当前位置:文档之家› 浓淡燃烧器原理

浓淡燃烧器原理

浓淡燃烧器原理
浓淡燃烧器原理

浓淡燃烧器原理

2014-01-21 10:38

浓淡燃烧器原理

1. 所谓浓淡燃烧器,就是采用将煤粉——空气混合物气流,即一次风气流分离成富粉流和贫粉流两股气流,这样可在一次风总量不变的前提下提高富粉流中的煤粉浓度。

2. 富粉流中燃料在过量空气系数远小于1的条件下燃烧,贫粉流中燃料则在过量空气系数大于或接近1的条件下燃烧,两股气流合起来使燃烧器出口的总过量空气系数仍保持在合理的范围内。

3. 浓淡分离原理

(1)离心式煤粉浓缩器用在W型火焰锅炉上;

(2)利用管道转弯所产生的离心力使煤粉浓缩,在四角切圆燃烧的炉膛上得到应用;

百叶窗锥形轴向分离器;

(3)带有旋流叶片的煤粉浓缩器,用于燃用高水分褐煤的风扇磨煤机直吹式燃烧系统中。

4. 稳燃原理

富粉流中煤粉浓度的提高,即该股气流一次风分额降低,将使着火热减少,火焰转播速度提高,燃料着火提前。但是,煤粉浓度并非越高越好。如果煤粉浓度过高,则会因氧量不足影响挥发分燃烧,颗粒升温速度降低,反而使火焰转播速度下降,着火距离拉长,并会产生煤烟。最佳煤粉浓度值与煤种有关低挥发分煤和劣质烟煤的最佳值高于烟煤。富粉流着火后,为贫粉流提供了着火热源,后者随之着火,整个火炬的燃烧稳定性增强,从而扩大了锅炉不投油助燃的负荷调节范围及煤种适应性。

5. 减少污染

煤粉燃烧时有NO和极少量的NO2生成,它们统称为氮氧化合物,用NOX表示,是一种

有害的气体排放物。要降低NOX的生成量,要求火焰温度低,燃烧区段内氧浓度小,燃料在高温区内的停留时间短。浓淡燃烧器因能降低燃烧产物中NOX的排放量,所以也是一种低NOX燃烧器。

6. 防止结渣

煤粉颗粒在高温还原性气氛下,煤灰的灰熔点将大大降低,这样当烟中的灰粒接触到受热面或炉墙时,仍可能保持软化状态或熔化状态,会粘结在壁面上,形成结渣。

对于浓淡型煤粉燃烧器,将一次风煤粉气流沿水平方向进行浓淡分离,淡煤粉气流位于背火侧,即水冷壁一侧,使水冷壁附近煤粉浓度降低,氧浓度提高,还原性气氛水平下降,提高了灰粒的熔化温度,可减少炉膛结渣的可能性。同时,浓煤粉气流位于向火侧,有利于获取着火热,稳定燃烧。

滤波器基本原理、分类、应用

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器 二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 推荐精选

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。 低通滤波器与高通滤波器的串联 低通滤波器与高通滤波器的并联 ⒉根据“最佳逼近特性”标准分类 ⑴巴特 沃斯滤波 器 从幅频特 性提出要 求,而不 考虑相频 特性。巴 特沃斯滤 波器具有最大平坦幅度特性,其幅频响应表达式为: ⑵切比雪夫滤波 器 推荐精选

燃烧器工作原理及调整方法

燃烧器工作原理及调整方法 窑头燃烧器对窑内熟料的煅烧有着举足轻重的作用,其性能好坏调整是否合理直接影响窑内的煅烧情况以及窑衬的使用寿命。合理调整燃烧器的外风、内风和中心风的蝶阀开度,提高煤粉着火前区域局部煤粉浓度,加强燃烧器高温气体的内、外,回流,强化一次风充分混合达到完全燃烧。但必须注意,内风不能调整太大,否则可能导致煤粉在着火前就已被稀释,这样反倒不利于着火,或者可能引起高温火焰,冲刷窑皮,导致窑皮脱落,不利于保护耐火砖。内风也不能调整过小,否则煤粉着火后不能很快与空气混合,就会导致煤粉反应速率降低,引起大量的一氧化碳不能及时地氧成二氧化碳,造成窑内还原气氛。另外:外风也不宜调整过大,否则会造成烧成带火焰后移,窑内窑尾部分结厚窑皮或在过渡带附近出现结圈、结蛋现象,外风也不要太小,否则不能产生强劲的火焰,不利于煅烧出好质量的熟料。因此应根据具体情况选择合理的操作参数,根据煤质的好坏、 细度、水分、二次风温度、窑内情况以及圣路易烧性的好坏而定,通过调整最佳的外风、内风和中心风的比例关系,及燃烧器在窑口附近的合理位置,确定适宜的煅烧制度。 1.燃烧器的定位,许多公司的燃烧器采用“光柱法”定位,控制准确,但操作不方便。最好采用位置标尺在窑头截面上定位,一般

控制在窑头截面X轴稍偏右位置或稍偏第四象限的位置效果较好。在特殊工艺情况下可做少许微调。 2.火焰形状对煅烧的影响燃烧器设计的最佳火焰形状是轴流风和旋流风在(0.0)位置(此时各风道管通风量最大),这时的火焰形状完整而有力。燃烧器横向分布. 调整火焰的形状是通过调整各风道的通风截面积来实践的。在(0.0)位置时,轴流风和旋流风的通风截面积达到最大。火焰形状是通过旋流风和轴流风的相互影响、相互制约而得到,火焰形状的稳定是通过中心风来实现的,中心风的风量不能过大,也不能过小。一般中心风的压力应该控制在6-8KPa 之间比较理想,旋流风在24-26KPa,轴流风在23-25KPa,各风道的通风截面积不小于90%的情况下,对各参数进行调整。要想得到火焰形状的改变需要有稳定的一次风出口压力来维持,通过稳定燃烧器上的压力,改变各支管道的通风截面积来达到改变火焰形状的目的。具体火焰形状的变化。在调整火焰形状的时候,要杜绝走极端的现象,当火焰过粗的时候,此时也会很长、很软。当火焰过细的时候,火焰又会太短,烧成带要求火焰的形状完整、活泼、有力,这就需要我们长期的观察和总结经验。 3.煤质变化对火焰形状的影响: (1)当煤灰分变高时,煤粉的燃烧速度变慢,火焰变长,火焰燃烧带变长,应该:①提高二次风温度或利用更多的二次风,加强一次风和二次风与煤粉的混合程度;②降低煤粉的细度和水分;③改变轴

自适应滤波器介绍及原理

关于自适应滤波的问题: 自适应滤波器有4种基本应用类型: 1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。 3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。 4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。 这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道的传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。 1 关于SANC (自适应消噪)技术的问题 自适应噪声消除是利用winer 自适应滤波器,以输入信号的时延信号作为参考信号来进行滤波的,其自适应消噪的原理说明如下: 信号()x n 可分解为确定性信号分量()D x n 和随机信号分量()R x n ,即: ()()()D R x n x n x n =+ (1.1) 对于旋转机械而言,确定性信号分量()D x n 通常可表示为周期或准周期信号分量()P x n ,即: ()()()P R x n x n x n =+ 1.2 对信号()x n 两个分量()P x n 和()R x n ,有两个基本假设: (1) ()P x n 和()R x n 互不相关; (2) ()P x n 和()R x n 的自相关函数具有下述特性:()0P P x x R m ≈, N m M ≥;()0R R x x R m ≈,B m M ≥;

燃烧器

燃烧器 一、燃烧机的工作原理 符合燃烧机工作条件时,鼓风机马达开始转动,带动同轴的风扇叶转动,因离心力的原理,空气被高速旋转的叶轮送出,因蜗壳式的风机原理,送出的空气被吹向燃烧机的前方出口,在混合室内和进入的燃料充分混合(燃料分为燃气和燃油)。而风量的控制是由风门驱动器带动风门挡板来完成,有的燃烧机风量挡板安装在鼓风机的吸入口进行控制,有的燃烧机安装在鼓风机的吹出口设置风挡进行控制。 当采用气体燃料时,燃气经过控制阀进入混合室,与空气混合,利用控制阀的开度来控制燃气量的多少;当采用燃油为燃料时,燃料通过电磁阀、油管进入喷油嘴,由喷油嘴喷出雾化状的燃油,在混合室内与空气混合,被空气进一步吹散、雾化,再进入炉膛内燃烧。油路系统中有节流阀或控制燃油的压力,来改变喷嘴的出油量,控制火焰的大小。 燃烧机无论是燃油还是燃气,在和空气充分混合后,送入炉膛内燃烧,都必须有点火系统,在燃烧器上装有升压变压器,当初级通入电源后,变压器次级产生高压(8000~14000V),通过高压电缆送到打火电极上,点火电极击穿空气进行放电,形成电弧,点燃送入混合好的燃料。分为两种形式,一种是两根,当通电时两根点火棒之间放电;另一种是一根,通电时,点火棒对地放电。 燃烧器上装有空气压力继电器,它用来感受风机风量的大小。当风量达不到预先设定的要求时,压力继电器断开电路,燃烧器上程控器显示故障,停止燃烧,保证安全运行。压力继电器分为两种,一种是采用负压的方式,在风机的进风口处装有一根管,管接至负压空气继电器,利用鼓风机风速大,抽力形成负压,使负压继电器动作;另一种采用正压,安装在风机出风的方向,装有一根管,连接至正压空气压力继电器上,当风机鼓风时,有风进入正压空气继电器,形成一个压力,使继电器动作。 燃烧机上还装有火陷监视系统,俗称电眼,在点火前进行检测和在点火后进行火焰监控。在应该检测到火焰时,若检测不到火焰,则燃烧机程控器显示障,并切断燃料供应系统,防止爆燃。 二、燃油燃气燃烧器的构成 1、空气供给系统:鼓风马达、鼓风机叶轮、防护网、风门挡板。 2、燃气燃烧机供给系统:专用球阀、过滤器、调压阀、燃气操纵阀、压力 继电器、燃气蝶阀等。 3、燃油燃烧机供给系统:油泵、油管路、油用电磁阀、喷油嘴、油压控制 器、离合器等。 4、点火系统:高压点火变压器、高压点火线、点火电极等。 5、保护系统:火焰检测器、空气压力继电器、燃气压力继电器等。 6、进给系统:伺服马达。 三、燃油燃气燃烧器控制程序

燃烧器基本知识

燃烧器基本知识 燃烧器作为一种自动化程度较高的机电一体化设备,从其实现的功能可分为五大系统:送风系统、点火系统、监测系统、燃料系统、电控系统。 一、送风系统 送风系统的功能在于向燃烧室里送入一定风速和风量的空气,其主要部件有:壳体、风机马达、风机叶轮、风枪火管、风门控制器、风门档板、扩散盘。 1.壳体:是燃烧器各部件的安装支架和新鲜空气进风通道的主要组成部分。从外形来看可以分为箱式和枪式两种,大功率燃烧器多数采用分体式壳体,一般为枪式。壳体的组成材料一般为高强度轻质合金铸件。(如图1-1)顶盖上的观火孔有观察火焰作用 2.风机马达:主要为风机叶轮和高压油泵的运转提供动力,也有一些燃烧器采用单独电机提供油泵动力。某些小功率燃烧器采用单相电机,功率相对较小,大部分燃烧器采用三相电机,电机只有按照确定的方向旋转才能使燃烧器正常工作。有带动油泵及风叶作用,电机一般是2800转(如图1-2) 3.风机叶轮:通过高速旋转产生足够的风压以克服炉膛阻力和烟囱阻力,并向燃烧室吹入足够的空气以满足燃烧的需要。它由装有一定倾斜角度的叶片的圆柱状轮子组成,其组成材料一般为高强度轻质合金钢,所有合格的风机叶轮均具有良好的动平衡性能。 4.风枪火管:起到引导气流和稳定风压的作用,也是进风通道的组成部分,一般有一个外套式法兰与炉口联接。其组成材料一般为高强度和耐高温的合金钢。有风速调节作用。5.风门控制器:是一种驱动装置,通过机械连杆控制风门档板的转动。一般有手动调节、液压驱动控制器和伺服马达驱动控制器三种,前者工作稳定,不易产生故障,后者控制精确,风量变化平滑。 6.风门档板:主要作用是调节进风通道的大小以控制进风量的大小。其组成材料有合金,合金档板有单片、双片、三片等多种组合形式。 7.扩散盘:又称稳焰盘,其特殊的结构能够产生旋转气流,有助于空气与燃料的充分混合,同时还有调节二次风量的作用。 二、点火系统 点火系统的功能在于点燃空气与燃料的混合物,其主要部件有:点火变压器、点火电极、电火高压电缆。8.点火变压器:分电子式和机械(电感)式两种,是一种产生高压输出的转换元件,其输出电压一般为:2 5KV、2 6KV、2 7KV,输出电流一般为15~30mA。有EDI、丹佛斯、国产丹佛斯、飞达这几种。油机跟气机的区别是:油机一般两个头气机一般一个头。分电子式和机械式两种 9.点火电极:将高压电能通过电弧放电的形式转换成光能和热能,以引燃燃料。一般有单体式和分体式两种。一般点火针是用不锈钢材料耐800度高温,而我们用的是镍铬丝能耐1500度高温。注意点火棒不能与金属接触 10.电火高压电缆:其作用是传送电能。可以耐150万伏电压。 三、监测系统 监测系统的功能在于保证燃烧器安全的运行,其主要部件有火焰监测器、压力监测器、外接监测温度器等。11.火焰监测器:其主要作用是监视火焰的形成状况,并产生信号报告程控器。火焰检测器主要有三种:光敏电阻、紫外线UV电眼和电离电极。 A、光敏电阻:多用于轻油、重油燃烧器上,其功能和工作原理为:光敏电阻和一个有三个触点的火焰继电器相连,光敏电阻的阻值随器接收到的光的亮度而变化,接收到的光越亮,阻值就越低,当加在光敏电阻两端的电压一定时,电路中的电流就越高,当电流达到一定值时,火焰继电器被激活,从而使燃烧器继续向下工作。当光敏电阻没有感受到足够的光线时,火焰继电器不工作,燃烧器将停止工作。光敏电阻不适用于气体燃烧器。 B、电离电极:多用于燃气燃烧器上。程控器给电离电极供电,如果没有火焰,电极上的供电将停止,如果有火焰,燃气被其自身的高温电离,离子电流在电极、火焰和燃烧头之间流动,离子电流被整流成直流,

滤波器的种类、作用、原理

滤波器的种类、作用、原理 一、概述 1.定义 凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器,相当于频率“筛子”。 2.分类 幅频特性如下

频率通带:能通过滤波器的频率范围 频率阻带:被滤波器抑制或极大地衰减的信号频率范围。 截止频率:通带与阻带的交界点。 2)按物理原理分:机械式、电路式 按处理信号分:模拟、数字 3.滤波器的作用 1)将有用的信号与噪声分离,提高信号的抗干扰性及信噪比; 2)滤掉不感兴趣的频率成分,提高分析精度; 3)从复杂频率成分中分离出单一的频率分量 。 二、理想滤波器与实际滤波器 1.理想滤波器的频率特性 理想滤波器:使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。 如理想低通滤波器的频率响应函数为

理想滤波器实际上并不存在。 2.实际滤波器 实际滤波器的幅频特性如下图所示 实际滤波器的特性需要以下参数描述: ①信频程选择性: 与上、下截止频率处相比,频率变化一倍频程时幅频特性的衰减量,即 信频程选择性总是小于等于零,显然,计算信量的衰减量越大,选择性越好。 ②滤波器因素:-60dB处的带宽与-3dB处的带宽之比值,即 ③分辨力:即分离信号中相邻频率成分的能力,用品质因素Q描述。

3.实际带通滤波器的形式 ①恒定带宽带通滤波器:B=常量,与中心频率f0无关。 ②恒定百分比带通滤波器: 在高频区恒定百分比带通滤波器的分辨率比恒定带宽带通滤波器差。 三、RC无源模拟式滤波器 1.一阶RC低通滤波器

2.一阶高通滤波器

燃油燃气燃烧器的各种分类

燃油燃气燃烧器的各种分类 (1)燃烧器一般使用燃料可分为三种 1、燃气燃烧器 2、燃油燃烧器 3、油气两用燃烧器。 (2)按燃烧方法分类 1、扩散式燃烧器 燃烧所需的空气不预先与燃气混合一次空气系数 2、大气式燃烧器 燃烧所需的部分空气预先与燃气混合一次空气系数仪。 3、完全预混式燃烧器 燃烧所需的全部空气预先与燃气充分混合一次空气系数仅—。 (3)按调节方式来分,可分为: 1、单段火力:单段火力燃烧器是指燃烧器点火后,只有一级出力,出力大小不能调节; 2、两段火力调节:燃烧器有两级出力,点火后可以一级工作,当负荷大时,也可以使第二级投入运行,两级共同工作,这种燃烧器虽然出力大小可调整,但只能调节为两级,不是无级调节; 3、三段火力调节:调节为三级,也不是无级调节; 4、双段滑动式调节:类似比例调节,只能在大档位和小档位停留。 5、比例式调节:从最小出力直到最大出力,可连续调节,为无级调节。但最小负荷是有要求的,燃油燃烧器调节比为1:4,也就是最小负荷为25;燃气燃烧器调节比可达到1: 6、对于气体燃烧器而言,一般均是连续调节。 (4)按空气的供给方法分类 1、引射式燃烧器 空气被燃气射流吸入或燃气被空气射流吸入 2、自然供风式燃烧器 靠炉膛中的负压将空气吸入组织燃烧 3、鼓风式燃烧气 用鼓风设备将空气送入炉内组织燃烧。 (5)按燃气压力分类 1、低压燃烧器 燃气压力在5000Pa以下 2、高中压燃烧器 燃气压力在5000Pa至3×105Pa之间。 另外还有一些特殊功能的燃烧器如浸没式燃烧器、高速燃烧器和低燃烧器。 丹阳奇润机械制造有限公司是2004年成立的台商独资企业,地处江苏省丹阳市延陵镇蒯(读快)庄大队对面,占地6680平方米。资产总值1800万元,经过多年发展,形成了

皮拉德最新型燃烧器工作原理

燃烧器工作原理 ROTA2 是一种专用于新一代回转窑燃烧器的新型加热设备。这种设备具备ROTAFLAM 燃烧器的高动量以及调节简单的优点。 ?保持空气动量恒定的情况下,通过改变旋流器的轴向位置进行旋流调节。 ?通过燃烧器的进口压力控制动量。 与ROTAFLAM 类似,ROTA2 的设计方案源自锅炉专用型“GRC”型Pillard (Pillard 专利号No. 71.03504)燃烧器的设计、使用经验。其特点为: ?采用中央孔的旋流效应。 ?外部轴向气流。 总布局原理 粉末状燃料(煤、石油焦、褐煤、无烟煤)通道的总布局——下称煤粉通道——位于中心空气与单通道空气之间(带有一个轴向出口与一个径向出口):?使火焰基部产生再循环空气漩涡,即使在回转窑冷态启动时这种状态也能保持良好的稳定性。 ?通过出口一次风流量使火焰宽度处于可控状态。 ?产生富燃火焰(按照空气动力学形式聚缩) 火焰中心达到这种状态后能够明显减少NOx 物质的形成。 轴向高动量原理 在外部轴向布置的一次风喷射口产生的强大脉冲激发下,可产生一个逐步与二次风混合的过程。这些轴向一次风喷口专用于在保持火焰直径可控的同时,优化二次风的吸收情况。 旋流调节原理 在保持一次风流量(因此,也可保持脉冲)恒定的情况下,通过特殊旋流调节器可调节火焰形状。

7.3 - 描述(图 1、2) ROTA2 燃烧器可在下列配置情况下工作: ? 采用粉末状燃料,如煤、石油焦、褐煤、无烟煤(包括一只点火枪) ? 采用油或者气体 ? 采用任何比例的混合燃料 ? 采用液体和/或固体替代燃料 根据燃料类型,ROTA 2 燃烧器通常用于消耗 7 – 11% 的纯一次风。消耗量将在燃烧器运行期间进行优化。 Rota 2 燃烧器包括: 图 1:燃烧器喷嘴 (1) 套管 (3) (2) (1)

EMI滤波器应用设计原理

EMI滤波器设计原理 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的 d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理围即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要 H 的衰减); stop 2)对电网频率低衰减(满足规定的通带频率和通带低衰减); 3)低成本。 1.1 常用低通滤波器模型 EMI滤波器通常置于开关电源与电网相连的前端,是由串联电抗器和并 联电容器组成的低通滤波器。如图1所示,噪声源等效阻抗为Z source、电网等效阻抗为Z sink。滤波器指标(f stop和H stop)可以由一阶、二阶或三阶低通滤波器实现,滤波器传递函数的计算通常在高频下近似,也就是说对于n阶滤波器,忽略所有ωk相关项(当k

加热炉燃烧器综述

油气燃烧器主要结构型式及运行性能 油气燃烧器是一种将油气燃料和空气按规定的比例、速度和混合方式送入炉膛进行及时着火和高效、清洁燃烧的装置。这种装置一般设有自动点火、火焰监视和自动调节装置的全自动燃烧器。目前我国工业炉窑领域采用的油气燃烧器绝大多数都是这种属于全自动燃烧器。 油气燃烧器是油气工业炉窑最重要的关键设备。按燃用的燃料可分为油燃烧器和燃气燃烧器;也有具备燃用两种不同燃料(燃油及燃气或两种不同的燃气)功能的双燃料燃烧器,如油气两用燃烧器等。 油燃烧器主要由油喷嘴(雾化器)和调风器等组成;燃气燃烧器则主要由燃气喷管或喷孔及调风器组成。 §3.1 燃烧器的基本要求[35] 为适应炉内燃烧过程的需要,确保锅炉等设备安全可靠、高效经济和低污染排放下运行,燃烧器应具有下列主要技术性能: (1)高的燃烧效率 为确保运行高的燃烧效率,对于燃油燃烧器要求在一定的运行调节范围内,具有良好的雾化性能即:燃料油经雾化后的油滴群中油滴粒度细而均匀,雾化角适当,油雾沿圆周的流量密度分布与配风一致,油雾与空气的混合良好等。 对于燃气燃烧器在额定燃气压力下,应能通过额定燃气量并将其充分燃烧,以满足锅炉额定热负荷的生产。 (2)合理地配风,保证燃料燃烧稳定、完全。 在雾化炬的根部应及时地供给适量空气,防止油气因高温缺氧而热解为碳黑;在燃烧气流出口处应形成一个大小适中,位置恰当的回流区,使燃料与空气处于较高的温度场中,以保证着火迅速及稳定;在燃烧的中后期要使空气与油雾混合迅速均匀,确保燃烧完全,并使燃烧烟气中生成的有害物质(CO、NO x 等)越少越好。 (3)燃烧火焰形状及长度应与炉膛相适应,火焰充满度好,火焰温度与黑度都应符合炉窑的要求。不应使火焰冲刷炉墙、炉底及出口窗处的对流受热面。(4)调节性能好。燃烧器应能适应炉窑负荷的调节需要,即在炉窑最低负荷至最高负荷之间,燃烧器都能稳定工作,不发生回火和脱火。 (5)喷嘴在雾化时所消耗的能量越少越好。 (6)调风装置的阻力小,运行噪声小。

燃烧器工作原理及调整方法

燃烧器工作原理及调整方 法 The Standardization Office was revised on the afternoon of December 13, 2020

燃烧器工作原理及调整方法 窑头燃烧器对窑内熟料的煅烧有着举足轻重的作用,其性能好坏调整是否合理直接影响窑内的煅烧情况以及窑衬的使用寿命。合理调整燃烧器的外风、内风和中心风的蝶阀开度,提高煤粉着火前区域局部煤粉浓度,加强燃烧器高温气体的内、外,回流,强化一次风充分混合达到完全燃烧。但必须注意,内风不能调整太大,否则可能导致煤粉在着火前就已被稀释,这样反倒不利于着火,或者可能引起高温火焰,冲刷窑皮,导致窑皮脱落,不利于保护耐火砖。内风也不能调整过小,否则煤粉着火后不能很快与空气混合,就会导致煤粉反应速率降低,引起大量的一氧化碳不能及时地氧成二氧化碳,造成窑内还原气氛。另外:外风也不宜调整过大,否则会造成烧成带火焰后移,窑内窑尾部分结厚窑皮或在过渡带附近出现结圈、结蛋现象,外风也不要太小,否则不能产生强劲的火焰,不利于煅烧出好质量的熟料。因此应根据具体情况选择合理的操作参数,根据煤质的好坏、细度、水分、二次风温度、窑内情况以及圣路易烧性的好坏而定,通过调整最佳的外风、内风和中心风的比例关系,及燃烧器在窑口附近的合理位置,确定适宜的煅烧制度。 1.燃烧器的定位,许多公司的燃烧器采用“光柱法”定位,控制准确,但操作不方便。最好采用位置标尺在窑头截面上定位,一般

控制在窑头截面X轴稍偏右位置或稍偏第四象限的位置效果较好。在特殊工艺情况下可做少许微调。 2.火焰形状对煅烧的影响燃烧器设计的最佳火焰形状是轴流风和旋流风在()位置(此时各风道管通风量最大),这时的火焰形状完整而有力。燃烧器横向分布. 调整火焰的形状是通过调整各风道的通风截面积来实践的。在()位置时,轴流风和旋流风的通风截面积达到最大。火焰形状是通过旋流风和轴流风的相互影响、相互制约而得到,火焰形状的稳定是通过中心风来实现的,中心风的风量不能过大,也不能过小。一般中心风的压力应该控制在6-8KPa之间比较理想,旋流风在24-26KPa,轴流风在23-25KPa,各风道的通风截面积不小于90%的情况下,对各参数进行调整。要想得到火焰形状的改变需要有稳定的一次风出口压力来维持,通过稳定燃烧器上的压力,改变各支管道的通风截面积来达到改变火焰形状的目的。具体火焰形状的变化。在调整火焰形状的时候,要杜绝走极端的现象,当火焰过粗的时候,此时也会很长、很软。当火焰过细的时候,火焰又会太短,烧成带要求火焰的形状完整、活泼、有力,这就需要我们长期的观察和总结经验。 3.煤质变化对火焰形状的影响: (1)当煤灰分变高时,煤粉的燃烧速度变慢,火焰变长,火焰燃烧带变长,应该:①提高二次风温度或利用更多的二次风,加强一次风和二次风与煤粉的混合程度;②降低煤粉的细度和水分;③

各种燃烧器烧嘴分类知识

烧嘴的分类知识 1、燃油烧嘴 1.1 按雾化方法分类 1.1.1 压力雾化烧嘴 压力雾化烧嘴是靠燃油自身的压力转化为喷射动能,通过液膜或液柱受空气的剪切扰动而使燃油雾化。这种烧嘴的优点是结构简单、运行成本低。缺点是当负荷变小时雾化颗粒度及平均尺寸迅速增加燃烧效率降低且小流量烧嘴易堵赛和结焦。 1.1.2 机械雾化烧嘴 机械雾化烧嘴是将燃油的机械能转化为雾化能量,常见机械雾化烧嘴是转杯式雾化烧嘴。此类烧嘴对机械能要求较高,一般要求非常高的转速才能雾化所需的剪切力。 1.1.3 气动雾化烧嘴 气动雾化烧嘴是利用空气或蒸气的高速运动对液膜或液柱进行撞击、剪切、旋转。气液两相产生相对高的相对速度来实现破碎雾化。气动雾化烧嘴的优点是调节范围广、雾化性能好。它的主要缺点是: (1)雾化能量利用率低 (2)雾化气用量大 (3)对于高粘度的重柴油、重渣油、水煤浆不能高效燃烧的要求 1.1.4 气泡雾化烧嘴 气泡雾化在国际上被称为第三代雾化技术,这种烧嘴是在特殊结构的通道中注入压缩空气或蒸气,使之在燃油中形成数量巨大的气泡,气泡经运动、变形、加速等一系列过程后至烧嘴出口处破碎,从而形成液滴非常小、尺寸均匀度大的液雾。它具有以下特点: (1)气泡雾化烧嘴主要克服燃油表面张力来雾化 (2)所需雾化能量少 (3)雾化颗粒细、尺寸平均度高 1.2 以其他标准分类 1.2.1 按油流与雾化介质的相对流向分类 (1)直流式:油流与雾化介质的相对流向是接近平行 (2)涡流式:油流与雾化介质的相对流向是切向方向 (3)交流式:油流与雾化介质的相对流向是以一定角度 1.2.2 按油流与雾化介质的相对作用次数来分类 (1)一级雾化:油流与雾化介质的相对作用次数是一次 (2)二级雾化:油流与雾化介质的相对作用次数是二次 (3)多级雾化:油流与雾化介质的相对作用次数是多次 1.2.3 按油流与雾化介质的相对作用位置来分类 (1)外混式:油流与雾化介质的相对作用位置是烧嘴出口外面 (2)内混式:油流与雾化介质的相对作用位置是烧嘴出口里面 2、燃气烧嘴的分类 2.1 按燃烧方式分类 2.1.1 非预混式烧嘴 非预混式烧嘴又称为长焰烧嘴。它的燃烧方式是煤气与空气不预先混合,而是分别送入燃烧室或窑内进行混合燃烧。它的特点是:

旋流式燃烧器的工作原理

燃烧器的作用 燃烧器是煤粉炉燃烧设备的主要组成部分,它的作用是把煤粉和燃烧所需的空气送入炉膛,合理地组织煤粉气流,并良好地混合,促使燃料迅速而稳定地着火和燃烧。 一个良好的燃烧器应具备的确良基本条件是: (1)一二次风出口截面应保证适当的一二次风风速比; (2)出口气流有足够的扰动性,使气流能很好地混合; (3)煤粉气流的扩散角,能在一定范围内任意调节,以适应煤种变化的需要;(4)沿出口截面煤粉的分布应均匀; (5)结构应简单、紧凑,通风阻力应小。 旋流式燃烧器 1、旋流式燃烧器的工作原理 旋流式燃烧器由圆形喷口组成,燃烧器中装有各种型式的旋流发生器(简称旋流器)。煤粉气流或热空气通过旋流器时,发生旋转,从喷口射出后即形成旋转射流。利用旋转射流,能形成有利于着火的高温烟气回流区,并使气流强烈混合。 射出喷口后在气流中心形成回流区,这个回流区叫内回流区。内回流区卷吸炉内的高温烟气来加热煤粉气流,当煤粉气流拥有了一定热量并达到着火温度后就开始着火,火焰从内回流区的内边缘向外传播。与此同时,在旋转气流的外围也形成回流区,这个回流区叫外回流区。外回流区也卷吸高温烟气来加热空气和

煤粉气流。由于二次风也形成旋转气流,二次风与一次风的混合比较强烈,使燃烧过程连续进行,不断发展,直至燃尽。 2、旋流式燃烧器的类型 按照旋流器的结构,旋流式燃烧器可分为蜗壳式、轴向叶片式、切向叶片式三大类,常用的有以下几种: 单蜗壳式 蜗壳式 双蜗壳式 三蜗壳式 旋流式燃烧器轴向叶轮式 单调风 双调风 3、双调风旋流式燃烧器 双调风旋流式燃烧器是在单调风燃烧器的基础上发展出来的。双调风式燃烧器是把燃烧器的二次风通道分为两部分,一部分二次风进入燃烧器的内环形通 图4-20 双调风旋流燃烧器

各种燃气燃烧器工作原理及简介培训课件

各种燃气燃烧器工作原理及简介 气体燃烧器 气体燃烧器种类较多 , 以下按空气供给方式介绍几种工业锅炉上应用较多的燃烧器。 1. 自然供风燃烧器 如图 3-45 所示 , 按炉膛形状可以选择圆形或矩形燃烧 器 , 低压燃气通过管子上的火孔流出 , 与空气事先元预混合 , 是一次空气系数α l=0 的扩散燃烧方式 , 因 而也称为扩散文燃烧器。 这种燃烧器燃烧稳定 , 运行方便 , 而且结构简单 , 可以利用 300~400Pa 的低压燃气。但炉膛过量空气系数较大 , α= 、 1.2~1.6; 排烟热损失 q2 和气体不完全燃烧热损失 q3 偏大 ; 火焰较长 , 要求炉膛容积大 ; 燃烧速度低 , 只用于很小容量的锅炉。 2. 引射式燃烧器

它的种类繁多。按燃烧方式分 , 它有部分空气预混合的本生燃烧方式和空气预混合的无焰燃烧方式两种。 所用的引射介质可以是空气 , 也可以是一定压力的燃气 , 前者需要鼓风装置。 (1) 大气式引射燃烧器 如图 3-46 所示。燃气以一定流速自喷嘴进入引射器 , 在引射器的缩口处将一次空气 ( α1=0.45~0.65) 引入 , 两者经混合后流向燃烧器头部 , 由直径为 2~10mm 的火孔流出 , 以本生火焰形式燃烧。这种燃烧器也只用于小型锅炉 , 它适用于各种低压燃气 , 而且不需要鼓风装置。但热负荷太大 , 结构笨重。 (2) 空气引射式燃烧器

如图 3-47 所示。压头为 5000~600OPa 的空气经喷嘴通过引射器的缩口处时 , 形成负压 , 把低压的燃气从四个管孔吸人 , 两种气体在混合管中混合形成均匀的气体混合物 , 它流向火孔出口 , 并在与出口处相连接的稳焰火道中燃烧。图中所示的燃烧器是与全部燃烧空气预混合的无焰燃烧器 , 炉膛出口过量空气系数小 , 燃烧强度高 , 但需要鼓风装置 , 耗电大 , 适用于带有空气预热器的阻力较大的正压锅炉。 3. 鼓风式燃烧器鼓风式燃烧器一般由分配器、燃气分流器和火道组成。种类较多 , 常用的有旋流式和平流式两 种。 这两类燃烧器的配风器与燃油燃烧器基本相似 , 燃气分流器的基本形式为单管式和多管式。其结构简单。燃烧形成的火焰特征与通常旋流式和直流式燃油燃烧器也相似 , 这里不再一一叙述。以下列举一种常用的燃气燃烧 器的例子。图 3-48 是周边供气蜗壳式燃烧器。

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

几种几种常见燃烧器的特点

几种常见燃烧器的特点 为方便起见,按第一种分类叙述。 (一)扩散式燃烧器 空气在燃烧时供给,按空气供给方式,可分为自然供风式和鼓风式。自然引风式依靠自然抽力或扩散供给空气,多用于民用。 优点:a.燃烧稳定,不回火; b.结构简单,制造方便; c.操作简单,易于点火,无需鼓风; d.可利用低压燃气,燃气压力为200-400 Pa时,仍正常工作。 缺点:a.燃烧热强度低,火焰大,需较大燃烧室; b.容易产生不完全燃烧,经济性差; c.过剩空气系数大,燃烧温度低。 鼓风式扩散燃烧器,只是所需空气由动力风机供给,其它方式仍与白然引风式扩散烧器相似。 优点:a.结构紧凑,占地少; b.热负荷调节范围大,调节系数一般大于5; c.可预热燃气或空气,预热温度甚至可接近着火温度; d.要求燃气压力低; e.易实现燃气一煤粉、油一燃气混烧。 缺点:a.需鼓风,耗费电能; b.容积热强度较完全预混式小,火焰长,需大的燃烧室容积; c.本身不具备燃气与空气成比例变化的白动调节特性,最好配白动调节装置(二)大气式燃烧器 大气式燃烧器又称引射式预混燃烧器,应用十分广泛。其燃烧所需空气与燃气在燃气燃

烧前已有一定混合,燃烧同时又吸收扩散进来的空气。它由头部和引射器两部分组成。其工作原理是燃气在一定的工作压力下以一定流速从喷嘴喷出,依靠燃气动能产生的 引射作用吸入一次空气,在引射器内燃气与空气混合后,从排列在头部的火孔流出进 行燃烧。这种燃烧器的一次空气系数0

高通滤波器原理及分类

高通滤波器:英文名称为high-pass filter,又称低截止滤波器、低阻滤波器,允许高于某一截频的频率通过,而大大衰减较低频率的一种滤波器。它去掉了信号中不必要的低频成分或者说去掉了低频干扰。其特性在时域及频域中可分别用冲激响应及频率响应描述。 高通滤波器是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。其特性在时域及频域中可分别用冲激响应及频率响应描述。后者是用以频率为自变量的函数表示,一般情况下它是一个以复变量jω为自变量的的复变函数,以H(jω)表示。它的模H(ω)和幅角φ(ω)为角频率ω的函数,分别称为系统的“幅频响应”和“相频响应”,它分别代表激励源中不同频率的信号成分通过该系统时所遇到的幅度变化和相位变化。可以证明,系统的“频率响应”就是该系统“冲激响应”的傅里叶变换。当线性无源系统可以用一个N阶线性微分方程表示时,频率响应H(jω)为一个有理分式,它的分子和分母分别与微分方程的右边和左边相对应。 高通滤波器原理及分类 高通滤波器按照所采用的器件不同进行分类的话,会有源高通滤波器、无源高通滤波器两类。 无源高通滤波器:无源高通滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 实际滤波器的基本参数:理想滤波器是不存在的,其特性只需截止频率描述,而实际滤波器的特性曲线无明显的转折点,故需用更多参数来描述。 高通滤波器技术指标有:

燃烧机工作原理2

· 燃烧三要素:燃料、着火源、助燃氧气。 · 过剩空气系数:燃烧实际空气量与燃料理论空气量之比。 · NOx:燃烧过程中产生的NO、NO2氮氧化物的统称。 · 自然引风扩散式燃烧:燃烧所需空气不是依靠风机或其他强制供风方式供给氧气,而是依靠自然通风或燃料本身的压力引射空气来获得助燃氧气的燃烧方式等。 · 强制鼓风式燃烧:由风机或压缩机强制供风提供助燃氧气的燃烧方式,一般工业用燃烧器大多为这种形式。 · 预混合式燃烧(引射式):燃料和空气在喷出燃烧前预先按比例混合,然后喷出燃烧。 · FSG:FLAME SAFEGUARD SYSTEM 燃烧安全保护装置。FSG一般由以下几部分组成: o 电源:供给系统运行、继电器吸合之用。 o 火焰检测部分:随时检测、判断火焰的状态。 o 点火输出:供给点火变压器电源以产生着火所需的电火花,确认正常着火后自动关闭,以保护点火变压器。 o 阀门控制输出:在点火输出时或稍微延时后开启燃料电磁阀点火燃烧。 o 报警输出:在点火失败或正常燃烧中发生熄火时,能及时切断燃料阀,并输出报警信号。 o 其他:根据需要不同的FSG配有许多不同的附属装置,如:燃烧器风机压力开关输入、温度控制输入、燃料压力开关输入等。 · 离子火焰检测:利用高温烟气具有单向电离作用的原理,在火焰中加上一个交流电压,通过检测电流的有无确认火焰状态。 · 光电火焰检测:利用火焰燃烧本身的光线经光电传感器检测火焰状态。 · 点火前吹扫:燃烧器一般均装有自动控制点火装置,为确保初次点火的安全,在正式点火前,可以通过助燃风机将新鲜空气送入炉膛,稀释、扫除炉膛内的可燃性气体,吹扫时间与炉膛大小、燃烧器燃烧量有关,一般要求吹扫时间满足炉膛换气4次即可。 (停炉后吹扫:正常燃烧时,燃烧器喷嘴处的火焰温度可达一千度以上,由于由循环风机不断将高温烟气带走,所以燃烧器及燃烧室能保持在一定的温度以下。

有源滤波器的基本原理

有源滤波器的基本原理 有源滤波器是一种用于动态抑制谐波、补偿无功的电力电子装置,它能对大小和频率都变化的谐波,以及变化无功进行补偿。其应用可克服LC滤波器等传统的谐波抑制和无功补偿的缺点。 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有

源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国内外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感内阻上将产生较大损耗,所以目前较少采用。

2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,

相关主题
文本预览
相关文档 最新文档