当前位置:文档之家› 数列的简单应用(A)(重点)

数列的简单应用(A)(重点)

数列的简单应用(A)(重点)
数列的简单应用(A)(重点)

教学过程

一.课程导入:

古印度舍罕王打算奖赏国际象棋的发明人——宰相达依尔。宰相说:“请您在棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给我2粒,第3个小格给4粒,以后每一小格都比前一小格加一倍。请您把棋盘上64格的麦粒,都赏给您的仆人吧!”

国王觉得这个要求太容易满足了,就命令给她这些麦粒。结果发现:就是把全国的麦粒全拿来,也满足不了宰相的要求。原来宰相要求的麦粒总数为:

)(370955161518446744071

22 (22216463)

32粒=-=+++++

二、复习预习

1.熟练把握等差数列与等比数列的基本运算.

2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等.

3.注意总结相关的数列模型以及建立模型的方法.

三、知识讲解

考点1、数列应用题常见模型

(1) 银行储蓄单利公式

利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+rx).

(2) 银行储蓄复利公式

按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(x∈N 且x>1).

(3) 产值模型

原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p)x(x∈N 且x>1).

(4)分期付款模型

设某商品一次性付款的金额为a元,以分期付款的形式等额地分成n次付清,每期期末所付款是x

元,每期利率为r ,则x =

ar (1+r )n (1+r )n -1(n∈N 且n>1).

四、例题精析

考点一以等差数列为模型的实际问题

【例题1】

【题干】某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.

(1) 求该企业使用该设备x年的年平均污水处理费用y(万元);

(2) 为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?

【答案】见解析

【解析】(1) y =100+0.5x +(2+4+6+…+2x )x

, 即y =x +100x

+1.5(x >0). (2) 由均值不等式得

y =x +100x +1.5≥2x·100

x +1.5=21.5,

当且仅当x =100x

,即x =10时取到等号, 故该企业10年后需要重新更换新设备.

考点二以等比数列为模型的实际问题

【例题2】

【题干】水土流失是我国西部大开发中最突出的问题,全国9 100万亩坡度为25°以上的坡耕地需退耕还林,其中西部占70%,2002年国家确定在西部地区退耕还林面积为515万亩,以后每年退耕土地面积递增12%.

(1) 试问,从2002年起到哪一年西部地区基本上解决退耕还林问题?

(2) 为支持退耕还林工作,国家财政补助农民每亩300斤粮食,每斤粮食按0.7元计算,并且每亩退耕地每年补助20元,试问到西部地区基本解决退耕还林问题时,国家财政共需支付约多少亿元?

【答案】见解析

【解析】(1) 设2002年起经x 年西部地区基本上解决退耕还林问题.依题意,得

515+515×(1+12%)+515×(1+12%)2+…+515×(1+12%)x -1=9 100×70%,即515×[1+

1.12+1.122+…+1.12x -1]=6 370,

1-1.12x -1×1.121-1.12=6 370515=1 274103 1.12x -10.12=1 274103

, 整理得1.12x ≈2.484 3 x ≈log 1.122.484 3=lg2.484 3lg1.12≈0.359 20.049 2

≈8.03. 又x ∈N ,故从2002年起到2009年年底西部地区基本解决退耕还林问题.

(2) 设到西部地区基本解决退耕还林问题时国家共需支付y 亿元.

首批退耕地国家应支付:515×104×(300×0.7+20)×8,

第二批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×7,

第三批退耕地国家应支付:515×104×(1+20%)×(300×0.7+20)×6, …

最后一批退耕地国家应支付:515×104×(1+20%)7×(300×0.7+20)×1.

y =515×104×(300×0.7+20)×(8+7×1.12+6×1.122+…+1×1.127)108, 令S =8+7×1.12+6×1.122+…+1×1.127,①

1.12S =8×1.12+7×1.122+6×1.123+…+1×1.128,②

②-①,得0.12S =-8×(1.12+1.122+1.123+…+1.127)+1×1.128,

即0.12S =-8+1.12-1.128×1.121-1.12

=-8+1.129-1.120.12≈-8+2.773-1.120.12

解得S≈48.1,故y≈(515×104×230×48.1)÷108≈569.7亿元.故到西部地区基本解决退耕还林问题国家共需支付约570亿元.

考点三 数列中的综合问题

【例题3】

【题干】已知各项均为正数的等比数列{a n }的公比为q ,且0<q <12

. (1) 在数列{a n }中是否存在三项,使其成等差数列?说明理由;

(2) 若a 1=1,且对任意正整数k ,a k -(a k +1+a k +2)仍是该数列中的某一项. (ⅰ) 求公比q ;

(ⅱ) 若b n =-loga n +1(

2+1),S n =b 1+b 2+…+b n ,T r =S 1+S 2+…+S n ,试用S 2 011表示T 2 011.

【答案】见解析

【解析】(1) 由条件知a n =a 1q n -1,0<q <12

,a 1>0,所以数列{a n }是递减数列.若有a k ,a m ,a n (k <m <n)成等差数列,则中项不可能是a k (最大),也不可能是a n (最小),

若2a m =a k +a n 2q m -k =1+q n -k ,(*)

由2q m -k ≤2q <1,1+q h -k >1,知(*)式不成立,

故a k ,a m ,a n 不可能成等差数列.

(2) (ⅰ) (解法1)a k -a k +1-a k +2=a 1q k -1(1-q -q 2)=a 1q k -1????

??-? ????q +122+54, 由-? ????q +122+54∈? ??

??14,1,知a k -a k +1-a k +2<a k <a k -1<…, 且a k -a k +1-a k +2>a k +2>a k +3>…,

所以a k -a k +1-a k +2=a k +1,即q 2+2q -1=0,

所以q =2-1.

(解法2)设a k -a k +1-a k +2=a m ,则1-q -q 2=q m -k ,

由1-q -q 2∈? ??

??14,1知m -k =1,即m =k +1, 以下同解法1.

(ⅱ) b n =1n

, (解法1)S n =1+12+13+ (1)

, T n =1+? ????1+12+? ????1+12+13+…+(1+12+13+…+1n )

=n +n -12+n -23+…+n -(n -1)n

=n(1+12+13+…+1n )-(12+23+34+…+n -1n

) =nS n -[(1-12)+(1-13)+(1-14)+…+(1-1n

)] =nS n -??????(n -1)-? ????12+13

+…+1n =nS n -??????n -? ????1+12+13

+…+1n =nS n -n +S n

=(n +1)S n -n ,

所以T 2 011=2 012S 2 011-2 011.

(解法2)S n +1=1+12+13+…+1n +1n +1=S n +1n +1

,所以(n +1)S n +1-(n +1)S n =1, 所以(n +1)S n +1-nS n =S n +1,

2S 2-S 1=S 1+1,

3S 3-2S 2=S 2+1,

… …

(n +1)S n +1-nS n =S n +1,

累加得(n +1)S n +1-S 1=T n +n ,

所以T n =(n +1)S n +1-1-n =(n +1)S n -n

=(n +1)(S n +b n )-1-n

=(n +1)?

????S n +1n +1-1-n =(n +1)S n -n , 所以T 2 011=2 012S 2 011-2 011.

课后评价

数列的实际应用问题

(II )如果将该商品每月都投放市场 (II )要保持每个月都满足供应,则每月投放市场的商品数 P (万 件)应 f (n) 即 1 Pn n(n 1)(35 2n), P 150 1 150 (n 1)(35 2n) 丄(n 2 更n 更) 75 2 2 N ,当n 8时, 1)(35 2n)的最大值为1.14万件即P 至少为1.14万件 练习:听P82例2 例2 ?某外商到一开发区投资 72万美元建起一座蔬菜加工厂,第一年各种经费 12万美兀, 出售该厂;②纯利润总和最大时,以 16万元出售该厂,问哪种方案最合算? 解答:由题意知,每年的经费是以 12为首项,4为公差的等差数列,设纯利润与年数的关 系为 f (n),则 f (n) 50n [12n (1 )纯利润就是要求 f(n) 0 , 血 U 4] 72 2n 2 40n 72 2 2n 2 40n 72 (2)①年平均利润 f(n) n 40 2(n 笑)16当且仅当n = 6时取等 口 号。 数列的实际应用问题 例1 .某地区预计从2005年初的前n 个月内,对某种商品的需求总量 f(n)(万件)与月 1 份 n 的近似关系为 f( n) n(n 1)(35 2n)(n N , n 12) 150 (I)求2005年第n 个月的需求量g(n)(万件)与月份 n 的函数关系式,并求出哪个月份 的需求量超过1.4万件。 P 万件,要保持每月都满足供应,则P 至少为多少万件? 以后每年增加4万美元,每年销售蔬菜收入 50 万美兀。设f (n)表示前n 年的纯收入 (f (n)前n 年的总收入一前n 年的总支出一投资额) (1)从第几年开始获取纯利润? (2 )若干年后,外商为开始新项目,有两种处理方案:①年平均利润最大时以 48万美元 解得2 n 18。由n N 知从第三年开始获利 解答: (I ) 由题意知, g 1 f (1) g(n) f(n) f (n 1): 1 n(n 150 1 150 n[(n 1)(35 2n) (n 1)(37 1 11 又一 1 (12 1) 25 g(1), 25 由丄 n(12 n) 14 得:n 2 12n 25 即6月份的需求量超过 1.4 万件 1 、11 「 当 2时, 1 2 3- n 150 2n)— 150 25 1)(35 (n 1) n[35 2(n 1)] 2n)] 1 n(1 2 25 n) 1 g(n ) n (12 25 n)(n N , n 12) 35 0, 5 n 7,又n N , n 6

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列的实际应用

数列的实际应用 一、要点·疑点·考点 1.复利公式 按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x 2.产值模型 原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x 3.单利公式 利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) 二、课前热身 1.某种细胞开始有2个,1小时后分裂成4个,2小时后分裂成8个,3小时后分裂成16个…,按此规律,6小时后细胞的个数是( ) (A)63 (B)64 (C)127 (D)128 2.一种专门占据内存的计算机病毒开始时占据内存2KB,工作时3分钟自身复制一次(即复制后所占内存是原来的2倍),那么,开机后_______分钟,该病毒占据64MB (1MB=210KB) 3.某产品的成本每年降低q%,若三年后成本是a元,则现在的成本是( ) (A)a(1+q%)3元(B)a(1-q%)3元 (C)a(1-q%)-3元(D)a(1+q%)-3元 4.某人到银行存了10000元,利息按单利计算,年利率为5%,则他在10年后的为____元 三、例题分析 1. 等差数列模型 例1.一梯形的上、下底长分别是12cm,22cm,若将梯形的一腰10等分,过每一个分点作平行于底边的直线,求这些直线夹在两腰之间的线段的长度的和. 2. 等比数列模型 例2.某市2003年共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问: (1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的 1/3?3. 等差、等比数列综合问题模型 例3. 在一次人才招聘上,有A,B两家公司分别开出他们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; B公司允诺第一年月工资数为2000元,以后每年月工资在上一年月工资基础上递增5%,设某人年初被A,B两家公司同时录取,试问: (1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其他因素),该人应该选择哪家公司,为什么? 4.递推数列模型 例4.某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b设an为n 年后该地区森林木材存量。 (1)求an的表达式; (2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于7/9a, 如果b=19/72a,那么该地区今后会发生水土流失吗?若会,需经过几年? 变式练习:某下岗职工准备开办一个商店,要向银行贷款若干,这笔贷款按复利计算(即本年利息计入下一年的本金生息),利率为q(0<q<1).据他估算,贷款后每年可偿还A元,30年后还清. ①求贷款金额; ②若贷款后前7年暂不偿还,从第8年开始,每年偿还A元,仍然在贷款后30年还清,试问:这样一来,贷款金额比原贷款金额要少多少元?

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

常见的数列求和及应用

常见的数列求和及应用 常见的数列求和及应用 一、自主探究 1、等差数列的前n项和公式:。 2、等比数列的前n项和公式: ①当时,; ②当时, = 。 3、常见求和公式有: ①1+2+3+4+…+②1+3+5+…+(2n-1)= ※③※④ 二、典例剖析 (一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。 例1 已知,求数列{}的前n项和。 变式练习:已知,求数列{}的前n项和。 (二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。特别地,当数列形如,其中是等差数列,可采用此法 例2 求和:() 变式练习:已知数列的通项公式,求数列{}的前n

项和。 (三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。 例3 求和: (四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。 例4 求在区间内分母是3的所有不可约分数之和。 变式练习:已知且 .求 (五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。 例5 求和: 变式练习:求和: 三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。任何一个数列的前n项和都是从第1项一直加到第n项。数列的求和主要有以下几种方法。⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:① = ;

第2讲 数列求和及简单应用(教案)

第2讲 数列求和及简单应用 高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想. 热点一 分组转化求和 有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 例1 (2017届安徽省合肥市模拟)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若2(1)n a n n n b a =+-?,求数列{b n }的前n 项和T n . 解 (1)∵{a n }为等差数列, ∴??? S 4 =4a 1 +4×3 2 d =24,S 7 =7a 1 +7×6 2 d =63?????? a 1=3,d =2 ?a n =2n +1. (2)∵2(1)n a n n n b a =+-? =22n +1+(-1)n ·(2n +1) =2·4n +(-1)n ·(2n +1), ∴T n =2(41 +42 + (4) )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n -1) 3 +G n , 当n =2k (k ∈N *)时,G n =2×n 2=n , ∴T n =8(4n -1)3+n , 当n =2k -1(k ∈N *)时, G n =2×n -1 2-(2n +1)=-n -2, ∴T n =8(4n -1)3 -n -2,

∴T n =??? ?? 8(4n -1) 3 +n ,n =2k ,k ∈N *,8(4n -1)3-n -2,n =2k -1,k ∈N * . 思维升华 在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式. 跟踪演练1 (2017届北京市朝阳区二模)已知数列{a n }是首项a 1=13,公比q =1 3 的等比数列.设 13 2log 1()n n b a n *=-∈N . (1)求证:数列{b n }为等差数列; (2)设c n =a n +b 2n ,求数列{c n }的前n 项和T n . (1)证明 由已知得a n =13·????13n -1=????13n , 所以13 12log ()121(N )3 n n b n n * =-=-∈, 则b n +1-b n =2(n +1)-1-2n +1=2. 所以数列{b n }是以1为首项,2为公差的等差数列. (2)解 由(1)知,b 2n =4n -1, 则数列{b 2n }是以3为首项,4为公差的等差数列. c n =a n +b 2n =????13n +4n -1, 则T n =13+1 9+…+????13n +3+7+…+(4n -1) =13×????1-????13n 1-13+(3+4n -1)·n 2. 即T n =2n 2+n +12-12·????13n (n ∈N * ). 热点二 错位相减法求和 错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.

(完整版)案例三数列在购房问题中的应用

《数列的应用举例》 一、知识与技能 1、使学生掌握等差数列与等比数列在购物付款方式中的应用; 2、培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识; 二、教学重点难点 重点:抓住分期付款问题的本质分析问题; 难点:建立数学模型,理解分期付款的合理性。 三、过程与方法 通过创设情境、讲授法、讨论法、直观演示法、练习法提高学生发现问题、分析问题、解决问题的能力。 四、情感态度与价值观 通过学生之间,师生之间的交流与配合培养学生的合作意识和团队精神,通过独立运用数学知识解决实际问题,使学生体会学习数学知识的重要性,增强他们对数学学习的兴趣和对数学的情感。 五、实验与教具 多媒体 六、教学过程 创设情境 题型一、等差数列模型(单利问题) 例1、某家庭预购置一套40万元的商品房,要求购房当天首付40% (即16万元),欠款24万元需贷款,贷款期限10年(120个月),每月还欠款2000元,并每月加付欠款利息,月利率为0.4%,购买后下一月当天开始付款,以后每月付款一次,问购买这套商品房实际总价多少元? 解:按等额本金还款方式,设每月还欠款加所欠款产生的利息为数列a n,贝U: 第一月还欠款以及所欠款产生的利息为:a12000 240000 0.4%, 第二月还欠款以及所欠款产生的利息为:a22000 (240000 2000) 0.4%, 第三月还欠款以及所欠款产生的利息为:a32000 (240000 2000 2) 0.4%, 以此类推: 第n月还欠款以及所欠款产生的利息为:a n2000 [240000 2000 (n 1)] 0.4% ???各月还欠款以及所欠款产生的利息成等差数列 ???10 年还清欠款总额为:S120 120(2960 2008) 298080 (元)2 购买这套商品房实际总价为:S 298080 160000 458080 (元) 答:该家庭购买这套商品房实际总价为458080元。 题后感悟:等额本金还款法,等差数列问题 题型二、等比数列模型(复利问题) 例2、某家庭预购置一套40万元的商品房,要求购房当天首付16万元,欠款24万元需贷款,贷款期限10年(120个月),按分期付款的方式偿还欠款,每月等额还款,月利率为

数列的实际应用举例 教学设计

数列的实际应用举例 清远工贸职业技术学校 班级:13春工学计机3班 蔡健星 【学习目标】 1.掌握以数列知识为数学本质的实际应用问题,涉及增长率问题、复利计算问题等. 2.培养学生用数列知识解决实际问题的能力,提高学生对数学的学习兴趣. 一、复习 1、本单元我们学习了两种数列,分别是:等差数列和等比数列 例如:1,3,5,7,9… 2,5,8,11,14… 2,4,8,16,32… 1,3,9,27,81… 2、两种数列共有八条公式,分别是: 等差数列 等比数列 通项公式: 中项公式: 求和公式: 二、新课讲授 1.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数是( ) A.9 B.10 C.19 D.20 【解析】设堆成n 层,由题意得1+2+3+…+n ≤200,即n(n +1)≤400成立的最大正整数n 代入检验知n =19 2.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( ) A.1997 B.1999 C.2001 D.2003 d n a a n )1(1-+=11-=n n q a a 2b a A +=ab G ±=2)(1n n a a n S +=d n n na S n 2)1(1-+=q q a S n n --=1)1(1q q a a S n n --=11

【解析】设出第四册的年份为x 由题意得(x -6)+(x -4)+(x -2)+x +(x +2)+(x +4)+(x +6)=13979 即7x =13979,∴x =1997 ∴x +6=2003 3.夏季高山的温度从山脚起每升高100 m ,降低0.7 ℃,已知山顶温度是14.8 ℃,山脚温度是26 ℃,则山的相对高度是 m . 【解析】从山脚到山顶温度降低了26 ℃-14.8 ℃=11.2 ℃ 而每降0.7 ℃,升高100米 11.2 / 0.7 =16 ∴共升高16×100=1600 m . 4、某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末要砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( ) A. B. C. D. 【解析】一次砍伐后木材的存量为:S(1+25%)-x 二次砍伐后木材存量为[S(1+25%)-x ](1+25%)-x 由题意知%)501(45)45(2+=--S x x S 解得x =36S 5、银行有一种储蓄业务叫做零存整取,即每月定时存入一笔相同数目的现金,到约定日期可以取出全部本利和。若某人每月初存入100元,月利率为0.3%,问到第12个月末整取时本利和时多少? 【分析】本利=本金+利息。第1个月计利12个月,到期本利时100+100×0.3%×12, 第2个月计利11个月,到期本利时100+100×0.3%×11,… 第12个月计利1个月,到期本利时100+100×0.3%×1, 由此可知,每月存入的100元到期本利构成一个等差数列,其和就是所求的1232S 34S 36S 38S

1-2-1-1等差数列的认识与公式运用学生版

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。 一、等差数列的定义 ⑴ 先介绍一下一些定义和表示方法 定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列. 譬如:2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列 ⑵ 首项:一个数列的第一项,通常用1a 表示 末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。 项数:一个数列全部项的个数,通常用n 来表示; 公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 . 二、等差数列的相关公式 (1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)?公差,11n a a n d =+-?() 递减数列:末项=首项-(项数1-)?公差,11n a a n d =--?() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-?(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到:11n n a a d = -÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145 -+=知识点拨 教学目标 等差数列的认识与公式运用

(湖南专用)高考数学二轮复习 专题限时集训(十)数列求和及数列的简单应用配套作业 文(解析版)

专题限时集训(十) [第10讲 数列求和及数列的简单应用] (时间:45分钟) 1.设等差数列{a n }的前n 项和为S n ,若a 2,a 4是方程x 2 -x -2=0的两个根,则S 5的值是( ) A.52 B .5 C .-5 2 D .-5 2.如果等比数列{a n }中,a 3·a 4·a 5·a 6·a 7=42,那么a 5=( ) A .2 B. 2 C .±2 D .± 2 3.已知等差数列{a n }的前n 项和为S n ,且满足S 15=25π,则tan a 8的值是( ) A. 3 B .- 3 C .± 3 D .- 3 3 4.已知数列{a n }满足a 1=2 3,且对任意的正整数m ,n ,都有a m +n =a m ·a n ,若数列{a n }的 前n 项和为S n ,则S n 等于( ) A .2-23n -1 B .2-23n C .2-2n 3n +1 D .2-2 n +1 3 n 5.已知n 是正整数,数列{a n }的前n 项和为S n ,a 1=1,S n 是na n 与a n 的等差中项,则a n 等于( ) A .n 2 -n B. n (n +1) 2 C .n D .n +1 6.设f (x )是定义在R 上的不恒为零的函数,且对任意的实数x ,y ∈R,都有f (x )·f (y )=f (x +y ),若a 1=12 ,a n =f (n )(n ∈N * ),则数列{a n }的前n 项和S n 的取值范围为( ) A.??????12,2 B.???? ??12,2

C.??????12,1 D.???? ??12,1 7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .18 B .19 C .20 D .21 8.设等差数列{a n }的前n 项和为S n ,若M ,N ,P 三点共线,O 为坐标原点,且ON →=a 15OM →+ a 6OP → (直线MP 不过点O ),则S 20等于( ) A .10 B .15 C .20 D .40 9.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n >0时,n =( ) A .20 B .17 C .19 D .21 10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列???? ?? 1b n b n +1的 前n 项和S n =________. 11.定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一个常数,那么这个数列叫做“等积数列”,这个常数叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=2,公积为5,则这个数列的前n 项和S n 的计算公式为________. 12.设S n 为数列{a n }的前n 项和,把 S 1+S 2+…+S n n 称为数列{a n }的“优化和”,现有一个 共有2 012项的数列:a 1,a 2,a 3,…,a 2 012,若其“优化和”为2 013,则有2 013项的数列:2,a 1,a 2,a 3,…,a 2 012的“优化和”为________. 13.将函数f (x )=sin 14x ·sin 14(x +2π)·sin 1 2(x +3π)在区间(0,+∞)内的全部极值 点按从小到大的顺序排成数列{a n }(n ∈N * ). (1)求数列{a n }的通项公式; (2)设b n =2n a n ,数列{ b n }的前n 项和为T n ,求T n 的表达式.

41总复习:数列求和及其综合应用(基础)知识梳理

数列求和与综合应用 【考纲要求】 1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项a n 与前n 项和S n 之间的关系式 3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟练掌握求数列的前n 项和的几种常用方法; 4.能解决简单的实际问题. 【知识网络】 【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度. 与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题. 有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征,考察数列的极限存在与否等等. 有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列有关知识解答此类应用题. 数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】 类型一:数列与函数的综合应用 例1.(2015 菏泽一模)已知数列{}n a 的前n 项和为n S ,且()( )* 1n S n n n N =+∈. 综合应用 与函数、方程、不等式等 与几何、实际问题等 数列前n 项和 公式法 错位相减 倒序相加 裂项相消 分组求和

(完整版)数列应用题专题训练

数列应用题专题训练 高三数学备课组 以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。 一、储蓄问题 对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。 单利是指本金到期后的利息不再加入本金计算。设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。 复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。 例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式: (1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数); (2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。 问用哪种存款的方式在第六年的7月1日到期的全部本利较高? 分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。 解:若不计复利,5年的零存整取本利是 2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950; 若计复利,则 2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。 所以,第一种存款方式到期的全部本利较高。 二、等差、等比数列问题 等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。 例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。若交付150元以后的第

数学高考二轮专题11 数列求和及数列的简单应用(解析版)

专题11 数列求和及数列的简单应用 【考向解读】 数列求和是数列部分高考考查的两大重点之一,主要考查等差、等比数列的前n 项和公式以及其他求和方法,尤其是错位相减法、裂项相消法是高考的热点内容,常与通项公式相结合考查,有时也与函数、方程、不等式等知识交汇,综合命题. 从全国卷来看,由于三角和数列问题在解答题中轮换命题,若考查数列解答题,则以数列的通项与求和为核心地位来考查,题目难度不大. 【命题热点突破一】分组转化法求和 例1、设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ; (2)求数列{|a n -n -2|}的前n 项和. 【答案】(1)+ -=N ∈,31n a n n (2)+≥? ? ???+--=N ∈,2,2115322n n n n T n n 【命题热点突破二】 裂项相消法求和 例2(本小题满分12分) 已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式; 【答案】(Ⅰ)1=n n a q -; 【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n 3都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -. 由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N . 【命题热点突破三】 错位相减法求和

第10讲 数列的实际应用

数列的实际应用 主讲教师:庄肃钦 【知识概述】 数列是反映自然规律的重要数学模型,日常生活中的大量实际问题都可以转化为数列问题解决,如增长率、减少率、银行信贷、工厂的生产量、浓度匹配、养老保险、存款利息、出租车收费、校园网问题、放射性物质的衰变等。通过这节课的学习,希望同学们能够掌握数列作为生活工具的应用方法,解决问题。 实际应用题常见的数列模型: 1.储蓄的复利公式:本金为a元,每期利率为r,存期为n期,则本利和y =a(1+r)n. 2.总产值模型:基数为N,平均增长率为p,期数为n,则总产值y = N (1 + p)n. 3.递推猜证型:递推型有a n+1 = f (a n)与S n+1 = f (S n)或S n = f (a n)类,猜证型主要是写出前若干项,猜测结论,并用数学归纳法加以证明. 【学前诊断】 1.[难度] 易 某种细菌在培养过程中每20分钟分裂一次(一次分裂两个),经过3小时,这种细菌由一个可以繁殖为() A.511个B.512个C.1023 D.1024个 2.[难度] 易 某商品降价10%后,欲恢复原价,则应提价_______. 3.[难度] 中 某工厂连续数年的产值月平均增长率为p%,则它的年平均增长率为_______.

【经典例题】 例1. 银行按规定每经过一定时间结算存(贷)款的利息一次,结息后即将利息并入本 金,这种计算利息的方法叫复利,现在有某企业进行技术改造,有两种方案: 甲方案——一次性贷款10万元,第一年便可获利1万元,以后每年比前一 年增加30%的利润; 乙方案——每年贷款1万元,第一年可获利1万元,以后每年比前一年多获 利5千元. 两方案使用贷款期限均为10年,到期一次性归还本息.若银行贷款利息均按 年息10%的复利计算,试比较两种方案哪个获利更多?(计算结果精确到千元, 参考数据:10101.1 2.594,1.313.768==) 例2. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产 业,根据规划,本年度投入800万元,以后每年投入将比上年减少15 ,本年度当地旅游业估计收入为400万元,由于该项目建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14 。 (1) 设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元,写 出,n n a b 的表达式; (2) 至少经过几年,旅游业的总收入才能超过总投入? 例3. 某城市2009年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的 6%,并且每年新增汽车数量相同,为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? 例4. 【本课总结】 对于数列应用题的考查,主要考查学生运用观察、归纳、猜想等手段,建立有关等差(比)数列、递推数列的数学模型,再综合其他相关知识来解决问题的能力.解答数列应用性问题,既要有坚实的基础知识,又要有良好的思维能力和分析与解决问题的能力. 解题方法 1.主要模型: (1) 等差数列模型(增加的量或减少的量相同); (2) 等比数列模型(增长率相同或减少率相同); (3) 等差数列与等比数列综合模型; (4) 递推数列模型等等.

广东高考理数大二轮专项训练专题 数列求和及综合应用(含答案)

2016广东高考理数大二轮专项训练 第2讲数列求和及综合应用 考情解读高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查用等差、等比数列知识分析问题和探究创新的能力,属中档题;2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题. 1.数列求和的方法技巧 (1)分组转化法 有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. (2)错位相减法 这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n 项和,其中{a n},{b n}分别是等差数列和等比数列. (3)倒序相加法 这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (4)裂项相消法 利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有 限项的和.这种方法,适用于求通项为1 a n a n+1 的数列的前n项和,其中{a n}若为等差数列,则 1 a n a n+1= 1 d? ? ? ? 1 a n- 1 a n+1. 常见的裂项公式: ① 1 n(n+1) = 1 n- 1 n+1 ; ② 1 n(n+k) = 1 k( 1 n- 1 n+k ); ③ 1 (2n-1)(2n+1) = 1 2( 1 2n-1 - 1 2n+1 );

数列的概念及简单表示法(学生版)

第二章数列 2.1 数列的概念及简单表示 2.1.1数列的概念与简单表示法(一) 【学习目标】 1.理解数列及其有关概念(难点); 2.理解数列的通项公式,并会用通项公式写出数列的任意一项(重点); 3.对于比较简单的数列,会根据其前几项写出它的一个通项公式. 【要点整合】 1.数列的概念 (1)数列与数列的项 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第项. (2)数列的表示方式 数列的一般形式可以写成a1,a2,…,a n,…,简记为. (3)数列中的项的性质: ①确定性;②可重复性;③有序性. (4)数列与集合的区别:数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性. 2.数列的分类 (1).按项的个数分类 (2).按项的变化趋势分类

3.数列的通项公式 如果数列{a n }的第 项与序号 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式. 【典例讲练】 题型一 数列的概念与分类 例1 (1)下列四个选项中,既是无穷数列又是递增数列的是( ) A. {0,1,2,3,4}; B.sin π7,sin 2π7,sin 3π7 ,… C.-1,-12,-14,-18 ,… D.1,2,3,…,21 (2)设函数f (x )=? ????(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( ) A.????94,3 B.[94,3) C.(1,3) D.(2,3) (3)下列说法:①数列1,3,5,7与数列7,3,5,1是同一数列;②数列0,1,2,3…的一个通项公式为 =-a n 1;③数列0,1,0,1,…没有通项公式;④数列?? +????n n 1是递增数列,其中正确的是( ) A .①③ B .②④ C .②③ D .②③④ 练习1:下列数列哪些是有穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列? (1)2 010,2 012,2 014,2 016,2 018; (2)0,12,23,…,n -1n ,…; (3)1,12,14,…,12n -1,…; (4)-11×2,12×3,-13×4,14×5 ,…; (5)1,0,-1,…,sin n π2,…; (6) 9,9,9,9,9,9. 题型二 根据通项公式写数列的项 例2 根据下面数列{a n }的通项公式,写出它的前5项: (1)a n =n n +1 ; (2)a n =(-1)n n .

高考二轮复习第11讲 数列求和及应用

第11讲 数列求和及应用 1.数列的单调性 对于数列{a n },若a n +1>a n ,则{a n }为递增数列; 若a n +1

小题速解——不拘一格 优化方法 考点一 由递推关系求通项 [典例1] (1)已知各项均为正数的数列{a n }的前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2 n +1, 则a n =________. 解析:由题意可得3S 2n -2a n +1S n -a 2n +1=(S n -a n +1)·(3S n +a n +1)=0,又a n >0,所以S n =a n +1,则 S n -1=a n (n ≥2),两式相减并移项得a n +1=2a n (n ≥2),又S 1=a 1=a 2=2,则a n =a 2·2n - 2=2n -1(n ≥2), 故a n =?????2,n =1,2n -1,n ≥2. 答案:? ????2 n =1 2n -1 n ≥2 (2)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a n n 2=a n (n ∈N *),则数列{a n }的通项公式为a n = ________. 解析:根据a 1+a 222+a 332+…+a n n 2=a n ,① 有a 1+a 222+a 3 32+…+a n -1(n -1) 2=a n -1(n ≥2),② ①-②得a n n 2=a n -a n -1(n ≥2)?n 2a n -1=(n 2-1)a n (n ≥2)?a n a n -1=n 2 n 2-1(n ≥2), 所以a 2a 1×a 3a 2×…×a n a n -1=2222-1×3232-1×…×n 2 n 2-1 (n ≥2),

相关主题
文本预览
相关文档 最新文档