当前位置:文档之家› patran分析实例 螺栓分析

patran分析实例 螺栓分析

patran分析实例 螺栓分析
patran分析实例 螺栓分析

Suranaree J. Sci. Technol. 14(4):331-345

Fatigue and Fracture Research Group, Department of Mechanical and Manufacturing Engineering,University of Putra Malaysia, 43400 Serdang, Selangor, Malaysia. E-mail: aidy@https://www.doczj.com/doc/828260974.html,.my *

Corresponding author

SIMULATION AND EXPERIMENTAL WORK OF SINGLE LAP BOLTED JOINT TESTED IN BENDING

Aidy Ali *, Ting Wei Y ao, Nuraini Abdul Aziz, Muhammad Yunin Hassan and Barkawi Sahari

Received: Jun 13, 2007; Revised: Nov 29, 2007; Accepted: Nov 30, 2007

Abstract

This paper presents the simulation and experiment work on the prediction of stress analysis in a single lap bolted joint under bending loads. A three-dimensional finite element model of a bolted joint has been developed using MSC Patran and MSC Nastran FEM commercial package. In the simulation, different methods in modelling the contact between the joint, which affects the efficiency of the models were detailed. Experimental work was then conducted to measure strains and deformations of the specimens for validation of the developed numerical model. A four-point bending load type of testing was used in both the simulation and experiment works. The results from both simulation and experiment were then compared and show good agreement. Several factors that potentially influenced the variation of the results were noted. Finally, critical areas were identified and confirmed with the stress distribution results from simulation.Keywords: Bolted joints, FEM, MSC Nastran, MSC Patran

Introduction

A bolted joint is one of the joining techniques employed to hold two or more parts together to form an assembly in mechanical structures. One of the advantages of a bolted joint over other joint types, such as welded and riveted joints, is that they are capable of being dismantled.A bolted j oint is considered as an important element to be employed in civil, mechanical and aeronautic structures.

The previous studies on the behaviour of a single lap bolted joint were mostly dedicated to tension load at the end of plate. An early study

was performed by Ireman (1998) in which a three-dimensional finite element model of bolted composite j oints was developed to determine the non-uniform stress distribution through the thickness of composite laminates in the vicinity of a bolt hole. The single lap bolted joint was loaded in tension. A similar study was carried out by McCarthy et al. (2005) where the effects of bolt-hole clearance on the mechanical behaviour of a bolted composite (graphite/epoxy) j oint were investigated. Furthermore,Ju et al. (2004) studied the nominal applied

(a)

Figure 1. (a) Geometry and (b) marking of SAE Grade 5 Hex bolt

333 Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

Geometry Modelling

In simulation, the geometry scale factor is determined as 1,000 (millimeter). Generally, the unit used in MSC Patran modelling is listed in Table 3 below.

The geometry of the model is based on two solid plates (170 × 74 × 9 mm), one support plate (40 × 74 × 9 mm), and a unit consisting of a bolt and a nut. The bolt hole, of radius 6.25mm, is edited in the upper and lower plate by Boolean method and the substrate. The diameter of the bolt shank is assumed to fully fit in the bolt hole. Figure 2 shows the geometry of the FEM model. As illustrated, the position of origin is pointed by the arrow; direction represents the length of the plate, y direction represents the width of the plate, and z direction represents the thickness of the plate.

Table 1. Properties and dimension of the bolt and nut

Material type Medium carbon steel,Quenched and tempered Modulus of elasticity, E200 GPa

Poisson’s ratio, ?0.29

Proof strength586 MPa

Minimum tensile yield strength634 MPa

Minimum tensile ultimate strength827 MPa

Nominal length, L38.1 mm

Nominal diameter, D12.3 mm

Height of bolt, H7.0 mm

Width across flat, F18.5 mm

Width across corners, C21.5 mm

Height of nut11.0 mm

Table 2. Properties and dimension of the plates

Material type Mild steel

Modulus of elasticity, E200 GPa

Poisson’s ratio, ?0.29

Thickness9.0 mm

Width74.0 mm

Table 3. Unit and parameter used in MSC Patran Modelling

Parameter Unit (SI)

Length m m

Force N

Mass Tonnes

Time Second

Stress MPa (N/mm2)

Density Tonnes/mm

334Simulation and Experimental work of Single Lap Bolted Joint Tested in Bending

In order to assist the analysis, the stresses at the regimes of interest were analysed as labelled in Figure 3. The stress distribution along the middle of surfaces of upper plate symmetry is taken from Profile (a) and Profile (b). Profile (c) and Profile (d) are designed to compare the stress distribution along the bolt hole in different locations. Profile (e) is taken along the middle of the bolt.

Mesh Generation

The element used on the bolt and plates is the same with SOLID type Tet10. The total elements in the model are 6,665 and the numbers of nodes are 11,954. The action of “Equivalent”is applied on the mesh of the model to delete the nodes which are duplicated between the surface contacts. Finally, the mesh was verified to test the failure of aspect ratio, edge angle, face skew, collapse, normal offset, tangent offset, Jacobian ratio and Jacobian zero. The verification summary (Figure 4) showed the number of failures the elements involved. Zero number of failures is desired to minimize error in the analysis process.

A contact element was introduced through multi-point constraint (MPC). MPC is employed in the finite element model to solve the problem of the more detailed free body load in the overall model. MPC is A linear combination of displace-ment. Generally, one displacement is dependent on the remaining independent displacement (Brown, 1987). In this model, three types of MPC were introduced in different situation. The first MPC is created between the bolt and the two plates. The MPC type used is Rigid (fixed). A single point constraint is used to prevent rigid body motion. As shown in Figure 5, Node 10824 in the middle of the bolt shank was defined as an independent term and the nodes on the bolt hole of the plates are defined as dependent terms. The second MPC, RBE2 was employed on the overlap region between the upper plate and support plate as illustrated in Figure 6.

Finally, the third MPC Explicit was used to define the contact condition between two plates. In this technique, the dependent term is on the edge of the lower plate while the inde-pendent terms are the nodes of the upper plate in the overlap region. The coefficient of friction is input and 6 degrees of freedom is selected. The value of coefficient of friction is assumed as 0.74 (Beardmore, 2007).

Boundary Condition

In this section, displacement is created to constrain the model from translating when a bending load is applied. The ideal displacement is applied in a line/curve to uniform the displace-ment distribution. The locations of displacement are 25 mm and 225 mm in x direction from the origin. However, in this model, the application

Figure 2. Geometry modelling and position of origin

Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

335

Figure 3. Profile (a) to (e) of interest in stress distribution

Figure 4. Verification of mesh

Figure 5. Location and terms of MPC 1

336Simulation and Experimental work of Single Lap Bolted Joint Tested in Bending

region is determined by those nodes which are on the desired lines (Figure 7). These nodes are constrained by fixing the degrees of freedom; translations are in x, y, and z directions. Loadings

In this step, two types of loads were considered which are the clamping force and bending force. The clamping force is applied by uniform pressure onto the overlap area between the bolt nut and the plates (Figure 8).

A clamping force of 100 N is modelled by using a negative pressure value. The bending force is applied onto the upper plate by selecting those nodes which are close to the ideal location as shown in Figure 9. The load locations applied is 85 mm and 165 mm in direction x in origin. Experimental Procedures

The experimental work was carried out in the Strength Laboratory at UPM to test four-point-bending on a single lap bolted joint. The results obtained in the experimental measurements are load-displacement and load-strain data. The experimental load-displacement curves were

Figure 6. MPC 2 between upper plate and support plate

Figure 7. Boundary condition of the joint

337 Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

obtained directly from the testing machine. Strains at selected points on the joint surface were measured while bending forces were controlled manually by the Instron Universal Testing Machine. The surface of the lower plate was strain-gauged in the axial direction. Figure 10 shows the position of the unidirec-tional strain gauge, which had a 5 mm gauge length. Axial strain in the plate is observed for every increment of 1 kN. The specimen and jigs were mounted on the universal testing machine as illustrated in Figure 11. The bending load was applied by the lower load cell vertically, while the top load cell was fixed. The application of the load was controlled manually to obtain the strains measurement for every increasing load level.

Results and Discussion

Joint Deformation

The deformed shape of the finite element model is shown together with the actual defor-mation in Figure 12. The experimental load-deflection curves were found to be essentially

Figure 8. Clamping force in uniform pressure

Figure 9. Application of bending load

338Simulation and Experimental work of Single Lap Bolted Joint Tested in Bending

Figure 10. Strain-gauge (a) location (b) set up

Figure 11. Experimental configuration

All dimensions in mm (a)

(b)

339 Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

linear up to and including 7 kN. Since the experi-mental specimen deformation becomes non-linear plastic behavior after 7 kN, the shape of the experimental and finite element model with applied load 7 kN is shown for comparison.

It can be seen that the finite element model displays similar deformation shape to the experiment. From Figure 12(b), penetration of the master line (upper plate) into slave nodes (lower plate) shows the effect of contact between two deformable bodies. It is seen from Figure 12(a) and (b) that the agreement of the presence of a gap between the upper plate and lower plate due to the effect of the bending load is gener-ally good. The experimental load-displacement curves were found to be essentially linear until

an applied load of 7 kN, so the displacements of the experimental and finite element model were measured over this range. Figure 13 shows the calibration curves of load-displacement of the experimental and finite element model under elastic region of three tested samples.

Progressive Stress Distribution at Different Load Level

In this section, stress distribution of the joint is observed at different load levels to track the stress distribution in each parts of the joint as shown in Figure 14. This technique possesses accurate prediction of stress distri-bution. The applied load levels used in the analysis are 0 kN, 1 kN, 4 Kn, and 7 kN. The (a)

(b)

Figure 12. Joint deformation of (a) experimental specimen and (b) FEM model

340Simulation and Experimental work of Single Lap Bolted Joint Tested in Bending

relative magnitude of the stress distribution on the bolt head decreases with the increasing load level when compared with the stress on the plates. It can be observed that the bolt nut starts to loosen when bending force is applied. As expected, higher stress is distributed at the bending and constraint area as illustrated in Figure 15 when the specimen experienced 15 kN bending load. Non-symmetrical stress distribu-tion along the x-axis is due to the non-uniform mesh in the model.

Stress Distribution of Interest Regimes

Stress distribution along a path is studied by developing several regimes of interest in order to assist the analysis. Profile (a) and Profile (b) given in Figure 16 show the compari-son of stress distribution on both surfaces of the upper plate. The purpose of mapping these profiles is to observe the tension and compres-sive stress of bending. Along the path of both profiles, the stress increases gradually to the edge of the bolt hole, no stress exists in the hole, and the stress decreases smoothly to the end of the plate. The upper and lower stress distributions observed were similar; these represent the maximum tension and maximum compressive stress having the same value as well as established in text books. The highest stress is found at the edge of the bolt hole which is caused by the combination of clamping force and bending force.

In order to measure the stress distribu-tion along the bolt hole surface of both plates, Profile (c) and Profile (d) were developed. The stress in this section is the same as the stress in the bolt for no clearance between the hole and bolt. The paths of both profiles begin from the edge of the lower plate bolt hole along y axis. The results of the stresses distribution of these two profiles are shown in Figure 17. The trend of stress along the path shows that the maximum stress occurs between the contact of the upper and lower plates. This phenomenon is caused by the combination of contact stress, clamping force and bending force. Obvious differences between the stress of Profile (c) and Profile (d) can be seen. This occurs when heavier contact stress between the bolt shank and bolt hole occurs due to bending. Then again, higher stress at the edge of the bolt hole shows agree-ment with the clamping force between the bolt nut and plates.

Finally, the stress distribution in the bolt is measured by observing Profile (e) as shown in Figure 18. It is interesting to note that the

Figure 13. Comparison of load-displacement curve between the experiment and FEM model

Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

341

(a)(b)

(c)(d)

Figure 14.Progressive stress distribution at different load levels (a) 0 kN, (b) 1 kN, (c) 4 kN, and

(d) 7 kN

Figure 15. Deformation of specimen after 15 kN bending force

342Simulation and Experimental work of Single Lap Bolted Joint Tested in Bending

Figure 16. Comparison of Profile (a) and (b) stress distribution along the path

Figure 17. Comparison of Profile (c) and (d): stress distribution along the path

stress changes non-uniformly along the path and increases sharply at the end of the bolt head.This phenomenon is due to the bending force increasing the tension in the bolt head.

In spite of the critical area occuring on the surface of upper plate of the single lap bolted joint as predicted, it is interesting to investigate the critical area of the bolt and nut, since it was the main component in the joint. From the simulation result, it was observed that the critical areas in terms of V on Mises stress, of the bolt and nut were between the clamping surfaces of the bolt head. The critical area of the FEM bolt-nut as well as the experimental specimen bolt is shown in Figure 20. The simulation shows that the bolts will experienced cracks and failures. On the other hand, the plate will experienced deformation due to the bolt pen-etration will loaded in bending. The joint strength of the bolted joint still relies on the strength of its bolts in both cases, when the

tension and bending loads were applied.

343

Suranaree J. Sci. Technol. V

ol. 14 No. 4; October-December 2007Figure 18. Profile (e) stress distribution along the path

Figure19.(a) Critical area in terms of Von Mises criterion in the joint (b) closer view of the

critical area (c) experimental specimen. (The arrows points to the critical area of the joint)

(c)

345 Suranaree J. Sci. Technol. V ol. 14 No. 4; October-December 2007

and Stanley, W.F. (2005). Three-dimen-

sional finite element analysis of single-

bolt, single-lap composite bolted joint:

Part I – Model development and valida-

tion. Composite Structure, 71(2):140-155. Su, R.K.L. and Siu, W.H. (2004). Nonlinear response of bolt groups under in-plane

loading. Engineering Structures, 26(3):403-

413.

Unified Engineering. (2006). H ex head bolt makings. Aurora, IL. Available from: Inc.

https://www.doczj.com/doc/828260974.html,/scitech/bolt/

boltmarks.html. Accessed date: Apr 26,

2007.

patran使用技巧

转贴次数:1 共有11篇贴子 1 Patran技巧及其常见问题 1 Q: 为何我的FEM选单中不会出现Hybrid Mes h? 请在系统的环境变数中增加以下变数: PATRAN_USE_HYBRID_SURFACE_MESHER 值设定为 TRUE , 这样在surface mesh处, 除了Iso Me sh跟Paver Mesh外,就会看到另外一个Hybrid Mesh的选项.科研中国https://www.doczj.com/doc/828260974.html,整理. 2 Q:MSC多解析任务批处理的方法 A:如果仅有一台机器可以进行解析运算,有时候任务比较 多的时候会时间来不及.提交模型让机器计算之后只能在 旁边傻看着,什么也做不了. 其实有一种比较好一点的方 法.可以用批处理文件让机器连续自动处理,下班时运行 披处理文件,第二天早上来看结果. 方法如下: 比如有 3个模型,S1.MOD,S2.MOD,S3.MOD 1. 分别将上诉3个模型导出为DAT文件 2.建立批处理 c:\mscvn4w2002\solver\bin\nastran S1.dat c:\mscvn4w2002\solver\bin\nastran S2.dat c:\mscvn4w2002\solver\bin\nastran S3.dat 3. 双击 4. 下班 5. 上班 6. 导入解析结果. 3 Q:在 Patran里如何Move 一组Points 的位置 , 而不改变这组 Points 的 ID 编号? A:Group/Transform/Translate的功能, 这样不但编号不会变, 连property跟边界条件都会保留. 4 QPatran如何执行多次Undo? A:所有Patran的操作步骤, 都记录在最新的一个patran. ses.xx中,如果需要多次undo, 可以删除最后不需要的步骤指令行, 再利用 File -> Session -> Play 的方 式, 执行改过的patran.ses.xx ,

哈船---MSC.Patran 船舶结构建模中的一些实用技巧

MSC.Patran 船舶结构建模中的一些实用技巧 陈国龙 哈尔滨工程大学船舶工程学院

MSC.Patran 船舶结构建模中的一些实用技巧Applied Skills in Modeling a Whole Ship Using MSC.Patran 陈国龙 (哈尔滨工程大学船舶工程学院) 摘要:结合本人的实际建模与分析经验,本文就采用大型有限元软件MSC.Patran进行船舶全船建模过程中的一些实用技巧进行了总结,指出了软件的Group、List等功能在建模中起到的事半功倍的作用,并对Tools工具集下的有关工具的使用进行了介绍。 关键词:船舶,结构分析,MSC.Partan,有限元建模 Abstract: According to practical experiences in modeling and analysis using MSC.Patran, some skills in modeling whole ship structure using MSC.Patran are proposed in this paper, the important role the Group function and List function playing in modeling a whole ship structure are pointed out, and the uses of tools in Tools menu are introduced Keywords: s hip,structure analysis, MSC.Patran,FEM model 1. 概述 随着当今船舶工业的发展,船舶向着大型化和专业化发展。为了满足不同用途船舶的不同需求,不同种类的船舶都有其各自的结构特点。各国的船级社都针对船舶结构设计开发了自己的结构设计软件,这些软件具备从结构的初步设计到强度校核的比较完备的功能。但这些软件都是针对各种成熟船型,不能完全满足针对特殊用途的特殊船型船舶(例如双体船、小水线面船舶等)的设计与强度校核的需要。因此在对这些特殊船型船舶进行结构强度计算和动态特性分析时,往往求助于比较成熟的、结果能够得到专家认可的通用有限元分析软件。MSC.Patran因其方便快捷的前后处理功能,与其相连的有限元解算器MSC.Nastran功能的全面性、求解问题结果的准确性,得到了许多设计单位的青睐,成为进行船舶结构设计与强度校核的有力的辅助工具。 采用MSC.Patran系列软件进行船舶结构的设计与强度校核时,首要问题是对目标结构的合理的有限元模型化。船舶结构是大型的板-梁复合结构,为了保证船舶的特别是特殊用途船舶的整体性能,许多船舶具有比较特殊的外观结构;同时,船舶结构内部因为装载、稳性和人员工作等需要,划分了许多舱室,每个舱室都有可能在一些局部因特殊目的而具有特殊结构特点。这些结构上的复杂性使船舶整船建模繁琐而困难。其次,船舶工作时所处的环境复杂,本身装载条件也是不断变化,造成进行船舶结构强度校核时对于结构载荷与边界条件处理上的困难。MSC.Patran本身具有的几何建模与有限元网格划分、边界条件的处理、载荷的定义与组合功能可以较好地解决这些难题,但要求建模的操作者对于MSC.Patran建模环境与软件提供的一些工具有一定的了解,具有一定的实际建

patran入门实例13

patran入门实例13 与空间相关的物理特性 课程13.与空间相关 的物理特性 目的: ,把表示物理特性的变量写成空间坐标的函数。 136PATRAN 301 练习手册一R7. 5 与空间相关的物理特性 模型描述: 在本练习中,将生成中间带圆孔的圆板的一部分。山于模型的对称性,只建立45?的一小块板。还将生成关于空间变量的材料特性和物理特性。

wrfitcc 2 Aluminum surfacv I Steel H ---- 2.(r?I CT十 0.20 0.10 Radial Distance?『? 表 13-1 分析代码:MSC/NASTRAN 有限元网格 单元类型:四边形单元Quod4 总体边长:0.3英寸 材料常数描述:钢(Steel)铝(Aluminum)弹性模量,E(psi): 30E6 10E6泊松比,v : 0. 30 0. 20 24 密度,P (lb-sec/in) : 0. 0007324 0. 0002588 137PATRAN 301 练习手册一R7.3 与空间相关的物理特性 建议的练习步骤: ,产生新的数据库,并命名为Circular^Plate. db。 ,把 Tolerance 设为 Default, Analysis Code 设为

MSC/NASTRANo ,按图13-1,生成一块圆板的45?儿何体。 ,参照表13-1,生成有限元网格。 ,生成一个圆柱坐标系,原点位于,0, 0, 0, o R轴、T轴、Z轴分别与总体坐标系的X轴、Y轴、Z轴一致。 ,在圆柱坐标系下,定义一个空间变量表达式,并命名为 Thickness_spatialo它表达模型的片度变化,通过绘制XY图来 校验。 ,用表13-1的数据,生成各向同性的钢和铝的材料特性。 ,检查每种材料类型的刚度矩阵C。ijkl ,用材料类型与单元两度生成模型的单元特性。并把单元特性定义分别命名为Prop_l 和 Prop_2o ,通过显示厚度比例图,来校验单元厚度的空间变量是否与模型相一致。 练习过程: 1.产生新的数据库,并命名为Circular_Plate. dbo File/New Database New Database Name Circular_Plate. db OK 2.在 New Model Preferences 框中,把 Tolerance 设为 Default, 设为 MSC/NASTRAN, Analysis Type 分析类型设为 Analysis Code Structural 138PATRAN 301 练习手册一R7. 5 与空间相关的物理特性 New Model Preference Tolerance Default Analysis Code: MSC/NASTRAN Analysis Type:

PATRAN的一些精华小技巧

PATRAN的一些精华小技巧 1、在Patran里如何Move 一组Points 的位置, 而不改变这组Points 的ID 编号? Group/Transform/Translate的功能,这样不但编号不会变, 连property跟边界条件都会保留 2、Patran如何执行多次Undo? 所有Patran的操作步骤, 都记录在最新的一个patran.ses.xx中,如果需要多次undo, 可以刪除最后不需要的步骤指令行,再利用File -> Session -> Play 的方式, 执行改过的patran.ses.xx ,这样可以无限制的undo。 3、Patran中如何定义杆件之间的铰接? 用的是rod元素,不需要定义铰接,因为rod元间本身就是以铰接形式连接。如果用bar 或是beam,需在properties里的Pinned DOFs @ Node 1/2定义铰接。 4、Patran 如何把不小心Equivalence的node分开 用Utility/FEM-Elements/Separate Elements在equivalence时, 可以將选项切换为"List",只选择特定某些节点作equivalence, 可以避免不小心的失誤。 5、Patran如何將Tri3单元转换为Tri6单元 在Patran -> Element -> Modify/Element/Edit , 將Type选项打勾,在Shape中选Tri, New Shape 选Tri6, 最后选取想要改变的Tri3单元, 6、Patran 如何定义材料库 Patran除了可以直接读取MSC.Mvision的材料材料库外,还可利用执行Session File的方式,直接使用以前已经定义过的材料。编辑patran.ses.xx,将定义材料的PCL指令剪下,粘贴到另外一个文件中(如mat.ses)。之后便可直接由Patran的File/ Session/ Play来加入此一材料的定义。也可以直接加入Patran菜单的中:把刚刚定义的session file 复制到C:\MSC\patran2001r3\shareware\msc\unsupported\utilities\data_files\bv_material_data ,之后就会在Utilities/ Material/ Material Session File Library 中出现刚才的材料名称。. 7、Patran 的完整信息输出: 在执行Patran的时候出现齐怪的错误信息时,可以先把Patran关闭, 接着启动DOS窗口,在DOS下直接输入patran -stdout ,执行再重新启动Patran, 会多了一个信息窗口。

MSC.Patran中体单元与壳单元的连接方法的探

MSC.Patran 中体单元与壳单元的连接方法的探索 * 陈继华 杜家政 隋允康 管昭 (北京工业大学数值模拟中心) 摘要:本文对用MSC.Patran 建立体壳混合模型时,就怎样使体壳连接边的节点相互对应协调;以及怎样解决因为体壳单元自由度不同而使得两者之间用Equivalence(节点相等)不能固定的问题进行了些使用上的摸索;同时对该软件在计算应力集中问题的可靠性进行了检验,为用本软件建模提供了些可借鉴的方法。 Research of joint solid-element & shell element in PATRAN Jihua Chen Jiazheng Du Yunkang Sui Zhao Guan (Numerical Simulation Center for Engineering Beijing Polytechnic University) Abstract :This paper is about how to make nodes of the mutual edges of the solids and the shells to assort with each other and how to solve the problem which is aroused by the difference of the free degrees of the solid and the shell so that “Equivalence” could not be used to solve it, when the compound model is founded by using MSC.Patran. Moreover, the paper makes some practices to test the software’s reliability of the calculational stress concentrate and gives some referenced methods for modeling with the software. 一、 前言 在对一些工程实际问题建模时发现不能用单一的某种单元来处理,而是体、壳、梁或杆的混合模型。但由于这些单元的自由度上的差异造成点对点之间不能用Equivalence 直接连接,比如体单元只有平动三个自由度,而壳单元有五个自由度,用Equivalence 只能保证两者的连接没有相互移动,不能保证两者之间没有转动。本文就这个问题就怎样使用MPC (multitude point control )做了些实践性的摸索。 图1 第3行 第2行 第1行 二、模型的建立和单元的划分 在建立单一的体、壳模型时,只要保证 各个几何实体之间有公共的边、面或用 Associate 使之相互协调,以保证划分网格后 用Equivalence 命令来得到期望的有限元模 型。但要建立体壳混合的有限元模型时,仅 仅这样是不够的(对于B-rep 体),因为这 *国家自然科学基金委资助的课题(10072005)、北京市自然科学基金委资助的课题(3002002)

patran,初学,入门,自学,实例3

课程 3. 连柄的几何模型 目的: ?从IGES文件中输入几何图。 ?在MSC/PATRAN(Phase I)产生几何体。

模型描述: 本练习,将产生一个由表面构成的连柄几何模型。首先,输入一个IGES文件,此文件包含一个表面和一些曲线。曲线将用来定义MSC/PATRAN 中裁剪面。 建议的练习步骤: ?生成一个新的数据库,并命名为Con_rod.db。模型近似最大 尺寸是3单位,用MSC/NASTRAN作为分析代码。 ?输入名为Con_rod.igs的IGES文件,关闭除曲线标号外的 所有实体标号。 ?把模型中所有外轮郭曲线链接在一起,成为第一个连续环。 ?把内部表面的边界线链接成第二个连续环。 ?用生成的两条环型曲线产生MSC/PATRAN中的表面,并在连柄顶 部产生一圆孔。 练习过程: 1. 产生一个新的数据库,并命名为Con_rod.db。模型近似最大尺寸是3单位,用MSC/NASTRAN作为分析代码。 File/New Database… New Database Name New Model Preference Tolerance Based on Model Approximate Maximum Model Dimension: Analysis Code:

Analysis Type 2.输入名为Con_rod.igs的IGES文件,关闭除曲线标号外的所有实体标号。File/Import Object : Source: IGES File: 由于IGES格式数据文件的特点,当MSC/PATRAN发现有重复曲线时,将会问你如何处理。当它问你是否希望产生一条重复曲线(Do you wish to Create a Duplicate Curve?)时,点击Not for All(全部不要)。 如果仅回答No, 则MSC/PATRAN遇到每一条重复线时都会向你提问。而回答No for All,则MSC/PATRAN不会对每条重复线都向你提问,它告诉MSC/PATRAN不要产生任何一条重复线。 当MSC/PATRAN完成输入过程后,IGES输入摘要(IGES Import Summary)将出现。浏览这些信息,然后单击OK钮关闭窗口。 输入文件后,选择工具条中如下的标号控制(label Control)图标打开曲线标号。 曲线标号控制面板将出现,选择如下的曲线(Curve)图标。

patran&nastran安装方法

MSC.Patran.v2008.R2与MSC.MD Nastran R3安装方法 最有效的安装方法如下: 先装MD Nastran后MD Patran,确保只有一网卡ID。注意:软件有win32和win64之分,按自己的系统类型选择安装。 1、使用MD Nastran的Crack(Keygen.exe)产生一License.dat文件(MD Nastran用),其中应自动生成正确的Hostname和网卡ID。 2、安装FLEXLM10.8。启动安装时程序会提示当前网卡ID,看是否和1产生的License.dat 中的一致。否则检查是否有多个网卡(包括虚拟网卡)。安装时需要License时指向1产生的License.dat。安装完后生成MSC.Licensing文件夹,里面有license.dat文件。 3、用Patran中的Crack生成一License.dat(MD Patran用)。 4、合并、修改安装FLEXLM10.8之后在msc.license文件夹里产生的License.dat。具体:MD Nastran和MD Patran各自Crack产生的Licenese.dat头部相同可合并:将MD Patran 的License.dat中和MD Nastran相同的部分去掉(头部几行),再copy到安装FLEXLM10.8后生成的文件夹里的License.dat内容的后面:D:\MSC.Software\MSC.Licensing\10.8.6\Licenese.dat 然后修改合并后的License.dat中的DAEMON MSC,加上msc.exe在电脑中的完整路径。如下: # MSC License File - Generated by Zer0 Waiting Time (ZWT) # For EVALUATION only! SERVER C0B13FCF34C(计算机名) 00e0a00b90(网卡名)1700 //合并时两License 各自这行要完全相同// DAEMON MSC F:\MSC.Software\MSC.Licensing\10.8.6\msc.exe //没有的话,修改msc.exe正确路径// .......... 5、安装MD Nastran,注意修改临时数据文件夹SCRATCH到其它大硬盘。最后需要授权文件时,指向MSC.Licensing文件夹里面的license.dat文件(第4步修改后的)。 6、安装MD Patran,最后需要授权文件时,指向MSC.Licensing文件夹里面的license.dat 文件。 7、添加系统环境变量:我的电脑→属性→高级→环境变量→系统变量→新建。 LM_LICENSE_FILE=1700@计算机名 MSC_LICENSE_FILE=1700@计算机名 8、修改MD Patran文件夹里的P3_TRANS.INI文件。主要修改Nastran相关项连接到程序目录,如下:

patran入门实例14

patran入门实例14 静态分析的建立 课程 14. 静态分析的建立 目的: , 回顾建立一个模型的全部必要步骤。 , 懂得如何用MSC/PATRAN进行静态分析。 147 PATRAN 301 练习手册—R7.5 静态分析的建立 模型描述: 在本练习中,将建立完整的MSC/PATRAN 主框架模型,并用MSC/NASTRAN进行相应静态分析。

图14-1 具有网格控制点的四分之一对称模型。148 PATRAN 301 练习手册—R7.5 静态分析的建立

图14-2 表14-1 单元类型: 四边形单元Quad8 单元总体边界长度: 1.0" 材料常数描述: 名称: Steel 弹性模量,E(psi): 29E6 泊松比,ν: 0.30 线弹性各向同性材料 单元特性: 名称: Prop1 材料: Stee1 厚度: 0.2"

分析代码: MSC/NASTRAN 149 PATRAN 301 练习手册—R7.5 静态分析的建立 分析类型: 完全线性静态分析 分析求解参数: 线性静态。 分析翻译器: 文本输出 2(Text Output 2)格式。 分析输出项: 位移、单元应力、单元应变能 建议的练习步骤: , 生成新的数据库并命名为Plate_hole.db。 , 把Tolerance设为Default, Analysis Code设为 MSC/NASTRAN。 -2和表14-1的数据来划分有限元网, 产生四分之一对称模型,用图14 格。 , 等效并优化整个模型,校验是否所有单元的法向方向相同。 , 根据表14-1定义材料特性和单元特性。 , 对全部单元的上表面施加不均匀压力Pressure1。 , 在模型适当位置载加位移边界条件。把模型上下左右边界的位移约束分别命名为disp_lf, disp_rt, disp_tp和disp_bt。 , 根据表14-1,为把模型用于分析运行做准备。 练习过程: 1(生成新的数据库并命名为Plate_hole.db。 File/New Database... New Database Name Plate_hole.db OK

基于MSC_Patran二次开发的结构参数化建模及其集成开发环境

文章编号 167127953(2005)02204217 收稿日期 2004212208作者简介 何祖平(1975-),男,硕士,助理工程师 基于MSC.Patran 二次开发的结构参数化建模 及其集成开发环境 何祖平 王德禹 上海交通大学船舶海洋与建筑工程学院 上海 200030 摘 要 应用PC L 语言结合会话文件对MSC.Patran 平台进行二次开发,通过梁结构建模与分析的参数化,提高了工作效率,同时也促进了建模和计算精度的改善;通过在M icros oft Visual C ++ 6.0的编辑器中加载外部工具的方法,将PC L 开发环境与VC 编辑器集成,充分利用VC 编辑器的强大功能,使PC L 程序的开发更为方便快捷。 关键词 船舶结构 参数化建模 MSC.Patran PC L 语言 会话文件 二次开发 集成开发环境中图分类号 U661.42 文献标识码 A Parameterized m odeling based on MSC.Patran and its integrated development environment HE Zu 2ping WANG De 2yu School of Naval Architecture ,Ocean and Civil Eng. Shanghai Jiaotong University Shanghai 200030Abstract The PC L language combined with the session file of MSC.Patran is applied for the parameterized m odeling and analysis for structures ,which can im prove the efficiency with the m odeling and analysis precision enhanced.The tech 2nique can be further popularized for analysis of ship and other structures.This paper als o introduces a method to integrate PC L development environment into VC editor by loading the exterior tools.The power ful ability of VC editor is able to make the PC L development m ore convenient and efficient K ey w ords ship structure parameterized m odeling MSC.Patran PC L language session file second 2time de 2velopment integrated development environment 随着造船技术与航运市场的发展,船舶建造 向大型化和经济化方向发展,越来越多的船舶超越了现行有关规范的规定,需要利用有限元直接计算的手段来评估船舶的安全性。这类计算有的选用国内自主开发的软件,有的采用各大船级社的结构计算软件。MSC 公司的系列软件在我国船舶结构计算中占据着非常广泛的市场。 然而,直接应用通用有限元软件分析船舶结构需要较高的有限元技巧和较长建模时间,这种方式不能满足现实船舶设计建造的要求,也不具备处理突发事件的能力。有些结构建模和分析在通用软件中实现也不是很方便。作者在研究船舶强梁腹板开孔问题时,由于需要考虑不同的开孔参数和载荷边界条件,建模与分析过程中有许多 重复性的工作,耗费大量许多宝贵的时间。为解 决这个问题,本文采用对通用有限元软件MSC.Patran 进行二次开发的方法,针对船舶行业的应用特点和特定的问题,开发适当的功能模块。 MSC.Patran 具有齐全的前、后处理功能,以MSC.Patran 为平台,应用PC L 语言并结合会话文件对MSC.Patran 进行二次开发实现结构建模与分析的参数化方法可行而且非常方便。 1 PC L 语言及会话文件介绍 1.1 PC L 语言 PC L (patran command language )语言的语法类 似C 语言,它提供一般高级语言所有的大部分数据类型。PC L 提供由IF Then E lse ,S witch and case ,F or 以及While 等关键字组成的循环与控制操作。PC L 函数由关键字FUNCTI ON 开始,E ND FUNC 2TI ON 结束,结构如下。 7 1

isight集成UG、Patran和Nastran实例教程

UG、Patran和Nastran集成教程 本教程是一个进行悬臂梁减重分析的例子,iSIGHT-FD V2.5集成的软件是UG NX3.0、MSC.Patran 2005 r2和MSC.Nastran 2005。 一 UG参数化过程 1.打开UG NX 3.0程序,新建一个零件,名称为beam.prt,然后点击菜单“应用-建 模”,右键选择“视图方向-俯视图”; 2.点击草图按钮,进入草绘界面,然后点击直线按钮,绘制如下图所示的工字形 截面; 3.使用”自动判断的尺寸”按钮标注如下所示线段的尺寸; 4.按照同样方法标注其它尺寸,最终结果如下图所示:

5.点击左侧的“约束”按钮,然后选择下图所示的最上面的两条竖直线段,最后点击约束 工具栏上的等式约束,给这两条线段施加一个等式约束; 6.给这两条线段施加等式约束后,点击左侧的“显示所有约束”按钮,会在两条线段上出 现两个“=”,标明等式约束已成功施加上,如下图所示;

7.接下来,为最下面的两条竖直线段施加等式约束,如下图所示; 8.为左侧的两条Flange线段施加等式约束,如下图所示; 9.为右侧的两条Flange线段施加等式约束,如下图所示; 10.点击左上角的“完成草图”按钮,退出草绘状态。

11.选择菜单“工具-表达式”,弹出表达式编辑窗口,在下方名称后的文本框中输入Length, 在公式后的文本框中输入200,点击后面的√,即可将该参数加入中部的大文本框中,然后点击确定; 12.点击左侧的拉伸按钮,选择工字形草图,然后在弹出的输入拉伸长度的框中将数值改为 上一步创建的参数名称Length,最后点击拉伸对话框中的√,接受所作的更改;

patran&nastran问题集锦

patran&nastran问题集锦 来自:https://www.doczj.com/doc/828260974.html, 1/关于软件安装的问题去掉了 2、请问在PATRAN中输出图片能将黑色背景去掉 在display 下的color plat....下面调整。把上面得黑条,变成白得,点击apply就行了 方法二: 1. 用文字编辑器开启c:\MSC\patran2003r2\shareware\msc\unsupported \utilities\extra_files\bv_p3toolbar_ntgui.def 2. 选取所有的文字并复制。 3. 用文字编辑器开启c:\MSC\patran2003r2\p3toolbar.def ,在最後面的位置贴上刚刚复制的文字, 最後存档离开 4. 复制c:\MSC\patran2003r2\shareware\msc\unsupported\utilities\ icons\*.bmp 到c:\MSC\patran2003r2\icons工具栏出现三个图标,背景颜色轻松改变。 3、计算完毕后,只想显示应力超过某个值的单元,而其它单元不想显示,如何设置? tool-list-creat,方法选attribute,设f>你要求的应力,apply以后选中在list里面的即为你要求的.再用plot/erase不显示你不要的单元。 4、一个四边形平板,一端的边上节点6个自由度全约束住,另外一端上几个节点上施加z方向强迫位移<, , 1E-5>,没有别的条件。计算完以后看F06文件,看看那些节点的位移是否加上了!用的是loads/BCs中的creat-diaplacement,我很奇怪的是:我试了几次这个强迫位移值,如0.1,0.01,0.001,0.0001,f06文件中显示正确,节点位移值确实就是输入值!但是这个值在变小时如1e-5,1e-6,F06文件显示结果为0!!!感觉好像是nastran的识别问题,把10的-5次方一下的数默认为0! 问题出在translation parameter里面的一个参数numerical,帮助文件里面说它用于比较两个数是否相等,其默认为1e-4.writing才是判断一个数是否近似为零,默认为1e-21.但实际上当你给出的强迫位移量小于numerical时,它就认为近似为0,在bdf文件中就给忽略掉了.你修改numerical 为1e-5,你上面说的1e-5就可以算了。 5、自重怎么加到模型上去? 自重是在load/BCS里加的create->inertial load->element 在input data->load/BC set scale Factor [输入加速度的值一般取9.8] Trans Accel(a1 a2 a3)<0 -1 0> (力是沿Y轴向下)后就ok了 tools下面有个mass properties是计算模型质量和惯量的,不知对你有没有帮助

patran入门实例

课程 4. U形夹的三维几何模型 目的: ?生成一个新的数据库 ?生成几何体 ?改变图形显示 模型描述: 本练习是通过MSC/PATRAN的点、线、面、体建立一个几何模型,熟悉PATRAN 的几何建模过程,模型的几何尺寸见下图。 练习过程 1.新生成一个数据库并命名为clevis.db File/New Database… New Database Name New Model Preference Tolerance Default 2. 把几何参数选择改为PATRAN 2方式。 PATRAN 2 Convention代表着一个特点的参数化几何类别。这个操作可以使用户产生一个几何体,该几何体可以通过PATRAN 2的中性文件和IGES文件输入或输出到PATRAN 3中。 Preference/Geometry… Geometric Representation Patran 2 Convention Solid Origin Location P3/PATRAN Convention

3. 生成一个位于U形夹孔内半径上的点。 单击主框架中的Geometry开关。 Geometry Action: Object: Method: Point Coordinates List: 为易于查看所产生的新点,可通过Display/Geometry菜单来增大点的尺寸。Display/Geometry… Point Size: 也可打开Entity Labels开关来观查所产生的新点。 Display/Entity Color/Label/Render… 4. 用刚生成的点产生4条曲线,来表示U形夹孔的上半部圆弧。 Geometry Action: Object:

MSC.Patran中体单元与壳单元的连接方法的探索

中体单元与壳单元的连接方法的探索* 陈继华 杜家政 隋允康 管昭 (北京工业大学数值模拟中心) 摘要:本文对用建立体壳混合模型时,就怎样使体壳连接边的节点相互对应协调;以及怎样解决因为体壳单元自由度不同而使得两者之间用Equivalence (节点相等)不能固定的问题进行了些使用上的摸索;同时对该软件在计算应力集中问题的可靠性进行了检验,为用本软件建模提供了些可借鉴的方法。 Research of joint solid-element & shell element in PATRAN Jihua Chen Jiazheng Du Yunkang Sui Zhao Guan (Numerical Simulation Center for Engineering Beijing Polytechnic University) — Abstract :This paper is about how to make nodes of the mutual edges of the solids and the shells to assort with each other and how to solve the problem which is aroused by the difference of the free degrees of the solid and the shell so that “Equivalence ” could not be used to solve it, when the compound model is founded by using . Moreover, the paper makes some practices to test the software ’s reliability of the calculational stress concentrate and gives some referenced methods for modeling with the software. 一、 前言 在对一些工程实际问题建模时发现不能用单一的某种单元来处理,而是体、壳、梁或杆的混合模型。但由于这些单元的自由度上的差异造成点对点之间不能用Equivalence 直接连接,比如体单元只有平动三个自由度,而壳单元有五个自由度,用Equivalence 只能保证两者的连接没有相互移动,不能保证两者之间没有转动。本文就这个问题就怎样使用MPC (multitude point control )做了些实践性的摸索。 { 二、模型的建立和单元的划分 在建立单一的体、壳模型时,只要保证 各个几何实体之间有公共的边、面或用 Associate 使之相互协调,以保证划分网格 后用Equivalence 命令来得到期望的有限 *国家自然科学基金委资助的课题()、北京市自然科学基金委资助的课题(3002002) 图1 第3行 第2行 第1行

MSC Patran &nastran2014 64bit安装步骤

MSC Patran & nastran 2014 64 bit安装步骤 1)许可文件安装 1.1)开始>运行,输入【cmd】—【确定】—输入【ipconfig/all】—找到【物理地址】如下图所示: 1.2)右击【我的电脑】—【属性】—找到【计算机名】 1.3)解压【MSC.2013 LicGen.2013.1 2.04.Release.rar】,找到license.dat,用记事本打开,然后更改【计算机名】、【物理地址】为软件安装的计算机的【计算机名】、【物理地址】并保存。如下图所示:

1.4)将更改好的【license.dat】文件拖至同文件夹下【Keygen.exe】文件上,稍后关闭些文件,此时就会生成新的【License.dat】文件。 1.5)双击安装【msc_licensing_11.9_windows3264.exe】,(建议安装至C盘下),当出现安装许可文件的步骤时,找至4)中生成的【license.dat】并打开,直至安装完成。 1.6)右击【我的电脑】—【属性】—【高级系统设置】—【环境变量】—在【系统变量】下方占击【新建】: 变量名为:LM_LICENSE_FILE; 变量值为:27500@计算机名,具体如下图

1.7)找到【C盘】—【MSC.Software】文件夹—【Msc.Licensing】文件夹—【11.9】文件夹,将1.4)生成的【License.dat】文件拷入并替代老的文件。新建【lmgrd.txt】文件并将【.txt后缀】改为【.log后缀】(如果有【.log】文件,可以不建)。 然后双击打开【lmtools.exe】文件,点击【Config Services】,在【Service Name】后输入【MSC.Licensing_11.9】。分析将lmgrd.exe file, license file, log file Browse 至【11.9】文件夹下对应的文件并打开,勾选【Start Server at Power Up】,【Use Services】, 并点击【Save Service】。 点击【Start/Stop/Reread】,点击【Stop Server】,然后点击【Start Server】出现Server Start Successful,然后关闭LMTOOLS对话框。 2)patran文件安装 双击【patran_2014_windows64.exe】进行安装patran软件,当问及输入时,输入27500@计算机名,直至最后。 注:可以装至其他盘。 3)Nastran文件安装 解压【MSC Nastran 2014.0 (64bit) with Documentation.rar】,双击【nastran_2014_windows64.exe】进行安装nastran软件,当问及输入时,输入27500@计算机名,直至最后。 注:可以装至其他盘。

patran实例教程7

课程 7. U形夹的三维有限元模型 目的 ?以不同的网格尺寸来划分模型的关键部位。 ?以相同的网格来划分模型其余部分。

模型描述 在本练习中,将定义一种单元来划分已经建好的U形夹模型的网格。 在以后的练习中,要在孔边加载,因此,将对孔周边区域细分网格,以求 有较高的网格密度。 Finite Element Mesh Global Edg Length=0.5 HEX8 elements 图 7-1 建议的练习步骤: ?启动MSC/PATRAN,打开数据库Clevis.db。 ?显示模型的正等侧视图,放大U形夹孔的下半部。保存它并命名 Zoom_in。 ?为了简化U形夹模型的显示,关掉显示线开关,使只显示模型的边界。 ?在将要受到分布力作用的区域,为增加网格密度而生成有限元网格控 制点。 ?用上图中所列出的单元布局和尺寸,生成有限元网格。 练习过程: 1.启动MSC/PATRAN,并打开数据库Clevis.db。

File/Open Database Existing Database Name Clevis.db OK 2.显示模型的正等侧视图,放大U形夹孔的下半部。保存它并命名为Zoom_in。有两种方法获得模型的正等侧视图。第一种是单击工具条中的正等侧视图(isometric View)图标,第二种是用主菜单(Main Menu)条中的视图(Viewing)菜单。 Viewing/Named View Options… Select Named View exercise_1.ses Close Viewing/Select Corners 当光标变成十字形时,选取U形夹前面孔的下半部,如下图所示的区域。单击希望生成的矩形的左上角位置,并按住鼠标左键,拖拉鼠标光标到矩形的对角。松开鼠标左键,就得到一个新视图。

patran常见问题与技巧锦集

1、 Q:Patran为何我的FEM选单中不会出现Hybrid Mesh? 请在系统的环境变数中增加以下变数: A: PATRAN_USE_HYBRID_SURFACE_MESHER 值设定为 TRUE , 这样在surface mesh处, 除了Iso Mesh跟Paver Mesh外,就会看到另外一个Hybrid Mesh的选项. 2、Q:MSC多解析任务批处理的方法 A:如果仅有一台机器可以进行解析运算,有时候任务比较多的时候会时间来 不及.提交模型让机器计算之后只能在旁边傻看着,什么也做不了. 其实有一种比较好一点的方法.可以用批处理文件让机器连续自动处理,下班时运行披处理文件,第二天早上来看结果. 方法如下: 比如有3个模型,S1.MOD,S2.MOD,S3.MOD 1. 分别将上诉3个模型导出为DAT文件 2.建立批处理 c:\mscvn4w2002\solver\bin\nastran S1.dat c:\mscvn4w2002\solver\bin\nastran S2.dat c:\mscvn4w2002\solver\bin\nastran S3.dat 3. 双击 4. 下班 5. 上班 6. 导入解析结果. 3、 Q:在 Patran里如何Move 一组Points 的位置 , 而不改变这组 Points 的 ID 编号? A:Group/Transform/Translate的功能, 这样不但编号不会变, 连property跟边界条件都会保留. 4、Q:Patran如何执行多次Undo? A:所有Patran的操作步骤, 都记录在最新的一个patran.ses.xx中,如果需要多次undo, 可以刪除最后不需要的步骤指令行, 再利用 File -> Session -> Pl ay 的方式, 执行改过的patran.ses.xx , 这样可以无限制的undo。 5、Q:Patran中如何定义杆件之间的铰接? A:用的是rod元素,不需要定义铰接,因为rod元间本身就是以铰接形式连接。如果用bar或是beam,需在properties里的Pinned DOFs @ Node 1/ 2定义铰接。 6、 Q:Patran 如何把不小心Equivalence的node分开 A:用 Utility/FEM-Elements/Separate Elements,在equivalence时, 可以將选项切换为"List", 只选择特定某些节点作equivalence, 可以避免不小心的失误。 7、 Q:Patran如何將Tri3单元转换为Tri6单元

相关主题
文本预览
相关文档 最新文档