs (6 dB correction). 2. BEFORE YOU START 1) Utilizing the User Manual This user manual has been written in such a way to enable you an overview over the control elements of the unit and offers at the same time detailed information about possible applications. To facilitate quick look-ups, control elements have been described in groups depending on their function. Should you need detailed information about specific topics not covered in this manual, please visit our website at https://www.doczj.com/doc/8714093515.html,. For example, additional information about power amps and effects processors is found there. The following user manual is intended to familiarize you with the unit’s control elements, so that you can master all the functions. After having thoroughly read the user manual, store it at a safe place for future reference.

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

耳放制作HIFI耳机放大器 PCB 电路图 及全套设计资料

对于47耳放的完美改进制作高保真耳机放大器 之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。 虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。 所以,决定自己动手做一个耳放。 这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。便动手做了起来。 一、放大部分 47耳放是一位外国人设计的电路,电路如图。 因为电路中有较多以47为参数的元件所以称作47耳放。 传说中的47耳放结构其实是很简单的, 第一级运放进行负反馈控制放大倍数进行比例放大, 第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。 两个运放输出经过两个47欧匀流电阻输出致耳机。 因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。 曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。 于是,开工了。 首先线路图

电路没有添加音量电位器,只做了放大部分。这样一来功能比较独立,方便以后的各种组合。 47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。当然OPA2132的价格也是很高档的。我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。 由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。所以我在反馈电阻的位置串联了电容,也就是C03 C04两个电容,将直流反馈变为交流反馈,这样可以使输出中点控制在1MV以下。换成其他运放如果没有中点问题这个电容的位置可以直通。 反馈采样部分依然从输出取,并在R05 R06 上面并联了C05 C06,作用是超前补偿,不需要的话可以留空。 电源部分增加了两个退耦电解电容C07 C08,并习惯性的在两个电解上并联了小电容C09 C10。 最后增加伏地电阻R。伏地可以吸收一部分地线的干扰信号让信号地更加纯净。当然还有一个作用,那就是在布线的时候可以在视觉上隔离信号地与电源地,为合理布线带来方便。 线路做好了,接下来的工作就是布线了。 话说这个47耳放市面上卖的款式很多,但是在设计PCB的时候好像只注重外观而忽略了对布线的要求,最终导致一些电路声音不好,严重的甚至出现交流声。 吸取了别人的经验教训,所以在画这个板子的时候就注意了很多。 退耦电容两两一组,原则为电源经过退耦电容再连接至IC,这样可以有效吸收放大器工作时候产生的耦合信号,也可以避免由于电源线过长引起的干扰信号进入放大器。 简单说下地线。地线主要分为电源地和信号地,这两个地也可能是连在一起的,但是作用不同。电源地主要提供大电流电源,一般功率输

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

HIFI耳机放大电路大全

HIFI耳机放大电路大全 对音响发烧友来说,发烧音响就等于烧钱,对一些经济条件不十分宽裕的发烧族来说,玩耳机就是一个很好的不需要太多的钱的最佳发烧途径了,原因很简单,一般来说,花两三百块钱连市面上劣质的音响器材都难买下来,但是却能买到一副很不错的发烧耳机,而且耳机的频率响应和各项指标一点都不逊于高档的扬声器单元,这也是耳机放大器DIY在国内外流行的主要原因,耳机放大器中,一般优秀的分立元件电路在国内外网站上都见过不少,还有电子管制作的,但是对一般的爱好者来说就是元器件难以寻找,管子的配对也是一个头痛的问题,电子管制作主要的变压器难已解决。 下面应网友的要求,特找来一些易于制作的耳机放大电路,供动手能力好一点的爱好者参考制作,电路图的来源于国内外网站,以及电子杂志。如果有侵犯了你的版权,请通知我,我会删去。 LC-KING A(甲)类耳机放大电路 上图为电路图,电路很简洁,前级放大推动为NE5532或其它类型的OP,U2A为DC SERVER,用于稳定中点的电位,推动级2SD882为NPN型功率三极管,该管工作在甲类状态,因此发热量较大,流经的R11,R31的电流可以通过改变它的阻值来调整,在制作时三极管要加散热器。

LC-KING的AB类放大器电路 上图为LC-KING 的甲已类功率放大电路,后级的放大由对管2SD882(NPN)和2SB772(PNP)TL072为直流伺服电路,起稳定电位的作用。 LC-KING的放大电路比较简洁,制作上并不困难,可以用洞洞板来完成,后极的三极管也可以换成其它的管子。放大器的电源对音质的影响也很大,用洼田电源当然是很好的,也可以用伺服电源,原图的电源有一点复杂,关键是有些元器件很偏,因此没有放到网上。

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

TA7376组成的耳机放大电路

TA7376组成的耳机放大电路 用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。 本机称为超级广场效果。这种扣人心弦的力量,不亚于实况立体声。 电路原理 本机电路大致可分为下面三部分: 1.由电阻电容组成的低频增强电路。 2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。 3.利用功率放大器IC,组成头戴耳机的驱动电路。 从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。 立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。 用东芝TA7376P推动头戴式耳机。这种IC内藏两个通道,外接元件少,可在低电压下工作。负载阻抗较低时,可重放出动人效果的低频声音。 电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。 元件 所有元件没有什么特殊的。电阻均为1/8W。0.1UF和0.47UF的电容用独石电容,其它的用电解电容。电位器中,20K为双连电位器,50K用带开关电位器。插头用立体声插头。 制作 制作极其简单,即使是初学者,有一天的时间就足够了。要留心IC的脚和电解电容的极性。 电位器的接线比较凌乱,不要搞错了。若没有接线错误和焊接不良,一定会马到成功。 接入头戴式立体声耳机或普通耳机,装入电池,打开开关。若两个旋钮配合得好,收听音乐可得到极其感人的效果,。根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。 不用说,和小型音响,电视,CD相连会得到更佳的效果。 说明:电路原理图中,W1为双联电位器,用于低音增强,W2为调节混响效果。印刷电路板图中,A1,A2为左右声道输入。电位器W1和W2都固定在盒子的边缘,其中W2为带开关的电位器。 非常好我支持^.^ (0) 0.00%不好我反对 (0) 0.00%分享到:分享此文章到新浪微博分享此文章到开心网分享此文章到人人网分享此文章到豆瓣网分享此文章到腾讯微博加入收藏(1) + 推荐给朋友+ 挑错 相关阅读: [耳机电路图] 立体声耳机放大电路(带有关断功能) 2011-04-16 [功放技术] MAX97220 DirectDrive线路驱动器/耳机放大器2011-03-22 [音响技术] MAX97200 H类DirectDrive耳机放大器2011-03-18 [新品快讯] 首款集成G类耳机放大器模拟子系统PowerWise LM492 2011-02-25 [新品快讯] TI推出集成型低功耗G类耳机放大器2011-01-29 [功率放大器电路图]

实验二 三极管基本放大电路(指导书)

实验二三极管基本放大电路 一、实验目的 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。 图2-1 基本放大电路实验图 三、实验内容与步骤 1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋 钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。 2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be) 3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种 情况下的U0值(加入信号和无信号),此时的U0和U i相位相反。 4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率 要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。

从零开始DIY一台耳机放大器电路设计与分析

几个问题 现在喜爱听音乐的朋友是越来越多了,为了听到更好的声音,很多朋友都购买了品质比较高的音源,比如高档声卡或HiFi入门级的CD台机,但却还是无法得到心目中的高品质声音表现。问题到底出在哪里? 在音响店里聆听高档音响,留下了难以磨灭的印象,想来不少朋友都有过这样的经历吧。虽说一分钱一分货,但自己能否构建与之表现稍相近的系统呢? HiFi耳机的优异表现相信给过很多朋友以惊喜,但在很多地方都会留下一些底气不足的遗憾,这个问题应该怎么解决? 关注HiFi音响的朋友们如果见识过名厂或高手制作的胆机,观摩过那如镜光滑的机箱和灵性四溢的胆管,再聆听过柔美醇和的声音,可能都会不禁揣测一下内部的结构。如果打开外壳,见到内部并没有预想中的电路板,而是几根粗铜线纵横交错地搭成一个网状框架,各个元件都整齐地焊接在这个框架上,之间再用各色导线连接,不免会惊叹连连。高手会说,这样的手法叫做搭棚焊接,简称搭焊,既是最传统的,也是最好声和最艺术的手法。也许朋友们会想:我能不能拥有这样的一个艺术品呢? 希望在大家看完本文后,这些疑问能够得到有价值的回答。音响本是学无止境,笔者言语中若有不周或谬误,希望能与大家展开商榷和得到斧正。 下文的很多内容都涉及到DIY,如果要进行操作,请大家特别注意安全,在有经验的朋友的指导下进行。由于实际电路中变数甚多,所以只有严格仔细地跟随必要步骤并加以耐心细致的调整,才会得到尽量好的声音品质。由于具体情况有别且无法完全考虑到,所以请大家具体问题具体分析,笔者只尽量保证陈述的真实和贴切,而不对效仿操作的后果负责。 寻求解决 众所周知,自从真正被运用到计算机上以来,音频技术的发展不断为我们创造着惊喜,从8bit到44.1KHz/16bit再到96KHz/24bit、从单声道到立体声再到多声道、从MIDI 到MP3再到APE和FLAC,无一不在刺激着我们对听觉享受的渴望和对声音品质的追求。应该说随着“发烧级”声卡创新AWE64GOLD和帝盟MX200先后的横空出世,一群狂热的电脑音频发烧友开始形成,电脑也成了很多朋友的音乐欣赏中心。 对很多狂热地喜爱音乐的朋友来说,音频技术给他们带来实实在在的最大快乐是在APE 格式被广泛使用之时——来自中规中矩的44.1KHz、16bit、立体声和无损压缩(96KHz、24bit和多声道这样高指标虽然更加能吸引人们的眼光,但是我们能欣赏的音乐只能来自唱片公司,而SACD和DVD-Audio高高在上的价格是我们无法轻松负担的;实际上高手们

模拟电路自测题2(晶体管及放大电路)

晶体管及放大电路基础 1.晶体管能够放大的外部条件是_____C____。 (A)发射结正偏,集电结正偏(B)发射结反偏,集电结反偏(C)发射结正偏,集电结反偏2.当晶体管工作于饱和状态时,其___A______。 (A)发射结正偏,集电结正偏(B)发射结反偏,集电结反偏(C)发射结正偏,集电结反偏3.测得晶体管三个电极的静态电流分别为,和。则该管的 为___。 (A)40 (B)50 (C)60 4.反向饱和电流越小,晶体管的稳定性能____A_____。 (A)越好(B)越差(C)无变化 5.与锗晶体管相比,硅晶体管的温度稳定性能___A______。 (A)高(B)低(C)一样 6.温度升高,晶体管的电流放大系数b_____A____。 (A)增大(B)减小(C)不变 7.温度升高,晶体管的管压降|UBE|______B___。 (A)升高(B)降低(C)不变 8.温度升高,晶体管输入特性曲线______B___。 (A)右移(B)左移(C)不变 9.温度升高,晶体管输出特性曲线_____A____。 (A)上移(B)下移(C)不变 10.温度升高,晶体管输出特性曲线间隔____C_____。 (A)不变(B)减小(C)增大 11.对于电压放大器来说,______B___越小,电路的带负载能力越强。 (A)输入电阻(B)输出电阻(C)电压放大倍数 12.在单级共射放大电路中,若输入电压为正弦波形,则输出与输入电压的相位__B_______。 (A)同相(B)反相(C)相差90度 13.在单级共射放大电路中,若输入电压为正弦波形,而输出波形则出现了底部被削平的现象, 这种失真是_____A____失真。 (A)饱和(B)截止(C)饱和和截止 14.引起上题放大电路输出波形失真的主要原因是___C______。 (A)输入电阻太小(B)静态工作点偏低(C)静态工作点偏高 15.利用微变等效电路可以计算晶体管放大电路的_____C____。 (A)输出功率(B)静态工作点(C)交流参数 16.既能放大电压,也能放大电流的是_____A____放大电路。

抑制耳机放大器RF噪音的两种方法

由于一直有朋友反映说耳放接电脑后会有底噪让我一直困恼之中今天找到了底噪的原因和消除底噪的办法跟大家分享 有两种方法能够抑制耳机放大器RF噪音:通过屏蔽并缩短输入信号引线降低输入放大器的RF能量;选择具有RF抑制功能的放大器,使耦合到输出端的噪声最小。 很多现代音频放大器的设计没有考虑高频RF问题,而这些放大器却越来越多地暴露在强RF干扰环境中。对于没有解决RF干扰的音频放大器设计,会将RF载波信息解调到音频频带。 一个非常突出的例子是GSM(全球移动通信系统)蜂窝电话系统。GSM标准采用时分多址(TDMA)方式实现多部手机与一个基站的同时通信。GSM手机以217Hz突发频率发送数据,从而产生一个受217Hz频率调制的强电场,恰好处于音频频带。虽然GSM手机工作在800MHz至1900MHz频率范围,但217Hz的包络是固定的。 GSM手机内的放大器必须能够抑制RF载波的217Hz包络频率,或完全屏蔽其电场。放大器与音频信号源之间的引线相当于天线。对于1/4波长与引线长度匹配的频率,天线效应最明显。对于900MHz信号,1/4波长为7.5cm;对于1900MHz信号,1/4波长为3.5cm。因此,长度接近于上述两种规格的引线对附近功率放大器的干扰信号最敏感,会接收到较强的干扰信号。 将音频放大器集成到基带IC 一种改善耳机放大器RF敏感度的方法是将耳机放大器集成到基带处理器,可缩短音频源与放大器之间的引线长度。这种方案不仅降低了天线效应,而且提高了电路的集成度。由于在敏感频率处输入不再有天线效应,从而避免RF对音频信号的干扰。 虽然采用集成技术可降低系统的RF敏感度,但基带处理器通常采用的是低成本耳机放大器,会在一定程度上降低音质。此外,这些放大器采用单电源供电,其输出信号的偏压在VDD/2左右。在将这些信号接至耳机扬声器时需要隔直电容,而隔直电容会占据很大的PCB 面积,降低系统的低频响应,同时还会导致音频信号的失真。 改善输入和电源布线 为了避免集成耳机放大器带来的问题,必须选择专用的耳机放大器IC。即使选用了不是专门为抑制RF噪音而设计的耳机放大器,对电路板的仔细布局也可获得良好的音质和低RF敏感度。输入端的引线最有可能影响RF敏感度,这些引线应该布设在两个地层之间,以屏蔽外部RF电场。为了降低输入引线的天线效应,须尽可能缩短引线,使引线长度远小于敏感频率的1/4波长。 放大器电源也是拾取RF噪音的一个途径,电路板设计通常采用旁路电容来降低电源噪音,但在RF频率处,这些电容的自感应降低了高频率波的效能。在音频范围内,1μF电容对地阻抗较低,具有较好的噪音抑制能力。当频率高于1MHz时,其自感产生的阻抗高于容抗,使阻抗增大。如果在1μF电容处并联一只10pF电容,在800MHZ至1900MHzGSM 频率范围内,小电容会旁路掉1μF电容的自感。

各种耳机放大器应用电路分析

各种耳机放大器应用电路分析 耳机放大器的要求 ---耳机放大器主要用于使携式音频装置中,它与其他便携式电子产品一样,要求器件具有低工作电压、低功耗、小尺寸封装。耳机放大器还有自身的技术参数要求,要求总谐波失真加噪声(THD+N)小、电源变动抑制率(PSSR)高、信噪比(SNR)高、效率高等。不同的放大器还有不同的附加功能,如内置数字音量控制、内置DAC等。具体性能指标如下。 ● 输出功率POUT ---耳机放大器输出功率较小,一般为20~100mW(实际输出功率与工作电压大小有关,并且与负载电阻大小及THD+N大小有关)。立体声耳机的负载电阻一般为16Ω或32Ω,负载电阻小的输出功率大一些。 ● THD+N ---THD+N的指标一般在0.01%~0.2%的范围内,Hi-Fi级则小于0.01%。该指标与负载电阻RL大小及输出功率POUT大小有关,若RL不同、POUT不同,则其指标有较大差别。例如,同一耳机放大器,在RL=32Ω,POUT=12mW,f=1kHz时,THD+N=0.006%;而在RL=16Ω、POUT=15mW,f=1kHz时,THD+N=0.015%。所以在比较不同耳机放大器的THD+N指标时,必须在基本条件相差不多时才有可比性。 ● SNR ---SNR一般在60~90dB范围内,其大小与POUT有关,有一些产品的SNR可达到100dB 左右。 ● PSRR ---PSRR高的耳机放大器,其性能受电源电压变动的影响小(PSRR高的放大器可以不需稳压电源供电)。PSRR一般为60~80dB,性能好的可达90dB。 降低工作电压 ---为减小便携式产品的体积和重量,最有效的办法是采用能量密度高、体积小的锂离子电池,但锂离子电池价格贵。采用1~2节碱性电池或充电电池来供电,则制造和使用成本会减少很多。近年来,一些厂商开发出仅用1节电池供电的耳机放大器(1节5#或7#碱性电池或镍氢、镍镉电池)更受到消费者欢迎,其工作电压为0.9V~1.8V,既可用1节碱性电池,也可用1节充电电池供电,使一些低档MP3播放机的成本大幅下降,销售量随之大增。 ---由于是单电源供电,耳机放大器输出的电压幅值受到工作电压的影响。虽然可采用输出满幅值(rail-to-rail)的放大器,但1V工作电压的输出总是小于1V。 ---为了降低工作电压,还要保证足够大的输出电压幅值,在耳机放大器中集成了一个电压反转的电荷泵电路,使输入的VDD转换成-VDD,则耳机放大器由单电源供电变成正负电源供电,输出电压幅值增大了一倍,。 减少外围元件的措施 ---德州仪器公司的TPA611xA2耳机放大器的典型应用电路。放大器内部的两个325kΩ电阻组成分压器,提供两个通道运放的偏置电压(1/2VDD),并有关闭控制(SHUTDOWN)端(低电平有效),实现关闭放大器,使耗电小于10μA。 ---减少外围元件,不但可节省印刷电路板面积,还能改善性能。图3所示是德州仪器公司2004年8月推出的耳机放大器TPA4411的内部结构及外围元件。TPA4411采用固定增益(AV=-1.5V/V),无需输出隔直电容器,简化外围元件,并且有如下的优点:减少PCB板面积;

LM4811_DataSheet双105mW数字音量耳机放大器

LM4811 Dual105mW Headphone Amplifier with Digital Volume Control and Shutdown Mode General Description The LM4811is a dual audio power amplifier capable of delivering105mW per channel of continuous average power into a16?load with0.1%(THD+N)from a5V power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components.Since the LM4811does not require bootstrap capacitors or snubber networks,it is optimally suited for low-power portable systems. The LM4811features a digital volume control that sets the amplifier’s gain from+12dB to?33dB in16discrete steps using a two?wire interface. The unity-gain stable LM4811also features an externally controlled,active-high,micropower consumption shutdown mode.It also has an internal thermal shutdown protection mechanism. Key Specifications n THD+N at1kHz,105mW continuous average output power into16?0.1%(typ) n THD+N at1kHz,70mW continuous average power into 32?0.1%(typ) n Shutdown Current0.3μA(typ) Features n Digital volume control range from+12dB to?33dB n LD and MSOP surface mount packaging n"Click and Pop"suppression circuitry n No bootstrap capacitors required n Low shutdown current Applications n Cellular Phones n MP3,CD,DVD players n PDA’s n Portable electronics Connection Diagrams MSOP Package 20006102 Top View Order Number LM4811MM See NS Package Number MUB10A LD Package 20006162 Top View Order Number LM4811LD See NS Package Number LDA10A Boomer?is a registered trademark of National Semiconductor Corporation. December2002LM4811 Dual 105mW Headphone Amplifier with Digital Volume Control and Shutdown Mode ?2002National Semiconductor Corporation https://www.doczj.com/doc/8714093515.html,

相关主题
文本预览
相关文档 最新文档