当前位置:文档之家› 第三章 离散系统的时域分析-考研试卷

第三章 离散系统的时域分析-考研试卷

第三章  离散系统的时域分析-考研试卷
第三章  离散系统的时域分析-考研试卷

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学院 专业方向机械工程及自动化 班级 学号 学生姓名刘帆 自动控制与测试教学实验中心

实验一 一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014年11月15日 实验编号 同组同学 一、实验目的 1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2、 学习在电子模拟机上建立典型环节系统模型的方法。 3、 学习阶跃响应的测试方法。 二、实验内容 1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。 2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。 三、实验原理 1、一阶系统阶跃响应性能指标的测试 系统的传递函数为:()s ()1 C s K R s Ts φ=+()= 模拟运算电路如下图 : 其中2 1 R K R = ,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =

2、二阶系统阶跃响应性能指标的测试 系 统 传递函数为: 令ωn=1弧度/秒,则系统结构如下图: 二阶系统的 模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则 442312R R C R ζ==,即42 12R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差 带,其中当ζ<1时经验公式为2 1 3.5 %100%,s n e t ζσζω- -=?= ,当ζ=1时经验公式 为n 4.75 ts ω= 四、试验设备: 1、HHMN-1型电子模拟机一台。 2、PC 机一台。 3、数字万用表一块。 4、导线若干。

自动控制原理实验 典型系统的时域响应和稳定性分析

电子科技大学中山学院学生实验报告系别:机电工程学院专业:课程名称:自动控制原理实验

一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图所示。 图 (2) 对应的模拟电路图:如图所示。 图 电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

(3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图, 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图所示。 电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间:

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

电子科技大学中山学院学生实验报告 系别:机电工程学院专业:课程名称:自动控制原理实验

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

中南大学典型系统的时域响应和稳定性分析实验报告

实验报告 实验名称典型系统的时域响应和稳定性分析系信息院专业班 姓名学号授课老师预定时间实验时间实验台号 一、目的要求 1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、原理简述 1.典型的二阶系统稳定性分析 (1) 结构框图:如图所示。 (2) 理论分析 系统开环传递函数为:

开环增益 2.典型的三阶系统稳定性分析 (1) 结构框图:如图所示。 (2) 理论分析 系统开环传递函数为: 系统的特征方程为: 三、仪器设备 PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。 四、线路示图 1.典型的二阶系统稳定性分析 2.典型的三阶系统稳定性分析

五、内容步骤 1.典型的二阶系统稳定性分析 实验内容: 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。 系统闭环传递函数为: 其中自然振荡角频率: 阻尼比: 2.典型的三阶系统稳定性分析 实验内容 实验前由Routh 判断得Routh 行列式为:

为了保证系统稳定,第一列各值应为正数,所以有 实验步骤: 1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。 2. 典型二阶系统瞬态性能指标的测试 (1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K。 (2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。 (3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。并将测量值和计算值进行比较(实验前必须按公式计算出)。将实验结果填入表1.2-1 中。表1.2-2 中已填入了一组参考测量值,供参照。3.典型三阶系统的性能 (1) 按图1.2-4 接线,将1 中的方波信号接至输入端,取R = 30K。 (2) 观察系统的响应曲线,并记录波形。 (3) 减小开环增益(R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。表1.2-4 中已填入了一组参考测量值,供参照。 六、数据处理 典型的二阶系统稳定性分析波形

典型二阶系统的时域响应与性能分析

实验二 典型二阶系统的时域响应与性能分析 一、实验目的 1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。 2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 二、实验设备 PC 机一台,TD-ACS 教学实验系统一套。 三、实验原理 典型二阶系统开环传递函数为:) 1()1()(101101 += += s T s T K s T s T K s G ;其中,开环放大系数01K K = 。系统方块图与模拟电路如图2-1与图2-2所示。 图2-1典型二阶系统方块图 图2-2模拟电路图 先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路

中,观察二阶系统的动态性能及稳定性。 设R T K K s T T s T 200,2.0,10 1 10== ===, 系统闭环传递函数为: 2 222 221)()(n n n s s T K s T s T K K s Ts K s R s C ωζωω++=+ +=++= 其中,自然振荡频率:R T K n 10 10 == ω 阻尼比:4 102521R T K T n = = = ωζ 典型二阶系统的瞬态性能指标: 超调量:2 1%ζζπ δ--=e 峰值时间:2 1ζ ωπ-= n p t 峰值时间的输出值:2 11)(ζζπ -=+=e t C p 调节时间: 1)欠阻尼10<<ζ,???????=?=?≈5324 ,,t n n s ζωζω 2)临界阻尼1=ζ,???????=?=?≈575.4284 .5,,t n n s ωω 3)过阻尼1>ζ,? ??=?=?≈532 411,p ,p t s ,1p -与2p -为二阶系统两个互异的 负实根12 2,1-±-=-ζ ωζωn n p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点 1p -的一阶系统来近似表示。

实验一 时域离散信号与系统变换域分析(2015)资料

实验一 时域离散信号与系统变换域分析 一、实验目的 1.了解时域离散信号的产生及基本运算实现。 2.掌握离散时间傅里叶变换实现及系统分析方法。 3. 熟悉离散时间傅里叶变换性质。 4. 掌握系统Z 域分析方法。 5. 培养学生运用软件分析、处理数字信号的能力。 二、实验设备 1、计算机 2、Matlab7.0以上版本 三、实验内容 1、对于给定的时域离散信号会进行频谱分析,即序列的傅里叶变换及其性质分析。 2、对于离散系统会进行频域分析及Z 域分析。包括频谱特性、零极点画图、稳定性分析。 3、对于差分方程会用程序求解,包括求单位冲击序列响应,零输入响应、零状态响应、全响应,求其系统函数,及其分析。 4、信号时域采样及其频谱分析,序列恢复。 5、扩展部分主要是关于语音信号的读取及其播放。 四、实验原理 1、序列的产生及运算 在Matlab 中自带了cos 、sin 、exp (指数)等函数,利用这些函数可以产生实验所需序列。 序列的运算包括序列的加法、乘法,序列)(n x 的移位)(0n n x -,翻褶)(n x -等。序列的加法或乘法指同序号的序列值逐项对应相加或相乘,但Matlab 中“+”“.*”运算是对序列的值直接进行加或乘,不考虑两序列的序号是否相同,因此编程时考虑其序号的对应。 2、序列的傅里叶变换及其性质 序列的傅里叶变换定义:)(|)(|)()(ω?ωωω j j n n j j e e X e n x e X ==∑∞-∞=-,其幅度特性为|)(|ωj e X , 在Matlab 中采用abs 函数;相位特性为)(ω?,在Matlab 中采用angle 函数。 序列傅里叶变换的性质:

实验六 离散时间系统的时域分析

信号与系统实验报告 实验名:离散时间信号与系统的频域分析 实验六离散时间系统的时域分析 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、预习内容 1、离散时间信号的傅里叶变换与逆变换。 2、离散时间信号频谱的物理含义。 3、离散时间系统的频率特性。 4、离散时间系统的频域分析方法。 三、实验原理 1. 离散时间系统的频率特性

2. 离散时间信号傅里叶变换的数值计算方法 3.涉及到的Matlab 函数

四、实验内容 1、离散时间系统的时域分析 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤ 4π的离散时间傅里叶变换 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)

plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); yl abel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) x label(‘omega/\pi’); ylabel(‘以弧度为单位的相位’);

实验二--典型系统的时域响应分析实验仿真报告答案

实验二--典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较 5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿

真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。 (2) 一阶系统的单位斜坡响应 在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3)一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。

典型系统的时域响应和稳定性分析

自动控制原理课程实验报告 实验题目: 典型系统的时域响应和稳定性分析 1 实验目的 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析 2 实验设备 PC 机一台,TD-ACC+实验系统一套。 3 基本原理、内容、结果及分析: 3.1 基本原理 1.典型的二阶系统稳定性分析 (1) 结构框图:如图1.2-1 所示。 (2) 理论分析 系统开环传递函数为: 开环增益 2.典型的三阶系统稳定性分析 (1) 结构框图:如图1.2-3 所示。

系统开环传递函数为: 系统的特征方程为: 3.2内容 1.典型的二阶系统稳定性分析 2.典型的三阶系统稳定性分析 3.3步骤 1.典型的二阶系统稳定性分析 实验内容: 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2),

其中自然振荡角频率: 阻尼比: 2.典型的三阶系统稳定性分析 实验内容 实验前由Routh 判断得Routh 行列式为: 为了保证系统稳定,第一列各值应为正数,所以有 实验步骤 1. 将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。由于每个运放单元均设置了锁 零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得 “OUT ”端输出的方波幅值为1V ,周期为10s 左右。 2. 典型二阶系统瞬态性能指标的测试 (1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K 。 (2) 用示波器观察系统响应曲线C(t),测量并记录超调MP 、峰值时间tp 和调节时间tS 。 (3) 分别按R = 50K ;160K ;200K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP 、 tp 和tS ,及系统的稳定性。并将测量值和计算值进行比较 (实验前必须按公式计算出)。将实验结果 填入表1.2-1 中。表1.2-2 中已填入了一组参考测量值,供参照。 3.典型三阶系统的性能

信号、系统及系统响应,离散系统的时域分析实验报告

实验报告 实验二 信号、系统及系统响应,离散系统的时域分析 一、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变换关系,加深对时域采样定理的理 解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信 号、离散信号及系统响应进行频域分析。 (5) 熟悉并掌握离散系统的差分方程表示法; (6) 加深对冲激响应和卷积分析方法的理解。 二、实验原理与方法 1、信号、系统及系统响应 采样是连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 我们知道,对一个连续信号xa(t)进行理想采样的过程可用(2-1)表示。 ^ ()()() (21) a a x t x t p t =- 其中^ ()a x t 为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()() (22) n p t t nT δ∞ =-∞= --∑ ^ ()a x t 的傅里叶变换^ ()a X j Ω为 ^ 1()[()] (23) a a s m X j X j m T ∞ =-∞ Ω=Ω-Ω-∑ (2-3)式表明^ ()a X j Ω为()a X j Ω的周期延拓,其延拓周期为采样角频率

(2/)s T πΩ=。其采样前后信号的频谱只有满足采样定理时,才不会发生频率混叠失真。 将(2-2)带入(2-1)式并进行傅里叶变换: ^ ()[()()]j t a a n X j x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ Ω=-∑? [()()]j t a n x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ = -∑? ()(24) j nT a n x nT e ∞ -Ω=-∞ = -∑ 式中()a x nT 就是采样后得到的序列()x n ,即 ()()a x n x nT = ()x n 的傅里叶变换()j X e ω为 ()()(25) j j n n X e x n e ω ω∞ -=-∞ = -∑ 比较(2-5)和(2-4)可知 在数字计算机上观察分析各种序列的频域特性, 通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。 对长度为N 的有限长序列x(n), 有 一个时域离散线性非移变系统的输入/输出关系为 上述卷积运算也可以在频域实现 2、离散系统时域分析 ^ ()() (26) j a T X j X e ωω=ΩΩ=-1 ()()(27) 2,0,1,,1k N j n j k n k X e x m e k k M M ωωπ ω--==-= =???-∑()()()()() (28) m y n x n h n x m h n m ∞ =-∞ =*= --∑()()() (29) j j j Y e X e H e ωωω=-式中

离散系统的时域分析实验报告

实验2 离散系统的时域分析 一、实验目的 1、熟悉并掌握离散系统的差分方程表示法; 2、加深对冲激响应和卷积分析方法的理解。 二、实验原理 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应,则系统响应为如下的卷积计算式: 当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。 三、实验内容

1、用MATLAB 求系统响应 1) 卷积的实现 线性移不变系统可由它的单位脉冲响应来表征。若已知了单位脉冲响应和系统激励就 可通过卷积运算来求取系统响应,即)(*)()(n h n x n y 程序: x=input(‘Type in the input sequence=’); %输入x h=input(‘Type in the impulse response sequence=’); %输入h y=conv(x,h); % 对x ,h 进行卷积 N=length(y)-1; %求出N 的值 n=0:1:N; %n 从0开始,间隔为1的取值取到N 为止 disp(‘output sequence=’); disp(y); %输出y stem(n,y); %画出n 为横轴,y 为纵轴的离散图 xlabel(‘Time index n ’); ylable(‘Amplitude ’); % 规定x 轴y 轴的标签 输入为: x=[-2 0 1 -1 3] h=[1 2 0 -1] 图形: 2) 单位脉冲响应的求取 线性时不变因果系统可用MA TLAB 的函数filter 来仿真 y=filter(b,a,x); 其中,x 和y 是长度相等的两个矢量。矢量x 表示激励,矢量a ,b 表示系统函数形式 滤波器的分子和分母系数,得到的响应为矢量y 。例如计算以下系统的单位脉冲响应 y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3) 程序: N=input(‘Desired impuse response length=’); b=input(‘Type in the vector b=’); a=input(‘Type in the vector a=’); x=[1 zeros(1,N-1)]; y=filter(b,a,x);

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间: 学生成绩:教师签名:批改时间: 一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图 1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图 1.2-2 所示。 图1.2-2

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: 图 1.2-3 (2)模拟电路图:如图1.2-4 所示。 图 1.2-4 (3)理论分析: 系统的特征方程为: (4)实验内容: 实验前由Routh 判断得Routh 行列式为:

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

实验二 典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应 在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3)一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。

离散LSI系统的时域分析.doc

. ... 实验二:离散LSI系统的时域分析 一、实验内容 1.知描述某离散LSI系统的差分方程为2y(n)-3y(n-1)+y(n-2)=x(n-1),分别用impz 和dstep函数、filtic和filter函数两种方法求解系统的单位序列响应和单位阶跃响应。 用impz和dstep函数求解系统的单位序列响应和单位阶跃响应如下 a=[1,-3/2,1/2]; b=[0,1/2,0]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 课程名称数字信号 实验成绩 指导教师实验报告.

... 010203000.10.20.0.0.0.0.0.0.1系统的单位序列响应h(n) n01020300112230系统的单位阶跃响应g(n)n 用函数filtic和filter求解离散系统的单位序列响应和单位阶跃

解:x01=0;y01=0; a=[1,-3/2,1/2]; b=[1/2,0,0]; N=32;n=0:N-1; xi=filtic(b,a,0); x1=[n==0]; hn=filter(b,a,x1,xi); x2=[n>=0]; gn=filter(b,a,x2,xi); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); . ... subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 01020300.550.60.650.70.750.80.850.90.951

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响 应测试 课程名称:自动控制原理实验

目录 (一)实验目的 (3) (二)实验内容 (3) (三)实验设备 (3) (四)实验原理 (3) (五)一阶系统实验结果 (3) (六)一阶系统实验数据记录及分析 (7) (七)二阶系统实验结果记录 (8) (八)二阶系统实验数据记录及分析 (11) (九)实验总结及感想............................................................................错误!未定义书签。 图片目录 图片1 一阶模拟运算电路 (3) 图片2 二阶模拟运算电路 (3) 图片3 T=0.25仿真图形 (4) 图片4 T=0.25测试图形 (4) 图片5 T=0.5仿真图形 (5) 图片6 T=0.5测试图形 (5) 图片7 T=1仿真图形 (6) 图片8 T=1测试图形 (6) 图片9 ζ=0.25s仿真图形 (8) 图片10 ζ=0.25s测试图形 (8) 图片11 ζ=0.5s仿真图形 (9) 图片12 ζ=0.5s测试图形 (9) 图片13 ζ=0.8s仿真图形 (10) 图片14 ζ=0.8s测试图形 (10) 图片15 ζ=1s仿真图形 (11) 图片16 ζ=1s测试图形 (11) 表格目录 表格1 一阶系统实验结果 (7) 表格2 二阶系统实验结果 (11) 一二阶系统的电子模拟及时域响应测试

(一)实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 (二)实验内容 1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其 超调量σ%及过渡过程时间TS。 (三)实验设备 HHMN电子模拟机,实验用电脑,数字万用表 (四)实验原理 一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。一阶系统结果预期:时间常数T越小,调节时间t越小,响应曲线很快就接近稳态值,一阶系统无超调量。模拟运算电路原理图如下: 图片 1 一阶模拟运算电路 二阶系统:δ取不同的值,将会形成不同的阶跃响应曲线及不同的超调量δ%、过渡时间及其它参数指标。二阶系统结果预期:δ为阻尼比,当0<δ<1时,系统时间响应具有振荡特性,为欠阻尼状态;当δ=1时,为临界阻尼,无振荡;当δ>1时,为过阻尼状态,无振荡。模拟运算电路图如下: 图片 2 二阶模拟运算电路 (五)一阶系统实验结果

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k ΛΛ。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

实验二典型系统的时域响应分析实验仿真报告答案修订版

实验二典型系统的时域响应分析实验仿真报告 答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验内容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0)

由此得知,图形是一条单调上升的指数曲线,与理论分析相符。 (2) 一阶系统的单位斜坡响应 在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3) 一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。 理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。 两种环境下得到的曲线图不一致。 2)二阶系统的单位阶跃响应 二阶系统的闭环传递函数标准形式为 其阶跃响应可以分以下情况解出 ①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=

相关主题
文本预览
相关文档 最新文档