当前位置:文档之家› 最新反例在数学中的应用

最新反例在数学中的应用

最新反例在数学中的应用
最新反例在数学中的应用

《数学分析》中关于极限概念教学的一点探讨

《数学分析》中关于极限概念教学的一点探讨 作者:张彩霞 来源:《科技创新导报》2011年第12期 摘要:在初学数学分析时,共有二十八种极限概念,这些极限概念是数学分析的基础,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。教师在教学过程中要引导学生将各种极限概念的定性描述准确地转化为定量描述,并能深刻理解,逐渐灵活运用。 关键词:数学分析极限概念教学 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)04(c)-0147-02 《数学分析》课程是大学数学系一门重要的基础课,对这门课程学习的好坏,直接影响到学生思维能力的形成及对后续课程的接受能力。学生从高中刚入大学,学习内容从原来的具体到抽象、从离散到连续、从有限到无限,使学生感到《数学分析》很难,特别是刚开始接触各种极限概念的定量描述,理解起来很吃力.而数学分析这门课程就其自身而言,有着理论上的严密性和前后的连贯性,极限概念是数学分析的基石,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。本人在教学过程中,深刻体会到关于极限概念教学的重要性。 在初学数学分析时,就有二十八种极限概念(包括正常极限和非正常极限),教师在教学过程中的任务是引导学生将这二十八种极限概念从定性描述准确地转化为定量描述。并使学生对各种极限概念的定量描述能深刻理解,逐渐灵活运用。 1 正常极限概念 1.1 数列极限概念 数列极限的概念是最开始要学习的极限概念,如果学生对这个概念能准确理解的话,对于理解接下来要学习的函数极限概念就容易多了,所以对数列极限概念的教学至关重要。 首先观察数列:: 特征:当无限增大时,无限接近于 此时称该数列收敛于0,或称0为该数列的极限。 “无限增大”和“无限接近”是对数列变化性态的一种形象描述,是定性的说明,而不是定量的描述,这在数学上无法进行严谨地论证。所以我们要定量地描述该数列的特征。

反例在中学数学中的应用

反例在中学数学中的应用 摘要:摘要:反例在中学数学教学中的运用十分的广泛。本文阐述了反例在中学数学教学中的主要的功能,研究并分析了反例教学在教学过程中应该需要引起注意的事项以及反例的应用方面的具体内容。 关键词: 一前言 数学中的反例一般是指为了推翻一个数学命题,必须建立在已经被证明是正确的理论和逻辑的基础之上。对于数学命题的真假的判断是中学数学的教学中的重要内容。对于一些数学的命题的真假的判断,需要经过严格的数学证明。数学的证明题在数学的教学中运用十分的广泛。数学的证明就是根据以前的已经被证明是正确的定义、公式、公理等,经历过严格的数学的推理过程,从而得出假设的命题的正确与否。但是,在中学数学的教学应用中,有许多的证明必须通过反例来证明。比如在数学中为了证明数学命题“若A则B”这样的一个命题是假命题,需要找出一个对象符合条件A但是却不具有性质B,这样的一种数学的解题方法就是一种反例的运用。中学数学的教育教学需要不断的培养和提高学生使用反例以及构建反例的技能。但是,现如今,许多的学生在反例的构建和应用上水平仍然很差,本文重点分析反例在中学数学中的功能以及其的具体运用。 二反例在中学数学教学中的作用功能 (一)通过反例能促进学生对于数学的概念的认识 在数学的理论和方法中,概念是基础性的内容。因此,中学数学教师在数学的概念的教学中应该善加运用正面的例子来促进学生对于数学概念的本质属性的认知,另外还必须十分的巧妙灵活的使用反例在强化学生对于概念的认识。比如,在对中学的函数进行概念的讲授的时候,学生中有的会以偏概全的认为。为了处理这样一种片面的认识,教师在教学的过程中可以通过反例来纠正这个错误:非负数x 与它的平方根y是函数关系?这个一个反例的举出可以引起学生的讨论。通过讨论可以认识到虽然y与非负数x具有关联性,但是在x自变量发生了变化的时候,y并不是只有唯一的值与x相对,因此,并不符合函数的相关的定义。这就是反例在函数中的具体的运用。 (二)通过反例可以否定一个错误的命题 正如前言中所述,反例是对一个错误的数学命题的否定的最佳的途径。通过反例,进行严格的数学的证明和分析,可以有效的推翻一个错误的数学命题。最直接的办法就是找到这个命题的一个实例证明其在特殊的条件下是不成立的。 (三)反例可以有效的纠正错误 在中学数学的教学实践中可以发现,许多学生对于数学的解题的方法和知识掌握还不够成熟,对于数学的方法和解题的技巧还不够全面,容易导致学生在解题的过程中出现许多的细节上的错误。因此,在证明自己的解题是否正确的时候,通过一般的途径很难正确的检查出来。因此,这个时候,反例的运用会大大的提高学生的解题的效率和准确性。 (四)反例可以加强命题的条件的掌握 学生在对于数学公式、定理、公理等的学习和掌握中,可以强化对于命题的条件,在教学的过程中发现,许多的学生很容易忽视数学的命题的前提条件。因此,在实际的教学过程中,应该巧妙的运用反例,从而达到对于命题的条件的强化。比如下面这个例子。命题的前提条件是,b+a=a+b=a+b=k,求k的值。对于这样一个问题。一般学生的思路会在等比数列这个定理之上。但是,许多的学生对于等比数列并不能够熟练的掌握,对于等比数列的前提条件容易忽视。因此,许多学生解出的答案是:k=(b+)(a+b)(a+)a+b+=2。但是,如果运用反例来证明这道数学题的结果,就会很容易发现,当a=2,b==-1时,k=-1。通过反例

反例在高等数学教学中的功能

反例在高等数学教学中的功能 发表时间:2014-08-22T11:01:32.153Z 来源:《素质教育》2014年6月总第154期供稿作者:韩召伟 [导读] 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。 韩召伟陕西师范大学数学与信息科学学院710062 摘要:高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在高等数学教学中, 恰当地开发和有效地利用反例,能起到事半功倍的效果。本文具体以多元微分学中极限、可偏导和可微之间的关系为例,剖析了高等数学教学中反例的功能。 关键词:高等数学多元函数反例 一、引言 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。因为缺乏反例的衬托,在学习过程中学生对数学概念内涵和外延理解上的偏差或对于命题的条件和结论认知的不充分,都将成为学生高等数学学习的屏障。构造适当的反例,一方面能帮助学生全面理解和正确掌握高等数学中的基本知识,激发学生的求知欲;另一方面对于提高学生的数学学习能力和数学思维能力将会起到十分重要的作用。因此,在高等数学教学中,充分发掘反例的教学功能,有效地构造和利用反例,教师应予以足够重视。 二、高等数学教学中反例的功能 1.反例是全面理解概念的基础。数学知识理论体系向来以思维严密和逻辑严谨而著称,教材主要由定义和定理等内容构成,比较注重学生的抽象概括能力、逻辑思维能力、空间想象能力、分析运算能力、解决问题方面能力的培养,而这些能力的取得都以深刻理解概念和准确掌握概念为基础,因此,在教学中只要求学生死背概念是不行的,必须注重理解其实质。高等数学中具有若干新概念,而要很好地理解这些新概念,正面的例子可起到了解、熟悉新概念的作用,而反例则可加深对新概念的理解。在高等数学教学中,教师不仅要运用正确的例子深刻阐明知识点,而且要运用恰当的反例从另一个侧面抓住概念或规则的本质,弥补正面教学的不足,从而加深学生对知识的理解。

高等代数习题

高等代数习题 第一章基本概念 §集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集 2、设a是集A的一个元素。记号{a}表示什么 {a} A是否正确 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个 6、下列论断那些是对的,那些是错的错的举出反例,并且进行改正. (i) (ii) (iii)

(iv) 7.证明下列等式: (i) (ii) (iii) §映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射 4.设f定义如下: f是不是R到R的映射是不是单射是不是满射 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射 6、设a ,b是任意两个实数且a

7、举例说明,对于一个集合A到自身的两个映射f和g来说,f g与 g f一般不相等。 8、设A是全体正实数所成的集合。令 (i)g是不是A到A的双射 (ii)g是不是f的逆映射 (iii)如果g有逆映射,g的逆映射是什么 9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则1 2 3 全体整数 全体整数 全体有理数 b a b a+ → |) , (

4 全体实数 §数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 是个元素中取个的组合数. 这里 , 4、证明第二数学归纳法原理. 5、证明,含有个元素的集合的一切子集的个数等于。 §整数的一些整除性质 1、对于下列的整数 ,分别求出以除所得的商和余数: ; ; ; .

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

初中数学教学中反例的运用

龙源期刊网 https://www.doczj.com/doc/868618628.html, 初中数学教学中反例的运用 作者:黄绪富 来源:《新教育时代·学生版》2019年第23期 摘要:随着初中数学教学改革工作的持续推进,越来越多的教师开始意识到现有教学模式所带来的弊端,单一枯燥的教学方法使得学生缺乏自由思考空间,难以有效激发学生的数学学习热情。本文以反例的运用作为研究的切入点,从反例在数学教学中的应用内涵出发,论述了反例运用对于提升数学教学效果的重要性,在此基础上阐述了反例在数学教学中的应用策略,希望能够提升反例在数学教学中的应用效果的同时,从而取得理想教学效果,为全面培育学生的数学核心素养奠定基础。 关键词:初中数学数学教学反例的运用 一、反例在数学教学中的应用内涵 所谓的反例运用指的是在数学的学习过程中结合数学理论从而确切指出不成立的命题,引导学生能够站在新的角度来审视数学知识点。与传统的数学学习方式相比,反例的运用不仅是对原有命题学习的一种挑战,而且通过展现数学知识点中的逻辑矛盾让学生找出学习的切入点,更好的理解数学知识。在一定关系环境下,数学知识是不具有互相矛盾这样的属性,但是通过反例的运用能够让学生准确的判断数学知识点中的错误的结论,加深学生对数学知识点的理解。传统的数学教学模式使得学生只懂得在给定的命题条件以及适用范围的基础上进行解题,导致学生往往容易忽略给定的命题条件以及适用范围对于数学知识点构建的重点性。借助于反例能够帮助学生实现数学知识点的二次归纳总结,引导学生站在新的角度看待数学知识点,从而加强学生的记忆与理解。[1] 二、反例运用对于提升数学教学效果的重要性 一方面,作为逻辑性较强的一门学科之一,学生在学习数学时不仅需要掌握恰当的学习方法,还需要具备相应的学习耐心。数学的学习需要学生始终秉持着严谨的态度,一旦没有严谨的态度,那么将会因为对数学条件以及内容的理解错误从而导致“失之毫厘,谬以千里”问题的产生,使得解题错误率大幅度的上升。另一方面,反例的运用能够实现学生在数学学习领域中发散思维的有效培育,切实做到举一反三。与此同时,反例的运用还能够实现命题条件以及适用范围等数学知识的转换,引导学生能够顺利地掌握相应的变式训练,进而增强学生对于数学知识的理解。初中阶段的数学学习属于基础数学之一,教学的目的在于帮助学生构建系统化的数学解题思路,为其接下来数学知识的终身学习奠定良好的基础。然而,大部分的学生在接触一个知识点或概念时,由于尚未构建系统化的数学思维,容易出现理解上的偏差。通过運用反例的形式,能够加深学生对做错题目的印象,增强学生数学逻辑推理能力的同时,帮助学生更好地掌握数学知识点。[2]

无穷极数中的几个典型反例

无穷极数中的几个典型反例 一、正项级数中比值判别法和根值判别法的反例 (1) 比值差别法: 例1: 1(1)3 n n ∞=+- 级数1(1)3n n ∞=+-发散,但极限1lim n n n u u +→∞并不存在 因为级数13n ∞=发散而级数1(1)3n n ∞=-∑ 收敛。所以级数1 (1)3n n ∞=+-发散。 而11n n n u u ++= 是摆动数列,故11lim n n n n n u u ++→∞=并不存在。 当然,p-级数∑∞ =11n n p 也是一个典型的反例, 1lim n n n u u +→∞=1,但当p>1时收敛; 1≤p 时,发散。 (2) 根值判别法: 例2: 1(1)3n n n ∞ =?-???∑ 级数1(1)3n n n ∞=?-???∑ 收敛,但(1)lim 3n n n →∞-=并不存在。 2(1)210 33n n n ????-≤≤ ??? ???? ? 而1 13n n ∞=?? ? ???∑收敛(公比小于1的等比级数)。 由比较判别法,1(1)3n n n ∞=?-??? ∑ (1)3n -=是摆动数列。 故(1)lim 3 n n n →∞-=不存在。 注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。 二、 交错级数中使用莱布尼兹差别法的反例

在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。 例3: n n ∞= n u =, 显而易见满足lim 0n n u →∞ =,而不满足。1(1,2,)n n u u n +≥= , 但作为任意项级数 (1)(1)1(1)111n n n n n u n n n ?--??===----- 由级数2(1)1n n ∞=--∑ 收敛,而级数211n n ∞=-∑ 发散知,级数n n ∞=发散。 例4: n n n n )1(1)1(2-+-∑∞ = n n n n )1(1)1(2-+-∑∞==111)1(1))1(()1(222----=----n n n n n n n n , 根据莱布尼兹判别法易知交错级数∑∞ =--221)1(n n n n 收敛,而∑∞=-2211n n 收敛,所以原级数 n n n n ) 1(1)1(2-+-∑∞=是收敛的。 注:例3与例4都是不满足n n u u <+1的情况,不能使用莱布尼兹判别法直接判定。 三、 幂级数中的反例 有些同学认为,如果幂级数∑∞=0n n n x a 的收敛半径R ≠0,那么一定有 n n n a a 1lim +∞→=L=1/R ,这是不对的,因为有可能n n n a a 1lim +∞→不存在。 例5: 求幂级数∑∞=-+1 2)1(2n n n n x 的收敛半径

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

数学教学中的反例教学研究

本科生毕业设计(论文)数学教学中的反例教学研究 二级学院:数学与计算科学学院 专业:数学与应用数学 年级:2009级 学号:2009224721 作者姓名:陈颖 指导教师:梁英讲师 完成日期:2013年5月1日

目录 1 研究背景 (1) 1.1学生的数学学习现状 (1) 1.2文献评述,研究现状 (2) 1.3本文的工作 (2) 2 关于数学反例 (2) 3开展反例教学的三种典型情况 (3) 3.1数学概念中的反例教学 (3) 3.1.1数学概念的易错易混淆性 (3) 3.1.2数学概念中的典型反例教学 (4) 3.1.3关于数学概念反例教学的作用 (6) 3.2数学性质、定理中的反例教学 (6) 3.2.1数学的性质、定理教学 (6) 3.2.2数学性质、定理的典型反例教学 (7) 3.2.3反例有助突出定理、性质的关键词 (9) 3.3数学解题过程中的反例教学 (10) 3.3.1数学题的求解与反例的构造 (10) 3.3.2构造反例解题的应用举例 (10) 3.3.3反例在解决问题中的意义 (15) 4 小结 (15) 4.1数学中反例教学的功能 (15) 4.2反例教学的注意事项................................................................................................ 16

数学教学中的反例教学研究 作者陈颖指导教师梁英讲师 (湛江师范学院数学与计算科学学院,湛江 524048) 摘要:本文从概念教学、定理教学及解题教学三个方面,论述了反例教学的方法和作用。 关键词:反例;数学教学;概念教学;定理教学;解题教学 Study on the Counter Examples in Mathematical Teaching Chen Ying Mathematics and Computational Science School, Zhanjiang Normal College, Zhanjiang, 524048 China Abstract: Methods and effect of counter examples teaching are discussed from concept teaching, theorem teaching and problem-solving teaching. Key Words: counter example;mathematical teaching; concept teaching;theorem teaching;problem- solving teaching 1 研究背景 我们知道,《全日制数学义务教育课程标准(实验版)》中强调:“能够通过观察、实验、归纳、类比获得数学猜想,并进一步寻求证据、给出证明或举出反例”;“通过具体例子理解反例的作用,知道利用反例可以证明一个命题是错误的”,这表明反例的教学应始终贯穿于教师的教和学生的学的整体过程中. 1.1学生的数学学习现状 学生往往不够重视概念、定理中的条件和关键词,加上部分学生一直习惯被动学习,又或者学不得法,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,赶做作业,乱套题型.同时学生的认知水平和要求掌握的知识能力之间存在矛盾,倾向“题海战术”和“大运动量”重复训练,结果是事倍功半,收效甚微.从心理学角度来看,无论处于哪个年龄阶段的学生的自我认知都不够完全清晰、准确,应试教育的氛围容易导致学生的功利性过强,性格浮躁和对学习的目

高等代数在数学分析解题中的某些应用分析

高等代数在数学分析解题中的某些应用分析 摘要:作为高等教育的基础性课程,高等代数的内容会伴随整个大学时代的数学学习,但是由于它的内容比较抽象,因此它也是比较难的一门学科。通过对高等代数在数学分析题中的某些应用分析,进一步探讨高等代数不同的解题方法和思维方式,以期能够为提高学生解题能力提供建设性的意见与建议。 关键词:高等代数;数学分析;多项式 高等代数涉及多项式代数、矩阵代数、线性空间等方面,采用的是逻辑严谨的数学公理化方法,结构严密的程序化方法,很好地与古希腊教学思想结合在一起。但是,它也是学生的学习难点,也是教师较难教授的一门学科。虽然大学生较高中生而言活跃了许多,但是由于高等教育的自由度较大,老师学生几乎没有什么约束力,所以学生的听讲课率并不高,那么教学模式也仅仅局限于“教师提问,学生回答”这种言语交流活动中。当然很难锻炼学生的解题能力,也不利于学生今后的发展。 一、加强高等代数在数学分析题中应用的必要性 不同的数学解题方法会启发学生不同的思维能力会产 生不一样的教学效果。对于各种各样复杂的数学题,提倡不

同的解题方法是很有必要的。如果能够加强高等数学在数学解题分析中的应用,至少会产生以下两大好的效果。 1.有利于增强学生的主体地位 从小学以来,学生一直都是为了考试、升学而学习,变成了应试教育的工具。但是高等教育会给学生更多的自由空间,让学生有更多的权利来支配自己的时间与精力。在高等代数教学中培养学生的解题能力,在学生自主地学习、探讨过程中就能够充分展现他们的主体地位,而不再是被动地接受知识了。 2.有利于激发学生的创新思维 探索是创新的基础,只有带着问题去思考、去探索,才会有新的发现,否则便是无谓的思索。对于高等代数那种集数理性与逻辑性于一体的学科而言,教师简单地把概念性的东西传授给学生是不可以的,那样会使学生显得很被动,难以构建新的认知结构。长期以来,在应试教育的大背景下,数学教学中一直过分强调数学知识的系统性、严谨性和对学生的解题训练,却忽视了引导学生去学习了解数学思想和方法发生、发展的过程,数学课堂上缺少在现实情境中发现问题和解决问题的能力培养。这样的教学方式虽然培养了大批解题速度快、擅于解高难度题的学生,但是他们的实践能力和创新意识却不够。接受高等教育的学生即将面向社会,教学应该更加注重学生的主体意识以及所教知识的实践性。高

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

无穷极数中的几个典型反例

无穷极数中的几个典型反例 一、正项级数中比值判别法和根值判别法的反例 (1) 比值差别法: 例1: 1 (1) 3 n n ∞ =+-∑ 级数1 (1) 3 n n ∞ =+-∑ 发散,但极限1lim n n n u u +→∞ 并不存在 因为级数1 3 n ∞ =∑ 发散而级数1 (1)3 n n ∞ =-∑ 收敛。所以级数1 (1) 3 n n ∞ =+-∑ 发散。 而 11(1) n n n u u +++-= 11(1) lim lim n n n n n u u ++→∞ →∞ +-=并不存在。 当然,p-级数 ∑ ∞ =1 1n n p 也是一个典型的反例, 1lim n n n u u +→∞ =1,但当p>1时收敛; 1≤p 时,发散。 (2) 根值判别法: 例2: 1 (1)3n n n ∞ =? -??? ∑ 级数1 3n n ∞ =?? ∑ 收敛,但lim lim 3 n n →∞→∞ =并不存在。 (1)21 033n n n ? ???+-≤≤ ?? ? ???? ? 而113n n ∞ =?? ? ?? ? ∑收敛(公比小于1的等比级数)。 由比较判别法,1 (1)3n n n ∞ =?+-??? ∑ (1)3 n -= 是摆动数列。 故(1)lim lim 3 n n n →∞ →∞ -=不存在。 注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。 二、 交错级数中使用莱布尼兹差别法的反例

在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。 例3: 2 (1) n n ∞ =-∑ 1n u = 显而易见满足lim 0n n u →∞ =,而不满足。1(1,2,)n n u u n +≥= , 但作为任意项级数 (1)(1)1(1)111n n n n n u n n n ?---??= ==----- 由级数2 1 n n ∞ =-∑ 收敛,而级数2 11 n n ∞ =-∑ 发散知,级数2 n n ∞ =∑ 发散。 例4: n n n n ) 1(1) 1(2 -+-∑∞ = n n n n ) 1(1) 1(2 -+-∑∞ == 1 11 )1(1 ) )1(()1(2 2 2 -- --= ----n n n n n n n n , 根据莱布尼兹判别法易知交错级数∑ ∞ =--2 2 1 )1(n n n n 收敛,而∑ ∞ =-2 2 1 1n n 收敛,所以原级数 n n n n ) 1(1) 1(2 -+-∑ ∞ =是收敛的。 注:例3与例4都是不满足n n u u <+1的情况,不能使用莱布尼兹判别法直接判定。 三、 幂级数中的反例 有些同学认为,如果幂级数∑∞ =0 n n n x a 的收敛半径R ≠0,那么一定有 n n n a a 1lim +∞ →=L=1/R ,这是不对的,因为有可能n n n a a 1lim +∞ →不存在。 例5: 求幂级数∑ ∞ =-+1 2 ) 1(2n n n n x 的收敛半径

数学分析3.4两个重要的极限

第三章函数极限(下载后可解决看不到公式的问题) 4 两个重要的极限 一、证明:=1. 证:∵sinx

∴=e. 注:e的另一种形式:=e. 证:令a=,则当a→0时,→∞,∴==e. 例3:求. 解:==e2. 例4:求. 解:==. 例5:求. 解:<→e(n→∞),又当n>1时有 =≥→e(n→∞,即→0). 由迫敛性定理得:=e.

习题 1、求下列极限: (1);(2);(3);(4);(5);(6);(7);(8);(9);(10). 解:(1)==2; (2)==··=0; (3)== -1; (4)=·=1; (5)=== ====; (6)令arctan x=y,则x=tany,且x→0时,y→0, ∴===1; (7)==1; (8)==·2sin a =··2sin a= sin2a; (9)==8=8; (10)=== 2、求下列极限:

初中数学运用反例教学的案例分析

初中数学运用反例教学 的案例分析

初中数学运用反例教学的案例分析 一、数学反例的功能 数学反例贯穿于整个数学学习阶段,通过学习数学反例可加深学生对数学概念的理解:培养学生对数学知识归纳、提炼;还养成严密的逻辑思维能力和正确运用数学语言,通过学习数学反例可以提高学生作图技能.教学中恰当地利用反例,可以促进学生数学概念的形成、数学内涵的理解,使学生全面掌握数学知识,解决数学问题.除此之外,学会举反例,有助于学生形成批判意识,数学反例具有独特的教学功能。所以,在教学中既要重视解答数学命题的能力,又要加强数学反例的教学。 二、教学反例与课堂教学 1、几个相关定理 定理1:有两边及其中一边的对角对应相等的两直角三角形全等。 分析:在两直角三角形中,若已知两边对应相等.则这两边必是两直角边或斜边和一直角边,因此可由边角边公理或斜边直角边公理判定这两个三角形全等。 证明:略。 定理2:有两边及其中一边的对角对应相等的等腰三角形全等。 分析:在两个等腰三角形中,若有一角对应相等.易证另两角也分别对应相等。再由边角边公理可两三角形全等。 证明:略。 由定理1、2知,反例中的三角形一定不是直角三角形或等腰三角形。 定理3:在两三角形中,如果已知两边及其中一边的对角对应相等,则第三边上的高对应相等。 2、举反例有利于数学概念的形成和理解 概念的反例提供了最有利于辨别数学概念的信息,使人产生深刻印象,对概念认识的深化具有非常重要的作用.反例的适当使用不但可以使学生概念的理解更加精确,而且还可以排除无关属性的干扰.教师可以通过创设反例加深学生对概念实质的理解.比如在

初二学习函数定义时,“在某一变化过程中,存在两个变量x、y,当变量x在某一允许变化范围内任取一个值,通过某种对应法则,都有唯一的值y与之对应,则称y是x的函数,记作y=f(x),其中X叫做自变量,Y叫因变量”.表面上,同学们都认为这个定义不需要解释也能明白、理解,但我出了四个例子(其中二个是反例)让学生来比较判断,结果约有60%多的学生出现错误,是什么原因造成的呢?仔细分析下来,学生对上述定义中两处划线词语的理解不透,我们来简要分析这几个反例.答案(1)中,因为集合A中的元素1在集合B中有两个元素与之对应,不符合定义中的“唯一”,而答案(3)中的A集合中的元素3没有规定像,也不符合定义中的“任取”之要求,所以正确答案是(2)和(4)。 再比如判断命题“两条直线都平行于同一条直线,那么这两直线也相互平行”“两条直线都垂直于同一条直线,那么这两条直线相平行”对于这两个命题,要求学生从命题的条件和结论考虑,许多学生认为这两个命题都是正确的,事实上,第一个命题是正确的,但是第二个命题中还缺少一个大前提“在平面上”,否则结论显然是错误的,反例如图(2)直线a与直线b都垂直于直线c,但直线a与直线b不平行,这样同学们自然而然会对这条性质有了更深的认识。

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

反例在中学数学教学中的作用

毕业论文 题目反例在中学数学教学中的作用 学生姓名张栓学号1109014150 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(师范类)11级2班指导教师张琳 2015 年 5 月15 日

陕西理工学院毕业论文 反例在中学数学教学中的作用 张栓 (陕西理工学院数学与计算机科学学院数学与应用数学专业(师范类)11级02 班,陕西汉中 723000) 指导老师:张琳 [摘要]主要阐述反例在中学数学教学中的几点功能,应用反例进行教学时应注意的几个问题及反例的背景类型等方面的内容。在数学教学中利用反例可以有效的激发学生的求知欲,通过反例能使学生加深对基础知识的理解,反例不仅有助于学生全面正确的理解,掌握数学的基本概念和基本定理,而且是纠正错误,发现问题的重要途径。 [关键词]:反例中学数学教学作用 1 引言 在社会实践和学习过程中,人们都有这样一个经验,当你对某一问题苦思冥想而不得其解时,从反面去想一想,常能茅塞顿开,获得意外的成功。用逆向思维方法从问题的反面出发,可以解决用直接方法很难或无法解决的问题。它不仅是解决问题的有力手段,而且推动了数学的发展,开辟了数学领域的新天地。当一个数学问题被提出来后,它面临着两种抉择:一是根据已知的公理、定义、定理等经过一系列的正确推理,推证命题成立;一是从一些迹象判断该命题不成立,然后寻求一个满足命题的条件,但使结论不成立的例证,从而否定这个命题。后者即为通常所说的反例,重要的反例往往会成为数学殿堂的基石。 2 数学反例在中学教学中的应用背景 《数学新课程标准》的基本理念的核心内容有这样一条:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地观察、实验、猜测、验证、推理和交流等数学活动。内容的呈现应采取不同的表达方式以满足多样化的学习要求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、主动探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,数学学习活动应当是一个生动的、主动的和富有个性的过程。本条理念说明了要赋予数学学习活动以生命的活力,要发展学生的实践能力和创新精神。数学教育不能再单纯地依赖模仿与记忆,要转变过去封闭、被动、接受性的学习方式,倡导动手实践、自主探索与合作交流学习数学的重要方式。那么教师在教学过程中要凸显学习过程的探究性,应注重创设问题情境,引发矛盾

反例在数学分析中的应用毕业论文

本科毕业论文 题目:反例在数学分析中的应用学生姓名: 学号: 专业:数学与应用数学 班级: 指导教师: 二〇一年月

反例在数学分析中的应用 摘要: 数学分析是一门很重要的基础课程,对学生数学思想的形成,后继课程的学习都有着重要的意义。而在数学分析中存在很多定理命题,运用恰当的反例从另一个侧面抓住概念或规则的本质,进而更容易加深对知识的理解。反例思想是数学分析中的重要思想,在概念、性质的理解,问题的研究与论证中都具有不可替代的独特作用。恰当地运用反例,对于正确理解概念、巩固和掌握定理、公式、法则等,培养学生的逻辑思维能力,预防和纠正错误,将起着十分重要的作用。 关键词:数学分析反例数列极限微积分

Abstract: Mathematical analysis is an important basic course, it's very important to the formation of mathematical thought of students and learning of the following courses.However there are a lot of theorems and propositions, using appropriate counterexamples from another side can recognize the essence of concept or rules, and it’s easier to deepen the understanding of knowledge. The counterexample of thought is an important thought in Mathematical thought, and it plays an irreplaceable role in the understanding of the concept, nature and the research, reasoning of problems. To understand concepts correctly, Consolidate and master theorem, formula and rule, etc, train the logical thinking ability of students and prevent and correct errors, it’s necessary to use counterexamples felicitously. Key words: Mathematical Analysis Counterexample Series Limit Calculus

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

相关主题
文本预览
相关文档 最新文档