当前位置:文档之家› JB∕ZQ 4381-1986 齿式联轴器的选用和计算

JB∕ZQ 4381-1986 齿式联轴器的选用和计算

JB∕ZQ 4381-1986 齿式联轴器的选用和计算
JB∕ZQ 4381-1986 齿式联轴器的选用和计算

https://www.doczj.com/doc/8711734901.html,

https://www.doczj.com/doc/8711734901.html,

联轴器选用方法

联轴器的选用 联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我过制订为国际和行标的联轴器有数十种,这些标准联轴器绝大多数是通用联轴器,万向联轴器,每一种联轴器都有各自的特点和适合范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才自行设计联轴器。标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。设计人员在选用联轴器时应立足于从轴系传动的角度和需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。 一、选择联轴器应考虑的因素 (一)动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。在机械传动中,动力机不外乎电动机、内燃机和气轮机。由于动力机工作原理和机构不同,其机械特性差别较大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。根据动力机的机械特性,将动力机分为四类。万向联轴器,见表1 。 表 1 动力机系数Kw 动力机类别代号动力机名称动力机系数 Kw 动力机类别代号动力机名称动力机系数 Kw Ⅰ 电动机、透平 1.0 Ⅲ 二缸内燃机 1.4 Ⅱ 四缸及四缸以上内 1.2 Ⅳ 单缸内燃机 1.6 燃机 动力机的机械特性对整个传动系统有一定的影响,不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数Kw ,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。固定的机械产品传动系统中的动力机大

鼓形齿联轴器分析

冷轧机板形辊鼓形齿联轴器分析 1.引言 因轧机厚度波动限制轧机产能且经常引发断带问题,经驻北京西马克技术有限公司的技术人员现场诊断处理,确定故障原因为:板形辊与驱动电机之间的鼓形齿联轴器的齿间隙过大引起。 在更换齿间隙较小的鼓形齿联轴器后,通过电气作业区、轧钢作业区反馈的情况看轧机厚度波动状况明显减小。由此,鼓形齿联轴器侧间隙达到多大值时会影响板形辊的转速测定、联轴器侧间隙如何影响板形辊转速,成为需要进一步分析探讨的问题。 2.鼓形齿联轴器的结构及特点 鼓形齿联轴器形状尺寸小、承载能力大、在高速下工作可靠。鼓形齿联轴器广泛应用于冶金、化工、印刷、水泵、风机、运输等机械领域。其显著特点是:一是补偿机能好,因为外齿轴套为鼓形齿,联轴器工作时可避免内外齿棱角接触,两轴轴线角位移在2~3°时也能可靠的工作。二是能承受重载及冲击载荷,在相同角位移情况下能承受更大载荷。三是效率高,可达0.99。四是密封性好,使用可靠,装卸、维护利便。 鼓形齿联轴器由内齿套、外齿轴套、护盖、油封、润滑油孔等组成。见下图:

3.鼓形齿联轴器侧间隙实测 经过详细了解西马克现场服务人员故障排查处理的过程,得知测量辊的鼓形齿联轴器的主要用途是用于传递速度,并非像一般机械设备上的联轴器用于传递扭矩,此处使用的鼓形齿联轴器传递的扭矩在高速稳态时只有0.04kNm,其设计制造精度要求高于普通传递扭矩的联轴器。冷轧机投用以来,由于机械维护人员不了解其它专业相关精度控制的要求,此前机械人员均按传递扭矩联轴器的使用要求和标准进行维护保养。 鼓形齿联轴器的内外齿啮合后必须留有一定的侧间隙,以保证齿轮副的正常工作,避免因安装误差和工作温度升高引起热膨胀变形卡死。同时需要控制其最大侧间隙,以避免变速转动时齿间产生撞击,增大噪音,加剧齿面磨损,影响其寿命。 由于西马克在图纸中没有给出鼓形齿联轴器的齿侧间隙允许误差,也没有给出极限使用侧间隙的值。国内文献检索不到

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

鼓形齿联轴器的设计

本科毕业设计(论文)通过答辩 目录 前言……………………………………………………………………………绪论……………………………………………………………………………第一章概述………………………………………………………………… 1.1联轴器的功用………………………………………………………………………… 1.2联轴器的特点…………………………………………………………………………第二章选择联轴器的类型………………………………………………… 2.1联轴器的分类………………………………………………………………………… 2.2 选择联轴器应考虑的因素…………………………………………………………2.3鼓形齿联轴器的特点………………………………………………………………… 2.4 ZWG型鼓形齿联轴器…………………………………………………………………第三章 ZWG型鼓形齿联轴器的尺寸给定………………………………………… 3.1型式、基本参数和主要尺寸………………………………………………………… 3.2 其型式、基本参数和主要尺寸应符合规定………………………………………………第四章鼓形齿联轴器的强度…………………………………………………第五章 CAD/CAM建模及数控编程…………………………………………… 5.1走刀轨迹及程序………………………………………………………………………第六章结论与展望…………………………………………………………… 参考文献………………………………………………………………………致谢…………………………………………………………………………… 33 37 35 30 26 26 14 14 11 4 6 3 3 3 4 16 2 20 18 18 18 32 3 34

机械毕业设计749鼓形齿联轴器的设计

目录 前言……………………………………………………………………………绪论……………………………………………………………………………第一章概述………………………………………………………………… 1.1联轴器的功用………………………………………………………………………… 1.2联轴器的特点…………………………………………………………………………第二章选择联轴器的类型………………………………………………… 2.1联轴器的分类………………………………………………………………………… 2.2 选择联轴器应考虑的因素…………………………………………………………2.3鼓形齿联轴器的特点………………………………………………………………… 2.4 ZWG型鼓形齿联轴器…………………………………………………………………第三章 ZWG型鼓形齿联轴器的尺寸给定………………………………………… 3.1型式、基本参数和主要尺寸………………………………………………………… 3.2 其型式、基本参数和主要尺寸应符合规定………………………………………………第四章鼓形齿联轴器的强度…………………………………………………第五章 CAD/CAM建模及数控编程…………………………………………… 5.1走刀轨迹及程序………………………………………………………………………第六章结论与展望…………………………………………………………… 参考文献………………………………………………………………………致谢…………………………………………………………………………… 33 37 35 30 26 26 14 14 11 4 6 3 3 3 4 16 2 20 18 18 18 32 3 34

弹性联轴器扭振计算

陈翔硕士生--弹性联轴器扭振理论及其应用的研究 来源:减速机信息网时间:2008年8月12日15:35责任编辑:zhangzhengmin 第5 章弹性联轴器有限元分析 5.1ANSY 概述 5.1.1 ANSYS 简介 随着计算机技术的高速发展,数值计算在工程中已得到越来越广泛的应用,大型的计算软件,如ANSYS已被广泛应用于结构分析、热力学分析、电磁场分析、流体分析、耦合场分析等领域。 ANSYS是一种广泛的商业套装工程分析软件。所谓工程分析软件,主要是在机械结构系统受到外力负载所出现的反应,例如应力、位移、温度等,根据该反应可知道机械结构系统受到外力负载后的状态,进而判断是否符合设计要求。一般机械结构系统的几何结构相当复杂,受的负载也相当多,理论分析往往无法进行。想要解答,必须先简化结构,采用数值模拟方法分析。由于计算机行业的发展,相应的软件也应运而生,ANSYS软件在工程上应用相当广泛,在机械、电机、土木、电子及航空等烦城的使用,都能达到某种程度的可信度,颇获各界好评。使用该软件,能够降低设计成本,缩短设计时间。 ANSYS是由美国ANSYS公司(世界上最大的有限元分析软件公司之一)世界著名的力学分析专家Orswanson率领科技人员多年研究开发。它能与多数CAL软件接口,实现数据的共享和交换。它具有丰富和完善的单元库,材料模型度和求解器.保证了能够高效的求解各类结构的静力、动力、线性和非线性问题、稳态和瞬态热分析及热-结构耦合问题、静态和时变磁场问题、压缩和不可压缩的流体动力学问题以及多耦合场问题。除具有完全交互式的前后处理功能,它还为用户提供了多种二次开发工具,ANSYS 提供的开发工具包括4个组成部分:参数化程序设计语言(APDL),用户界面设计(UIDL),用户程序特性(UPFS),ANSYS数据接口。 到80年代初期,国际上较大型的面间工程的有限元通用软件主要有:ANSYS, NASTRAN,ASKA,ADINA,SAP 等。以ANSYS为代表的工程数值模拟软件,是一个多用途的有限元法分析软件,它可广泛的用于核工业、铁道、石油化工,航空航天、机械制造、能源,汽车交通,国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分。它包含了前置处理、解题程序以及后置处理,将有限元分析、计算机图形学和优化技术相结合,已成为现代工程学问题必不可少的有力工具。 5.1.2 ANSYS的基本使用 ANSYS有两种模式:一种是交互模式(Interactive Mode),另一个是非交互模式( Batch Mode)。交互模式是初学者和大多数使用者所采用,包括建模、保存文件、打印图形及结果分析等,一般无特别原因皆用交互模式。但若分析的问题要很长时间,如一、两天等,可把分析问题的命令做成文件,利用它的非交互模式进行分析。 ANSYS 基本对象的构成: 1)节点(Node ) :就是考虑工程系统中的一个点的坐标位置,构成有限元系统的基本对象。具有其物理意义的自由度,该自由度为结构系统受到外力后,系统的反应。 (2)元素(Element) :元素是节点与节点相连而成,元素的组合由各节点相互连接。不同特性的工程统,可选用不同种类的元素,ANSYS提供了一百多种元素,故使用时必须慎重选择元素型号。

鼓形齿联轴器的正确安装方法范本

工作行为规范系列 鼓形齿联轴器的正确安装 方法 (标准、完整、实用、可修改)

编号:FS-QG-21691鼓形齿联轴器的正确安装方法Correct installation method of drum tooth coupling 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 联轴器是企业机械传动中重要的部件,广泛应用设备与减速器或电机的联接中。联轴器的装配与找正在设备安装中是一项非常重要、精度要求很高的工作,若装配与找正的结果不精确,会造成设备的振动值超标,严重威胁设备的正常运行,尤其是高转速设备,所以在安装联轴器的过程应特别注意一些细节。 对于联轴器与轴有相应间隙的配合可在清理干净配合表面后,涂抹润滑油脂直接安装。对于过渡配合和过盈量不是很大的配合,或者有特殊要求的配合(如保护已装精密另部件)可采用压入法,但需要压入设备。联轴节的热装配工作常用于大型电机、压缩机和轧钢机等重型设备的安装中,因为这类设备中的联轴节与轴通常是采用过盈配合联接在一起的。过盈联接件的装配方法有:压入装配、低温冷装配和

热套装配等数种。冷缩装配法一般用液氮等作为冷源,且需有一定的绝热容器,故也只能在有条件时才采用。 热套装配的本质原理是加热包容件(孔),使其直径膨胀一个配合过盈值,然后装入被包容件(轴),待冷却后,机件便达到所需结合强度。实际上,加热膨胀值必须比配合过盈值大,才能保证顺利安装而不致于在安装过程中因包容件的冷却收缩,出现轴与孔卡住的严重事故。同时,为了保证具有较大的啮合力――结合强度,热套装配的结合面要经过加工,但不要过分光洁,因为一定的表面粗糙度,不受轴向移动而被压平,冷却以后,将使内外机件的结合强度较大,所能传递的扭距也较大。 1、弹性联轴器可传递扭矩和回转角度,同时吸收轴的安全偏差,当安装偏差超过容许值时,可能会产生振动或导致联轴器的寿命缩短,因此要确保偏差的调整适当。 2、轴的偏差有三种,分别是径向偏差、角向偏差和轴向偏差。请调整偏差,使其低于各产品规格表中列出的容许值。 3、各产品所列之最大偏差容许值是指只有一种偏差存在的情况下,当两种或更多种偏差同时存在时,容许值应低

如何选用联轴器型号

如何选用联轴器型号 选用联轴器型号,虽同是选用商品,但它考虑的东西应该比其他一般商品要多些。 在考虑上述综合因素的基础上,联轴器选用程序如下: (一) 选用标准联轴器 设计人员在选择联轴器时首先应在已经制定为国家标准、机械行业标准以及获国家专利的联轴器中选择,只有在现有标准联轴器和专利联轴器不能满足设计需要时才自己设计联轴器。我国现已制订了数量相当多的不同品种,在不同结构型式和规格基本能满足不同转矩、转速和工况条件的标准联轴器。这些标准联轴器有的是我国自行研制并经过工业实验;有的是根据国外工业发达国家有关标准转化;有的是参考引进样机消化吸收并自行研制。有的标准联轴器不仅在国内是新型高性能,在国际上也具有先进水平,例如膜片联轴器。在制订标准时一般都经过严格程序,以保证标准的质量。标准联轴器是成熟的,一般也应是可靠的,关键是正确选择。国家专利联轴器例如弹性活销联轴器、扇形块弹性联轴器,吸取多种老式弹性联轴器的优点,克服了各自存在的缺点,在国内外均属高性能、新技术,是更新换代联轴器。 (二) 选择联轴器品种、型式 了解联轴器(尤其是挠性联轴器)在传动系统中的综合功能,从传动系统总体设计考虑,选择联轴器品种、型式。根据原动机类别和工作载荷类别、工作转速、传动精度、两轴偏移状况、温度、湿度、工作环境等综合因素选择联轴器的品种。根据配套主机的需要选择联轴器的结构型式,当联轴器与制动器配套使用时,宜选择带制动轮或制动盘型式的联轴器;需要过载保护时;宜选择安全联轴器;与法兰联接时,宜选择法兰式;长距离传动,联接的轴向尺寸较大时,宜选择接中间或接中间套型。 (三) 联轴器转矩计算 传动系统中动力机的功率应大于工件机所需功率。根据动力机的功率和转速可计算得到与动力机相联接的高速端的理论转矩 T ;根据工况系数 K 及其他有关系数,可计算联轴器的计算转矩 Tc 。联轴器 T 与 n 成反比,因此低速端 T 大于高速端 T 。 (四) 初选联轴器型号 根据计算转矩 Tc ,从标准系列中可选定相近似的公称转矩 Tn ,选型时应满足 Tn ≥ Tc 。初步选定联轴器型号(规格),从标准中可查得联轴器的许用转速 [n] 和最大径向尺寸 D 、轴向尺寸 Lo ,应满足联轴器转速 n ≤ [n] 。 (五) 根据轴径调整型号 初步选定的联轴器联接尺寸,即轴孔直径 d 和轴孔长度 L ,应符合主、从动端轴径的要求,否则还要根据轴径 d 调整联轴器的规格。主、从动端轴径不相同是普遍现象,当转矩、转速相同,主、从动端轴径不相同时,应按大轴径选择联轴器型号。新设计的传动系统中,应选择符合 GB/T 3852 中

轴的设计计算

第七章 轴的设计计算 一、初步确定轴的尺寸 1、高速轴的设计及计算 已知:高速轴功率kw p 11.21=,转速m in /7101r n =。 选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1000=A ,得 考虑轴上开有一个键槽对轴强度的削弱,轴径增大%7~%5,并圆整后mm d 15=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,高速轴初步设计如下: 2、中间轴的设计及计算 已知:中间轴功率kw p 03.22=,转速m in /4.1612r n =。 选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1050=A ,得 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 25=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,中间轴初步设计如下: 安装大齿轮处的键型号为:键10?36GB1096-79 安装小齿轮处的键型号为:键10?70GB1096-79 3、低速轴的设计及计算 已知:低速轴功率kw p 95.13=,转速min /4.433r n =。 选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取970=A ,得 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 35=,轴承选用角接触球轴承7209C ,B=19mm ,综合减速器其他零件的布置和减速器箱体的轮廓,低速轴初步设计如下: 安装大齿轮的键型号为:键18?65GB1096-97 安装联轴器处的键为:键16?125GB1096-97 二、轴的校核 以中间轴的校核为代表,已知中间轴的功率为kw p 03.22=,转速为m in /4.1612r n =,转矩11.1202=T N ·m 。 1、中间轴的受力分析如下: 大齿轮的分度圆直径为mm d 029.1731=,螺旋角。 790.15=β,受力分析如图所示,则: 11ταF F =·βtan =N N 594.392790.15tan 322.1388≈?。 小齿轮的分度圆直径为mm d 018.622=,螺旋角。 655.14=β,受力分析如图所示,则:

直齿圆柱齿轮强度计算

4.5 直齿圆柱齿轮强度计算 一、轮齿的失效 齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。由于上述条件的不同,齿轮传动也就出现了不同的失效形式。一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。 轮齿折断

轮齿折断有多种形式,在正常情况下,主要是齿根弯曲疲劳折断,因为在轮齿受载时,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断(见图1 图2 图3)。此外,在轮齿受到突然过载时,也可能出现过载折断或剪断;在轮齿受到严重磨损后齿厚过分减薄时,也会在正常载荷作用下发生折断。在斜齿圆柱齿轮(简称斜齿轮)传动中,轮齿工作面上的接触线为一斜线(参看),轮齿受载后,如有载荷集中时,就会发生局部折断。 若制造或安装不良或轴的弯曲变形过大,轮齿局部受载过大时,即使是直齿圆柱齿轮(简称直齿轮),也会发生局部折断。 为了提高齿轮的抗折断能力,可采取下列措施:1)用增加齿根过渡圆角半径及消除加工刀痕的方法来减小齿根应力集中;2)增大轴及支承的刚性,使轮齿接触线上受载较为均匀;3)采用合适的热处理方法使齿芯材料具有足够的韧性;4)采用喷丸、滚压等工艺措施对齿根表层进行强化处理。 齿面磨损 在齿轮传动中,齿面随着工作条件的不同会出现不同的磨损形式。例如当啮合齿面间落入磨料性物质(如砂粒、铁屑等)时,齿面即被逐渐磨损而至报废。这种磨损称为磨粒磨损(见图4、图5、图6)。它

鼓形齿联轴器鼓度曲线选型的优化对比研究

龙源期刊网 https://www.doczj.com/doc/8711734901.html, 鼓形齿联轴器鼓度曲线选型的优化对比研究作者:吕美丽 来源:《中国化工贸易·下旬刊》2017年第11期 摘要:鼓形齿联轴器作为现阶段机械工业基础件之一,近年来随着科技的进步以及生产 实践的发展越来越受到机械行业的重视,这种工业基础件由于其结构以及性能特点可以较好地补偿连接两轴间的轴向、径向以及角度位移,所以在地铁、动车等领域应用非常普遍,文章以此为出发点,重点对鼓形齿联轴器鼓度曲线选型优化进行了介绍。 关键词:鼓形齿联轴器;鼓度曲线;选型优化 1 鼓形齿联轴器鼓度曲线介绍 对于鼓度曲线的介绍以某高速动车为例,该高速动车组动力车使用的即为鼓形齿联轴器,该鼓形齿联轴器模数为3m/nm,压力角为20α/(°),齿数为60z,外齿切向变位系数为0,齿宽为20B/nm,内齿切向变位系数为0.03xt2,从圆形鼓度半径大小的改变可以看出啮合传动所产生的影响;椭圆形的鼓度曲线通过长轴、短轴以及短轴定点位置曲率的半径,可以判断这种鼓度曲线下啮合传动产生的影响;两条双曲线实际上由实轴以及虚轴的2a、2b决定,p是任意一个定点位置曲率半径,通过改变a、b、p三个数据可以看出这种鼓度曲线对于啮合传动产生的影响;三个圆弧鼓度曲线主要由rc和侧段弧rcf的半径决定,rc和侧段弧rcf以及中段弧占据的轴宽半c数值的改变可以看出啮合传动产生的影响。图1显示的双曲线和三段圆弧曲线参数图: 2 啮合分析 2.1 圆形鼓度曲线 不同圆弧所对应的最大允许轴间倾角会随着鼓度圆弧的不断增加而缩小,同时当圆弧半径为90nm的时候内外齿接触点轴向位移距离最大,并且允许的最大轴间倾角变化也最大,增加20nm,相对应的最大轴间偏角相应的缩小约0.2°,圆弧半径超过90nm的时候允许的最大轴间倾角变化趋于稳定,基本上不会发生太大的变化,同时内外齿接触点的轴向位移距离会随着圆弧半径的逐渐增加而增加,当90nm的时候,基本上接触到了外齿面边缘位置,小于90nm的时候内外齿最大轴间倾角条件下发生的接触都是非边缘接触。 2.2 椭圆鼓度曲线 椭圆鼓度曲线的接触点轴向位置数值会随着曲率半径的增加而增加,同时随着长半轴数值的变大而变大,当曲率半径为130nm、长半轴的数值为18nm的时候,同样如圆形鼓度曲线一样会产生棱边接触,偏转角度范围相对较大的情况下,会保持较好的啮合性能。

万向联轴节设计计算

萬向軸之基本原理 萬向軸之運動學 以下之圖形顯示出由一萬向接頭G1連結兩根軸之狀況,軸之間以交叉角度為β,軸1是代表輸入軸,是以恆定的角速度1. 旋轉。軸2 是代表輸出軸,是以一種不規律的角速度2旋轉。 軸2的角速度遵循著正弦曲線之擺動模式,此模式是指有兩個循環週期介於角速度之最大值及最小值。這個萬向接頭錯誤導致了2, 不規 律的角速度,而其幅度是萬向接頭偏角的函數。 這種關係在以下之圖形顯示,其顯示了其偏角是如何影響其振幅,但是非其頻率由輸出軸之延遲或起前輸入軸之速度而造成。在高速與角度下你可能可以準確地想像其外部的慣性激勵可以相當嚴重。所以,一個簡單的萬向接頭型式之萬向軸僅用於低速,低角度,及低負荷, 並且恆定轉速必須是不重要恆速的應用上。 假設其接頭1之叉頭方位顯示於以下之圖形如aα1 = 0°即代表角度為零的位置與旋轉α1,其關係(1) 至(3) 執行。可得出軸1與2的角 速度之比例與扭矩之比例依據公式(4) 與(5) 對於一個非規律性的比較,所謂的循環變化U之係數是依據公式(6) 已經介紹過的。

雙萬向接頭 上一段落解釋一個卡登式萬向接頭之運動學以及其如何產生非規律之角速,當它在一偏角工作時。然而,假如兩個萬向軸我佈置如以下之方式,如圖中的Z或W模式,所以接頭之角度β1等於β2,其外部軸將會是規律的速度。第二個接頭G2產生非規律性之速度相同且相反於G1,造成相消之效果。再者,內部1與外部3將會以同週期旋轉,但是中央部分2將會以非恆速旋轉。

軸部分1與3的同步旋轉,在下列情形時可得到保證。 a. 萬向接軸的所有部分需在同一平面上 b. 中央部分的內叉頭需位於同一平面上 c. 其工作角度β1與β2需相同 a) b) c)

KISSsoft关于齿轮强度的计算中文版

3. 强度计算 输入你自己的材料数据 在Kisssoft的数据库中已经包含了一些塑料的数据,如果你想在kisssoft中储存你的一些关于塑料齿轮的数据,你可以使用以下方法: 这里我们用已经做好的POM表 首先点击“Extras”->“Data base tool”,选择相应的数据然后进行计算,如图3-1。或者输入自己的数据,点击“material basic base”并在对话框的底部点击“+”,就会出现一个对话框,在这个对话框中就可以输入数据。如图3-2 (图3-1)

(图3-2) 结合有效的齿型计算强度 在KISSsoft系统中如何激活“graphical method(图解法)”。当你输入强度时,在对话框的右下方点击“Details”按钮,然后在“Form factor Yf and Ys”的下拉菜单中选择“using graphical method”如图所示

现在,计算时首先计算出的是齿轮的齿形系数Yf和它的应力修整系数Ys. 你也可以在KISSsoft系统中显示齿根应变系数,点击“Path of contact”输入你所需的设置参数,并进行运算。如下图: “Path of contact”的设置版面 然后你点击“Graphics”->“Path of contact”, 选择你所需要的图表,例如选择应力强度曲线(stress curve)的2D形式。

Tooth root stresses and Hertzian pressure

Tooth root stresses, progression in the tooth root

联轴器选用中应注意的几个问题

联轴器选用中应注意的几个问题 联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我过制订为国际和行标的联轴器有数十种,这些标准联轴器绝大多数是通用联轴器,每一种联轴器都有各自的特点和适合范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才自行设计联轴器。标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。 设计人员在选用联轴器时应立足于从轴系传动的角度和需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。 一、选择联轴器应考虑的因素 (一)动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。在机械传动中,动力机不外乎电动机、内燃机和气轮机。由于动力机工作原理和机构不同,其机械特性差别较大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。根据动力机的机械特性,将动力机分为四类。见表 1 。 表 1 动力机系数Kw 动力机的机械特性对整个传动系统有一定的影响,不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数Kw ,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。

齿轮齿条传动设计计算39229

7)由图10-19取接触疲劳寿命系数 HN1 1.7。 材料选择。由表10-1选择小齿轮材料为40Cr (调质),硬度为280HBS 齿条 材料为45钢(调质)硬度为240HBS 6)由式10-13计算应力循环次数。 N 1 60n 1 jL h 60 7.96 1 2 0.08 200 4 6.113 10 4 1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传 动。 2 ) 速度不高,故选用7级精度(GB10095-88。 3) 4) 选小齿轮齿数1=24,大齿轮齿数 2=x 。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d it I 2 ccc (K" u 1 Z E 2.323 |— ----------------------- --- V u (1) 确定公式内的各计算数值 1) 试选载荷系数t 2) 计算小齿轮传递的转矩。 (预设齿轮模数 m=2mn 直径d=65mm T 1 95.5 1O 5 R n 1 95.5 105 O. 2424 2.908 105N mm 7.96 3) 由表10-7选齿宽系数d =。 4) 由表10-6查得材料的弹性影响系数 1 E 189.8 MPa 2 5) 由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 600M Pa ;齿 条的接触疲劳强度极限 Hlim 2 500 Mpa 。

8)计算接触疲劳许用应 力。 取失效概率为1%安全系数S=1,由式(10-12)得 K HN 1 Hlim1 S 1.7 600M Pa 1020MPa 计算 1 ) 试算小齿轮分度圆直径d ti,代入 2)d1t 2.323{K.T1 u 1 68.89mm 计算圆周速度V。 Z E 60 1000 3)计算齿宽b o d d1t 0.5 4)计算齿宽与齿高之 比。 模数 m t d1t 68.89 Z1 24 齿高 2.25m t 2.25 卜 3 2.908 105 1 189.8 2 0.5 1020 68^1^ 0.026m/s 60 1000 68.89 34.445mm 2.87 2.27 6.46 34.445 6.46 5.33

联轴器课程设计

目录 1.零件简介 (2) 2.基本结构参数及技术要求 (3) 3.生产方式及条件 (3) 4.铸造工艺方案 (3) 4.1 浇铸位置和分型面 (3) 4.2 确定工艺参数 (3) 4.3 造型和造芯 (4) 5.浇铸系统的设计 (7) 5.1 浇铸系统类型 (7) 5.2 确定内浇道相关参数 (8) 5.3 确定直浇道的位置和高度 (8) 5.4 浇铸时间及金属液的上升速度 (8) 5.5 浇口比及各组员截面积 (9) 5.6 浇铸系统图示 (10) 6.冒口的设计 (10) 6.1 铸件冒口补缩设计原理 (10) 6.2 冒口相关参数的计算 (10) 6.3 冒口的设置 (11) 6.4 校核冒口数目 (11) 7.冷铁的设计 (11) 7.1 冷铁的设置部位 (11) 7.2 冷铁材料的选择 (11) 7.3 冷铁厚度的确定 (11) 8.设计心得 (14) 9.参考文献 (15)

零件简介 连轴器是机械产品中一种常用的部件,用来连接两轴或轴和回转件,并在传递运动和动力过程中,一同回转而不脱开也不改变转动方向和扭矩大小。连轴器主要分为十字联轴器、夹壳联轴器、万向联轴器、柱销联轴器、梅花联轴器、星形联轴器、弹性联轴器等。 由于制造和安装不可能绝对精确,以及工作受载时基础、机架和其它部件的弹性变形与温差变形,联轴器所联接的两轴线不可避免的要产生相对偏移被联两轴可能出现的相对偏移有: 轴向偏移图a)、径向偏移图b)和角向偏移图c),以及三种偏移同时出现的组合偏移d)两轴相对偏移的出现,将在轴、轴承和联轴器上引起附加载荷,甚至出现剧烈振动。因此,联轴器还应具有一定的补偿两轴偏移的能力,以消除或降低被联两轴相对偏移引起的附加载荷,改善传动性能,延长机器寿命。为了减少机械传

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E ---弹性系数 2) Z H ---节点区域系数 3) εα---斜齿轮端面重合度 4) β---螺旋角。斜齿轮:β=80~250;人字齿轮β=200~350 5) 许用应力:[σH ]=([σH1]+[σH2])/2≤1.23[σH2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=K t b) 计算d t c) 修正d t 二. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y F a 、Y Sa ---齿形系数和应力修正系数。Z v =Z/cos 3β→Y Fa 、Y Fa 2) Y β---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=K t e) 计算m nt f) 修正m n [] H t H E H u u bd KF Z Z σεσα≤±=1 1[] 3 2 1112??? ? ??±≥H H E d Z Z u u KT d σεψα[]3 2 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ311t t K K d d ≥[]F n sa Fa t F bm Y Y Y KF σεσα β ≤=[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥3t t n n K K m m ≥[] 3 2121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

联轴器强度计算公式.

December19991312 3.2.9LineShaftCouplings Inordertoreducetheeffectofgalvanicactionbetweentwounlikematerials,lineshaftsectionssh allbeconnectedbyleft- handthreadedcouplingsorkeywaycouplings,composedofamaterialsimilarorsuperiortothos eofthelineshafts.Couplingthreadsshallbenontaperedandtendtotightenduringpumpoperatio n.CalculationsshallbesubmittedtoFMApprovalsaspartofthedrawingreviewprocess.Them aximumcombinedshearstressinthecouplingshallnotexceed20percentofthetensileyieldstre ngthorbemorethan12percentoftheultimatetensilestrengthofthecouplingmaterial.Thefollo wingformulaforcalculatingthecombinedshearstressistakenfromANSI/AWWAE101,‘‘A WWAStandardforVerticalTurbinePumps–LineShaftandSubmersibleTypes’’. EnglishS=Metric√2f π(D2-d2)2+321,000P N(D3-d3)2S=1×106√2f π(D2-d2)2+46,835P N(D3-d3)2 Where:S–combinedshearstress,psi(kPa) f– totalaxialthrust,includingtheweightoftheshaftandallrotatingpartssupportedbyit,pounds(n ewtons) N–ratedspeed,r/min D–outsidediameterofthecoupling,in.(mm) d–insidediameterofthecouplingattherootofthethreads,in.(mm) P–power,horsepower(watts) 3.2.10ShaftSeals Theshaftsealshalladequatelysafeguardagainstexcessivewaterleakageoutofthepumpwhens uctionpressureisaboveatmospheric. Note:Mechanicalseals,intheirpresentstateofdesign,arenotacceptableduetopotentialforda mageduetostickingofthesliding surfacesafterprolongedperiodsofnon-operation,andotherunfavorablewearcharacteristics. 3.2.11LineShaftBearings A.WaterLubricatedPumps Inordertoinsureadequatecenteringofthelineshaftwithinthecolumn,bearingsshallbespaced nomorethan10ft(3.1m)apart.Thesebearingsshallbelubricatedbythepumpedwater. B.OilLubricatedPumps

标准齿轮模数齿数计算公式

齿轮的直径计算方法: 齿顶圆直径=(齿数+2)*模数 分度圆直径=齿数*模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34*3.5 齿顶圆直径=(32+2)*4=136 分度圆直径=32*4=128 齿根圆直径=136-4.5*4=118 7M 12齿 中心距(分度圆直径1+分度圆直径2)/2 就是(12+2)*7=98 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30

上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法 ()周节 齿轮分度圆直径d的大小可以用模数(m)、径节()或周节()与齿数(z)表示 径节P()是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言

径节与模数有这样的关系: 25.4 1/8模=25.48=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米()。 除模数外,表示轮齿大小的还有CP(周节:)与DP(径节:)。【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。

第章轴的设计及计算

第7章 轴的设计及计算 7.1低速轴的设计 7.1.1求作用在齿轮上的力 因已知低速级大齿轮的分度圆直径为 mm mz d 438146344=?== 而 N d T F t 6.7741438 16954002243=?== N F F t r 7.2817tan ==α 圆周力t F ,径向力r F 的方向参考图7-2. 7.1.2轴的材料的选择 由于低速轴转速不高,但受力较大,故选取轴的材料为45优质碳素结构钢,调质处理。 7.1.3轴的最小直径 根据文献【1】中12-2式可初步估算轴的最小直径, 33 3min n P A d = 式中:A —最小直径系数,根据文献【1】中表12-3按45钢查得112=A 3P —低速轴的功率(KW ),由表5.1可知:KW P 984.63= 3n —低速轴的转速(r/min ),由表5.1可知:min /34.393r n = 因此: mm n P A d 9.6234 .39984.61123333min =?== 输出轴的最小直径应该安装联轴器处,为了使轴直径Ⅱ-Ⅰd 与联轴器的孔径相 适应,故需同时选取联轴器的型号。根据文献【1】中11-1式查得, m N KT T c ?=?==1.25434.16955.13

式中:c T —联轴器的计算转矩(m N ?) K —工作情况系数,根据文献【1】中表11-1按转矩变化小查得,5.1=K 3T —低速轴的转矩(m N ?),由表5.1可知:)(4.16953m N T ?= 按照计算转矩c T 应小于联轴器公称转矩的条件,查标准GB/T 5014-2003或根据文献【2】中表16-4查得,选用HL6型弹性柱销联轴器,其公称转矩为3150)(m N ?。半联轴器的孔径mm d 631=,故取mm d 63Ⅱ-Ⅰ=,半联轴器长度为 172mm,半联轴器与轴配合的毂孔长度为mm L 1321=。 7.1.4轴的结构设计 拟定轴上零件的装配方案。选用装配方案如图7-1所示。 图7-1 轴的结构与装配 (2)根据轴向定位的要求确定轴的各段直径和长度 ①满足半联轴器的轴向定位要求。Ⅰ-Ⅱ轴段右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径 mm h d d 7352632ⅡⅡ-ⅠⅢ-Ⅱ=?+=+= 式中:h II —轴Ⅱ处轴肩的高度(mm),根据文献【1】中P283中查得定位轴 肩的高度 6.3m m ~41.4630.1~07.01.0~07.0Ⅱ=?== )()(d h 故取mm h 5Ⅱ= 左端用轴端挡圈定位,按轴端直径取挡圈直径mm D 75=挡圈。半联轴器与轴 配合的毂孔的长度mm L 1321=,为了保证轴端挡圈只压在半联轴器上而不是压在轴的端面上,故Ⅰ-Ⅱ段的长度应比1L 稍短一些,现取mm l 130Ⅱ-Ⅰ=

相关主题
文本预览
相关文档 最新文档