当前位置:文档之家› 干细胞移植与神经系统疾病的研究进展

干细胞移植与神经系统疾病的研究进展

干细胞移植与神经系统疾病的研究进展
干细胞移植与神经系统疾病的研究进展

中枢神经系统常见疾病资料

第五节中枢神经系统常见疾病 一、颅脑先天发育异常 【病理基础】颅脑先天畸形及发育异常是由胚胎期神经系统发育异常所致。分类方法很多,本节从诊断和鉴别诊断出发,按病变的解剖部位进行分类可分为中线部位的病变、神经皮肤综合征、神经元和脑回形成异常。 中线部位的病变:脑膜和脑膜脑膨出、胼胝体发育不良、chiari畸形、Dondy-Walker综合征、透明隔囊肿、透明隔缺如、胼胝体脂肪瘤等。神经皮肤综合征:结节性硬化、脑-三叉神经血管瘤病(sturge-weber 综合征)、神经纤维瘤等。 神经元和脑回形成异常:无脑回畸形、小脑回畸形、脑裂畸形、脑灰质异位。 【临床表现】轻者无明显临床表现。重者可有智力障碍、癫痫、瘫痪及各种神经症状体征,容易伴有其他器官和组织发育异常和疾病。【影像学表现】 1、脑膜和脑膜脑膨出:CT和MRI表现颅骨缺损、脑脊液囊性肿物或软组织肿物、脑室牵拉变形并移向病侧。 2、胼胝体发育不良:CT和MRI表现两侧侧脑室明显分离,侧脑室后角扩张,第三脑室上移,插入两侧脑室之间。可伴有其他发育畸形如胼胝体脂肪瘤、多小脑畸形等。 3、chiari畸形:小脑扁桃体向下延伸至枕骨大孔平面以下5mm以上,邻近第四脑室、小脑蚓部及脑干位置形态可正常或异常,常伴有脊髓

空洞症和Dondy-Walker综合征。 4、Dondy-Walker综合征:在MRI矢状面后颅凹扩大,直窦和窦汇上移至人字缝以上,小脑发育不全等,并发脑积水。 5、无脑回畸形:CT和MRI均显示大脑半球表面光滑,脑沟缺如,侧裂增宽,蛛网膜下腔增宽,脑室扩大。 6、脑裂畸形:脑皮质表面与侧脑室体部之间存在宽度不等的裂隙,裂隙两旁有厚度不等灰质带。 7、脑灰质异位:CT和MRI均见白质区内异位灰质灶,多位于半卵圆中心,并发脑裂畸形。 8、结节性硬化:CT表现为两侧室管膜下或脑室周围多发小结节状钙化。 9、脑-三叉神经血管瘤病(sturge-weber综合征):CT和MRI表现病侧大脑半球顶枕区沿脑沟脑回弧条状钙化。伴有脑发育不全和颅板增厚。 10、神经纤维瘤病:CT和MRI表现颅神经肿瘤(听神经、三叉神经和颈静脉孔处),常并发脑脊髓肿瘤、脑发育异常和脑血管异常。二、颅脑损伤 (一)脑挫裂伤(contusion and laceration of brain) 【病理基础】脑外伤引起的局部脑水肿、坏死、液化和多发散在小出血灶等。可分为三期 1、早期:伤后数日内脑组织以出血、水肿、坏死为主要变化。 2、中期:伤后数日至数周,逐渐出现修复性病理变化(瘢痕组织和

神经系统疾病习题

1、周围性面瘫与中枢性面瘫鉴别的依据为: A.是否口角歪斜 B.是否鼻唇沟变浅 C.能否皱额、闭目 D.能否鼓腮 E.能否吹口哨 答案:C 2、患者右侧额纹消失,右侧眼睑不能闭合,右侧鼻唇沟变浅,露齿时口角偏向左侧,可能是 A.左侧中枢性面瘫 B.右侧中枢性面瘫 C.左侧周围性面瘫 D.右侧周围性面瘫 E.双侧周围性面瘫 答案:D 3、患者鼻唇沟变浅,右侧口角下垂,闭眼、皱眉动作正常,两侧额纹正常 A.双侧周围性面瘫 B.右侧周围性面瘫 C.左侧周围性面瘫 D.右侧中枢性面瘫 E.左侧中枢性面瘫 答案:E 4、瘫痪是指: A.随意运动肌力减弱或消失 B.肌紧张力减弱或消失 C.不自主运动肌力减弱或消失 D.肌肉运动能力消失 E.肌肉与肌腱运动不协调 答案:A 5、根据哪项临床表现区别中枢性瘫痪和周围性瘫痪 A.肌力大小 B.有无感觉障碍 C.有无病理反射 D.有无大小便障碍 E.有无感觉过敏

答案:C 6、关于上运动神经元瘫痪的表现,哪项是错误的 A.瘫痪分布以整个肢体为主 肌张力减低B. C.腱反射增强 D.病理反射阳性 E.可有废用性肌萎缩 答案:B 7、眶上神经反应及各种反射均存在,属于哪种意识障碍? A.深昏迷 B.昏睡 C.浅昏迷 D.嗜睡 E.中度昏迷 答案:C 8、整日处于睡眠状态,但呼之能应属于哪种意识障碍? A.深昏迷 B.昏睡 C.浅昏迷 D.嗜睡 E.中度昏迷 答案:D 9、鉴别深浅昏迷程度的可靠指征是 A.生命体征 B.瞳孔对光反射 C.肌力 D.腱反射 E.对疼痛的反应 答案:E 10、某患者突起昏迷,四肢瘫痪,双侧瞳孔“针尖样”缩小。最可能是: A.蛛网膜下腔出血 B.基底节出血 C.小脑出血 D.额叶出血

干细胞治疗神经系统疾病的机理

干细胞治疗神经系统疾病的机理 神经系统疾病,诸如脑外伤、脑梗塞、脑出血、脊髓外伤、脑瘫、运动神经元病等疾病,大多是由于各种病因引起的神经细胞的变性或坏死所导致的感觉或运动功能异常,这类疾病严重影响着患者及其家属的正常工作和生活质量。因为人体神经细胞是不可再生的,常规治疗往往难以奏效。干细胞移植可以通过两种途径进行神经损伤修复: 1、移植的干细胞可以自我分辨并迁移到损伤的神经部位,通过细胞替代作用更换机体已经死亡或受损伤的神经细胞,修复受损神经网络; 2、中枢神经系统(包括脑和脊髓)损伤后,损伤中心周边的大量神经细胞虽然健存,但受到损伤的影响,转入休眠或功能抑制状态。移植的干细胞可以分泌大量神经营养因子,激活这些神经细胞,从而改善机体的神经功能。 移植治疗疗程

患者需到医院做必要的检查,在排除了干细胞移植的禁忌症后,临床专家会制订个性化的干细胞移植治方案。然后在本中心符合国际标准的实验室制备干细胞,接着按照治疗方案,医生在专门的移植治疗室选择静脉、腰穿、介入或局部种植等途径将干细胞移植到患者体内。在移植后几个星期内,患者一般不会感受到明显的进步,但也有部分患者显现疗效会早一些,大约两个月左右或更长点的时间,患者一般都会有程度不同的缓解或改善。通常情况下,患者每周接受一次干细胞移植治疗,一个疗程四次,需要住院约一个月时间。 不良反应及风险 任何一种治疗手段都可能会伴随一定的副作用,所以我们无法完全排除不良反应的发生,但是迄今为止,和平医院及国内外几十家协作单位还未发现严重的不良反应。干细胞移植治疗的风险与常规治疗和普通手术相似,也就是说,干细胞移植治疗不会给患者增加额外的医疗风险。

第章线粒体遗传与线粒体疾病

第十三章线粒体疾病 广义的线粒体病(mitochondrial disease)指以线粒体功能异常为主要病因的一大类疾病。除线粒体基因组缺陷直接导致的疾病外,编码线粒体蛋白的核DNA突变也可引起线粒体病,但这类疾病表现为孟德尔遗传方式。目前发现还有一类线粒体疾病,可能涉及到mtDNA 与nDNA的共同改变,认为是基因组间交流的通讯缺陷。通常所指的线粒体疾病为狭义的概念,即线粒体DNA突变所致的线粒体功能异常。 第一节疾病过程中的线粒体变化 线粒体对外界环境因素的变化很敏感,一些环境因素的影响可直接造成线粒体功能的异常。例如在有害物质渗入(中毒)、病毒入侵(感染)等情况下,线粒体亦可发生肿胀甚至破裂,肿胀后的体积有的比正常体积大3~4倍。如人体原发性肝癌细胞癌变过程中,线粒体嵴的数目逐渐下降而最终成为液泡状线粒体;缺血性损伤时的线粒体也会出现结构变异如凝集、肿胀等;坏血病患者的病变组织中有时也可见2到3个线粒体融合成一个大的线粒体的现象,称为线粒体球;一些细胞病变时,可看到线粒体中累积大量的脂肪或蛋白质,有时可见线粒体基质颗粒大量增加,这些物质的充塞往往影响线粒体功能甚至导致细胞死亡;如线粒体在微波照射下会发生亚微结构的变化,从而导致功能上的改变;氰化物、CO等物质可阻断呼吸链上的电子传递,造成生物氧化中断、细胞死亡;随着年龄的增长,线粒体的氧化磷酸化能力下降等等。在这些情况下,线粒体常作为细胞病变或损伤时最敏感的指标之一,成为分子细胞病理学检查的重要依据。

第二节线粒体疾病的分类 根据不同的角度,线粒体疾病可以有不同的分类。从临床角度,线粒体疾病主要涉及心、脑等组织器官或系统;从病因和病理机制角度,线粒体疾病有生化分类和遗传分类之别。 一、生化分类 根据线粒体所涉及的代谢功能,线粒体疾病可分为以下5种类型:底物转运缺陷、底物利用缺陷、Krebs循环缺陷、电子传导缺陷和氧化磷酸化偶联缺陷(表13-1)。 表13-1 线粒体疾病的生化分类 二、遗传分类 根据缺陷的遗传原因,线粒体疾病分为核DNA(nDNA)缺陷、mtDNA缺陷以及nDNA和mtDNA联合缺陷3种类型(表13-2)。 表13-2 线粒体疾病的遗传分类

活化蛋白-1在神经系统疾病中的研究进展

2017年2月第43卷第1期 现代临床医学JOURNALOFMODERNCLINICALMEDICINE Feb. 2017 Vol. 43 No. 1 活化蛋白L在神经系统疾病中的研究进展 张益梅,李经伦 (西南医科大学附属第一医院神经内科,四川泸州 646000)【摘要】活化蛋白-1(AP-1)是一类二聚体的反式调节因子,其作用十分广泛,对细胞的增殖、存活和凋亡等重要生理过程具有调控作用。许多体内外实验均证实,A P-1与脑血管疾病、神经退行性疾病、癫痫和脑胶质瘤等神经系统常见疾病有密切联系。本文就AP-1的组成、调节及其与以上疾病的关系作简要综述。 【关键词】活化蛋白L ( AP-1 )$c-Jun$ JNK$信号传导 【中图分类号】R741.02 【文献标识码】A DOI: 10. 11851/j. issn. 1673-1557. 2017. 01. 002 优先数字出版地址:http://www. cnki. net/kcmKdetail/51. 1688. R. 20170111.1123.004. html 活化蛋白-1(activated protein-1,AP-1)是一*类重要 的真核细胞转录因子,是诸多细胞信号传导途径在细 胞核内的交汇点,有细胞内信号传导的第三信使之称,是基因转录调控的分子开关,能与许多基因上的AP-1位点结合,启动多种与细胞分裂和增殖相关基因的转 录,参与细胞的增殖、分化和凋亡等过程。 1AP-1的组成 AP-1是一个集体名词,主要由Jun蛋白卜-(<、^ Jun、Jun-B、Jun-D)、Fos 蛋白(v-fos、c-fos、Fos-B、F r1、Fra2 )、激活转录因子(activatingtranscription factor, ATF;包括 ATF2、ATF3//RF1、B-ATF)、Jun 二聚化伴 侣(JDP1、JDP2 )*1]、Maf蛋白(v-Maf、c-Maf、NT)家族 组成的同源或异源二聚体[2]。在不同细胞中AP-1的组成不同。这些蛋白都属于亮氨酸拉链蛋白,它们的 一级结构都具有一个保守的亮氨酸拉链(leucine ip p e T结构,即蛋白质分子肽链上每7个氨基酸重复 出现一个亮氨酸残基,这些亮氨酸残基都在!螺旋同 一个方向上出现,两个相同结构的两排亮氨酸残基能 以疏水键结合成二聚体,通过这一特殊结构家族间或 不同家族成员相互作用,形成不同的二聚体。Jun蛋 白和ATF蛋白可形成同源二聚体,Jun蛋白的结构高 度同源,其除了可形成同源二聚体外,还可与AP-1家 族的其他蛋白ATF和FoS蛋白结合形成更稳定的异源 二聚体。Jun同源和Jun-Fos异源二聚体识别相同的 DNA结合位点,B L!TPA反应元件(其序列为TGAG/ CTCA),Jun-ATF异源二聚体和A T F同源二聚体识别 称为CR E的序列(TGACGTCA)[3],Fos蛋白、Maf蛋 白则不能形成同源二聚体,Maf蛋白只与c-fos形成异 源二聚体,而不能结合c-un。在哺乳动物体内,AP-1的主要成分是Jun和Fos。单独的c-Jun和c-fos是没有生物学功能的。Jun蛋白可以形成同源二聚体,亦 可与Fos或Fras形成更加稳定的异源二聚体,而Fos 则只能与Jun形成异源二聚体,故可以用C-Jun蛋白的 表达量来反映AP-1的表达[4]。不同的二聚体形式,其 稳定性及与DNA的结合能力不同,在静息状态下,AP-1的分子结构以c-Jun同源二聚体为主,当细胞受到佛 波醋(TPA)、血清、生长因子、细胞因子、神经递质和紫 外线等刺激时,c-u n和C-fo s的表达水平增高,此时 AP-1以c-Jun、c-fos异源二聚体的形式存在,此形式较 c-Jun同源二聚体稳定,且与DNA连接和诱导转录能 力也大大增强。 2 AP-1的调节 AP-1的活性调节十分复杂,包括自身组分的差异 表达、转录水平调节、翻译后调节及与其他癌蛋白和辅 助蛋白相互作用的调节,其中翻译后调节是AP-1的主 要调节方式[5]。自身组分的差异表达是对其功能最基 本的调节。AP-1成员之间存在着相互促进或拮抗作 用。c-Jun是AP-1的主要成分,如前所述,它可通过亮 氨酸拉链与其他蛋白形成复合物,如Jun-B、Jun-D、ATF家族成员,不同的组合其作用不尽相同。在某些 情况下,Jun-B可与Jun、Fos或Fos-B形成非活化的异 源二聚体,通过竞争与AP-1位点的结合来抑制AP-1的活化,Jun-B表现出抑制c-Jun的活性效应,而Jun-D 对c-un具有一定的增强作用。许多细胞外信号主要 通过控制构成AP-1成分蛋白的转录,从而调控AP-1白的 量 及转 录 因性。AP-1 的 调 主要是磷酸化调控。转录因子在磷酸化水平的调控主 要有3类:一是调控胞核移位。这类转录因子包括 NF-B、NF-A T等;二是调控其DNA结合能力,转录因 子被磷酸化后其DNA的结合能力可表现为增强(如 通信作者:李经伦,ljl031611@163. com 7

神经病学题库(第八章 中枢神经系统脱髓鞘疾病)(内容参考)

第八章中枢神经系统脱髓鞘疾病 一、选择题 【A型题】 1.下列哪项不是脱髓鞘疾病常见的病理改变: A.神经纤维髓鞘破坏 B.病变分布于中枢神经系统白质 C.小静脉周围炎性细胞浸润 D.神经轴索严重坏死 E.神经细胞相对完整 2.下列哪项与多发性硬化发病机制无关: A.病毒性感染 B.自身免疫反应 C.环境因素如高纬度地区 D.血管炎导致缺血 E.遗传易感性 3.多发性硬化最常见的临床类型是: A.复发-缓解型 B.继发进展型 C.原发进展型 D.进展复发型 E.良性型 4.女性,24岁,一年前疲劳后视力减退,未经治疗约20余日好转,近1周感冒后出现双下肢无力和麻木,2日前向右看时视物双影。最可能的诊断是:

A.球后视神经炎 B.重症肌无力 C.多发性硬化 D.脑干肿瘤 E.脊髓压迫症 5.一青年,7个月前因轻截瘫诊断急性脊髓炎住院治疗,2周后基本痊愈;近20天来感觉四肢发紧、阵发性强直伴剧烈疼痛,用芬必德无好转,入院时查头部MRI及BAEP、SEP和VEP均正常。对确诊多发性硬化最有价值的是: A.脑电图检查 B.CSF-IgG指数增高和寡克隆IgG带(+) C.检查发现有感觉障碍平面 D.Lhermitte征(+) E.脊髓MRI检查 6.男性,40岁,因感冒半月后出现性情改变如欣快、暴躁和猜疑,以及EEG弥漫性慢波,以脑炎诊断住院20天,经治疗病情明显好转,准备3日后出院。但患者病情反复,新出现下列哪种情况更应考虑MS: A.视力减退并排除眼科疾病 B.局灶性癫痫发作 C.查到感觉障碍 D.双侧Babinski征(+) E.头颅MRI检查有信号异常 7.一中年患者因感冒半月后出现眼球震颤、声音嘶哑、共济失调和平衡障碍。最不可能的疾病是: A.脱髓鞘脑炎 B.多发性硬化 C.Fisher综合征 D.橄榄桥脑小脑萎缩(OPCA)

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

自噬与神经系统疾病研究进展

基金项目:浙江省自然科学基金(Y2080132)。收稿日期:2009-09-10;修回日期:2009-11-09 作者简介:潘婕(1985-),女,在读硕士研究生,主要从事神经系统疾病的研究。通讯作者:罗本燕(1962-),女,博士,教授,主任医师,主要从事神经变性疾病、神经心理学、脑血管病的研究。 自噬与神经系统疾病研究进展 潘婕,汪敬业 综述 罗本燕 审校 浙江大学医学院附属第一医院,浙江省杭州市 310003 摘 要:自噬是细胞内降解/再循环系统,被称为II 型程序性细胞死亡。近年来研究表明自噬广泛参与神经系统发育以 及脑缺血、痴呆、帕金森病等神经系统重大疾病的发生与发展,但在自噬对神经细胞死亡的作用上还存在较大争议。本文就自噬与神经系统疾病的关系研究进展加以综述,从而有助于今后深入探索自噬在神经系统疾病中的功能并开辟神经系统疾病新的治疗方向。 关键词:自噬;神经系统疾病;细胞死亡 自噬是40多年前学者在电镜下观察到的一种细胞结构,然而,直到最近几年科学家才逐渐认识到自噬的重要功能,尤其是2005年5Sc i ence 6杂志将细胞自噬评为该年度六大科技热点研究之首,自噬相关研究得以迅速进展。自噬通过降解细胞内小分子物质、细胞器或细胞膜,一方面帮助细胞清除受损伤或衰老的细胞器、不再需要的生物大分子以及细胞内异物;另一方面也为细胞内细胞器的构建提供原料,即细胞结构的再循环;同时在应激或饥饿时尚能为细胞提供生存必须的营养物质以帮助细胞度过难关。自噬的过度发生也可诱导细胞发生程序性死亡,被称为II 型程序性细胞死亡,参与多种疾病的发生发展 [1] 。近年来自噬在神经 系统领域的研究成果丰硕,这使我们对其在某些重大疾病中的作用有了更加深入的认识,但这些研究的结果并不一致,自噬在神经细胞死亡上是起保护作用还是促进作用尚存在较大争议。本文试图全面综述该领域的最新研究进展,以期为今后更加深入探索自噬在神经系统中的功能提供参考。1 自噬概况 真核生物中自噬根据待降解物被转运到溶酶体内的途径不同分为大自噬(m acroautopha gy)、小自噬(m icr oa utophagy )以及分子伴侣介导的自噬(c ha peron 2mediate d autophagy,C MA )3种,通常所说的自噬即大自噬。自噬发生需要众多分子的参与,如自噬相关基因(aut ophagy 2rel ated gene ,Atg)、微管相关蛋白轻链3(m icrot ubule 2associate d protei n li ght c ha i n 3,LC3)等。 2 自噬与神经系统退行性疾病 神经系统退行性疾病的发生与异常蛋白的聚集密切相关,而自噬参与细胞内大分子和细胞器的降解从而维持正常的细胞代谢和生理功能,在对Atg5[2] 以及A t g7 [3] 基因敲除的研究中均发现脑内 大量神经元出现退变而死亡,并产生行为学损害。从而提出自噬在神经退行性疾病中可能扮演了极为重要的角色,且随着研究的深入蛋白异常聚集的具体机制也得以逐渐阐明。2.1 帕金森病 A 2突触核蛋白(A 2synuclei n )是帕金森病(Par 2ki nson .s di sease ,PD )的重要致病蛋白。研究发现,a 2synuclein 与溶酶体相关膜蛋白2(l ysoso m e 2associ 2ated m e mbra ne pr ote i n 22,LA MP 22)有高度的亲合性,但a 2synuclei n 并不能通过C MA 途径转运至溶酶体内降解,这种高亲合性反而促进了a 2synuclein 以及其它蛋白的聚集 [4] 。除此之外,a 2synuclei n 修饰改 变也与PD 发生相关。M arti nez 2V icente 等[5] 研究发 现修饰抑制了a 2synuclei n 通过C MA 途径降解,但并不抑制其他蛋白的降解,而经多巴胺处理后的a 2synuclein 在抑制自身降解同时也促进了其他蛋白的异常聚集,这提示多巴胺抑制自噬可能造成多巴胺神经元选择性死亡而产生P D 。肌细胞增强因子2D (MEF 2D )通过与H sc70结合发挥正常功能是维持神经元存活的关键,Yang 等 [6] 研究发现A 2sy 2 nuclei n 转基因小鼠以及P D 患者神经元内MEF 2D

常见神经系统疾病的诊断

常见神经系统疾病的诊断 1.重症肌无力:是一种神经肌肉接头传递障碍的获得性自身免疫性疾病,病变 部位在神经肌肉接头的突触后膜,该膜上的AchR受到损害后,受体数目减少。主要临床表现为骨骼肌极易疲劳,活动后症状加重,休息和应用胆碱酯酶抑制治疗后明显减轻。 发病机制:神经肌肉接头的突触后膜乙酰胆碱受体被自身抗体攻击而引起的自身免疫性疾病。 临床表现: a.发病年龄:两个高峰:20-40、40-60 b.无明显诱因,隐袭起病,呈进展性或缓解与复发交替性发展,部分严重者呈 持续性。发病后2-3年可自行缓解,仅表现为眼外肌麻痹者可持续3年左右,多数不发展至全身肌肉。 c.全身骨骼肌均可受累,但在发病早期可单独出现眼外肌、喉部肌肉无力或肢 体肌无力,颅神经支配的肌肉较脊神经支配的肌肉更容易受累,常从一组肌群无力开始,逐步累及到其他肌群。 d.骨骼肌易疲劳或肌无力呈波动性,肌肉持续收缩后出现肌无力甚至瘫痪,休 息后症状减轻或缓解,晨轻暮重现象。 一侧或双侧眼外肌麻痹:上睑下垂、斜视、复视、眼球固定 面部肌肉或口咽肌麻痹:表情淡漠、苦笑面容;连续咀嚼无力、进食时间长、说话带鼻音、饮水呛咳、吞咽困难。 胸锁乳突肌和斜方肌麻痹:颈软、抬头困难、转颈耸肩无力。 四肢肌受累以近端为重,表现为抬臂、梳头、上楼梯困难。 注意: 1.腱反射通常不受影响,感觉正常。 2.呼吸肌受累出现呼吸困难者为重症肌无力危象,是本病致死的直接原因。 3.首次采用抗胆碱酯酶药物治疗都有明显的效果,这是本病的特点。 e.肌无力危象:早期迅速恶化或进展过程中突然加重,出现呼吸困难,以致不能维持正常的换气功能时,称重症肌无力危象。 1.肌无力危象:疾病发展严重的表现,注射新斯的明明显好转。 2.胆碱能危象:抗胆碱酯酶药物过量引起的呼吸困难,之外常伴有瞳孔缩小、汗多、唾液分泌增多等药物副作用现象。注射新斯的明后无效,症状反而更加重。 3.反拗性危象:在服用抗胆碱酯酶药物期间,因感染、分泌、手术等因素导致患者突然对抗胆碱酯酶药物治疗无效,而出现呼吸困难;注射新斯的明后无效,也不加重症状. f辅助检查: 疲劳试验:适用于病情不严重者,尤其是症状不明显者,眨眼30次;两臂持续平举;持续起蹲10-20次。 新斯的明实验:1.5mg新斯的明,0.5mg阿托品; 神经肌肉电生理检查; 重复神经电刺激(RNES):典型改变为低频(2-5HZ)和高频(>10HZ)重复刺激运动神经时,若出现动作电位波幅的递减,且低频刺激递减在10%-15%以上,高频刺激递减在30%以上则为阳性,(检查前停服康胆碱酯酶药物12-18小时)否则可出现假阴性。

间充质干细胞在神经系统疾病中的应用

间充质干细胞在神经系统疾病中的应用 标签:间充质干细胞;神经系统疾病;应用 间充质干细胞(Mesenchymal stem cells,MSCs)是一种中胚层发育的早期细胞,为重要的多潜能干细胞,主要存在于全身结缔组织器官中,具有多向分化的潜能。可分化为中胚层起源的多种组织细胞,如成骨细胞、软骨细胞、脂肪细胞等;在适宜条件下也可跨组织分化为神经细胞等,并具有相应功能。本文主要对近年来MSCs在神经系统疾病治疗中的潜在作用作一综述。 1 基因治疗帕金森综合征 很多体内实验证实,骨髓间充质干细胞(Bone Marrow Mesenchymal stem cells,BMSCs)较易导入外源性基因并可实现体内高效长期表达,在神经系统疾病治疗中的研究尤为深入,特别是对帕金森综合征(Parkinson’s disease,PD)模型的研究。Lu等[1]将络氨酸羟化酶(T yrosine Hydroxylase,TH)基因由腺病毒相关病毒载体介导入MSCs中,筛选TH基因阳性的克隆移植入PD模型鼠内,6周后取脑组织做免疫组化染色,利用高效液相色谱仪及电子化学检测法检测TH基因的表达。研究结果显示,MSCs迅速增加并分化为成纤维细胞,TH的基因表达水平与无MSCs移植对照组有显著性差异。纹状体内多巴胺的水平明显升高,提示TH_MSCs能有效转移和表达多巴胺合成中的限速酶_TH基因,从而在纹状体内产生多巴胺。这种方法可刺激PD患者脑组织局部生成多巴胺,改善神经症状,显示了一定的临床应用前景。 2 MSCs移植治疗脑梗死 MSCs移植治疗神经系统疾病研究最多的是脑梗死。脑梗死通过常规治疗仍有一半乃至一半以上的存活者遗留瘫痪、失语等严重残疾。寻找能从组织结构上修复坏死神经元方法意义重大,MSCs移植治疗是前景光明的研究方法。MSCs 移植的动物实验的移植途径方法主要有[ 2]:立体定位直接注射法、经颈动脉灌注、经蛛网膜下腔注射及经外周静脉注射法等。Li等[ 3]对比研究直接注射至纹状体周围和经静脉移植的效果,发现经颈静脉移植BMSCs组的病灶区表达神经元标志的细胞是直接注射至纹状体的8倍。但是经静脉移植BMSCs可能仍存在肝脏的首过代谢,而且通过肺循环也会损失一定数量的细胞,如果增加细胞浓度又可能导致静脉血栓。Willing等[4]通过股静脉和直接注射脐血MSCs后发现治疗效果明显高于未接受移植动物组,并证明静脉注射细胞与直接将细胞移植到纹状体效果相当,且前者损伤小。 将预先标记好的BMSCs移植到大鼠大脑中动脉闭塞侧脑内,对移植前后分别进行行为学和神经功能缺损评分。最终发现植入细胞优先迁移到缺血皮质,实验组动物行为学和神经功能明显改善[3]。来自动物实验的证据表明,MSCs移植后可在中枢神经内存活、移行、与宿主整合、分化为神经细胞并促进脑功能恢复,为临床应用MSCs治疗脑缺血提供了更可靠依据。有报道[5]将绿色荧光蛋

干细胞在神经系统疾病治疗中应用

干细胞在神经系统疾病治疗中应用 李林 生物技术专业2013级创新班学号:222013********* 摘要:神经系统疾病是一项严重影响人类生活质量的疾病。近年随着对干细胞及其 技术研究的深入,干细胞已成为神经系统疾病治疗的一项十分有潜力的新方向。虽 然从实验室向临床应用转变过程中还存在一些问题,但是就先目前而言已经取得许 多可喜的成果。 关键词:干细胞治疗;神经系统疾病;应用 干细胞(Stem cell,SC)是人体及其各种组织细胞的最初来源,具有高度自我复制、高度增殖和多向分化的潜能。根据个体发育过程中出现的先后次序,干细胞可分为胚胎干细胞(ESCs)和成体干细胞(ASCs)。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透,干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究已成为生命科学中的热点。中国证券网讯11月18日从科技部获悉,日前,科技部发布国家重点研发计划试点专项2016年度第一批项目申报指南的通知。通知指出,科技部、财政部、发展改革委会同相关部门启动“干细胞及转化研究”等6个试点专题。随着干细胞研究的深入,它自我更新并多向分化的潜能已引起人们广泛重视,被陆续应用到神经、血液、内分泌、骨骼、消化、循环、眼、呼吸、皮肤等各系统及肿瘤疾病的治疗中。本文则对干细胞在治疗神经系统疾病中的研究进行了一定的综述。 1.干细胞与阿尔茨海默病 阿尔茨海默病(AD)是痴呆的最常见原因之一,临床表现为进行性记忆和认知能力下降等,其主要病理改变是神经细胞之间存在大量的老年斑和神经元纤维缠结所致,临床治疗较为棘手。只有10%~15%的患者是遗传的,绝大多数患者是散发病例。 Wu等将rAAV-2病毒转染hNGF因子的神经干细胞注入模型鼠脑内(此模型通过注射黑软海绵素a入模型鼠的侧脑室内而获得),发现这种神经干细胞能存

第十三章 线粒体疾病

第十三章线粒体疾病 一、教学大纲要求 1.掌握线粒体DNA突变的主要类型。 2.熟悉线粒体疾病的分类。 3.了解主要的线粒体疾病的遗传学机理。 4.了解核DNA与线粒体疾病的关系。 二、习题 (一)A型选择题 1.狭义的线粒体病是 A.线粒体功能异常所致的疾病B.mtDNA突变所致的疾病 C.线粒体结构异常所致的疾病D.线粒体数量异常所致的疾病 E.mtDNA数量变化所致的疾病 2.点突变若发生于mtDNA rRNA基因上,可导致 A.呼吸链中多种酶缺陷B.电子传递链中某种酶缺陷 C.线粒体蛋白输入缺陷D.底物转运蛋白缺陷 E.导肽受体缺陷 3.常见的mtDNA的大片段重组是 A.插入B.重复C.易位D.缺失E.倒位 4.mtDNA大片段的缺失往往涉及 A.多个A TPase8基因B.多个ND基因C.多个tRNA基因 D.多个rRNA基因E.多个多种基因 5.Leber遗传性视神经病患者最常见的mtDNA突变类型是 A.G14459A B.G3460A C.T14484C D.G11778A E.G15257A 6.与增龄有关的mtDNA突变类型主要是 A.点突变B.缺失C.重复D.nDNA突变E.基因组间交流缺陷 7.线粒体脑肌病的特征是 A.肌纤维中呼吸链酶活性正常B.肌纤维中呼吸链酶活性缺陷C.中枢神经系统呼吸链酶活性缺陷D.呼吸链酶活性正常的神经细胞与酶活性缺失的神经细胞混合E.呼吸链酶活性正常的肌纤维与酶活性缺失的肌纤维混合 8.mtDNA突变诱导糖尿病的机制可能是 A.β细胞不能感受血糖值B.糖原异生降低C.脂肪细胞增殖分化失控D.β细胞稳定性增高E.细胞中8-OH-dG含量增多 (二)X型选择题 1.mtDNA突变类型包括 A.缺失B.点突变C.mtDNA数量减少D.插入E.重复2.与线粒体功能障碍有关的疾病是 A.肿瘤B.帕金森病C.Ⅱ型糖尿病D.白化病E.苯丙酮尿症

神经系统疾病常见症状Word版

神经系统疾病常见症状 意识障碍 意识障碍——???—意识模糊、谵妄。 —意识内容变化—嗜睡、昏睡、昏迷。—意识觉醒度下降 一、 以觉醒度改变的意识障碍: A 、 嗜睡。 B 、 昏睡。 C 、 昏迷: a 、 浅昏迷。 b 、中昏迷。 c 、 深昏迷——瞳孔散大,生命征明显改变。 大脑和脑干功能丧失——脑死亡。标准: 1、对外界无反应,脊髓反射可存在。 2、脑干反射消失,瞳孔散大固定。 3、自主呼吸停止。 4、脑电图显示无脑电活动,体感诱发电位示脑干功能丧失。 5、TCD ——无脑血流灌注。 6、经各种抢救无效,时间持续≥12小时。 7、 除外药源性、内分泌性、中毒性、低温的原因。 二、 以意识内容改变的意识障碍: 1、意识模糊:注意力下降、反应淡漠、定向力下降、活动下降、语言受损。 2、 谵妄(急性所致):对外界的认识和反应下降,伴幻觉,波动性症状。 三、 特殊类型的意识障碍: 1、去皮质综合症: 双侧大脑皮质广泛受损——对外界无反应、眼球仅无意识活动、睡眠周 期存、脑干反射存。 2、无动性缄默症: 脑干上部丘脑网状激活系统障碍——肌张力下降、无锥体束征、睡眠周 期存、外界无反应。 3、植物状态: A 、 大脑半球严重受损+脑干功能保存:反射性睁眼、睡眠周期存、脑干 反射存、外界无反应。 B 、 持续植物状态:脑外伤——植物持续状态(≥12月),其它原因的则 为≥3月。 四、 鉴别诊断: 1、闭锁综合症: 脑桥基底部障碍:双侧锥体束、皮质脑干束障碍——意识清楚、仅能眨 眼、眼球垂直运动示意,不能水平运动。

2、意志缺乏症: 双侧额叶障碍——清醒状态,但无始动性、不语少动、额叶释放反射。 3、木僵: 精神障碍——伴有蜡样屈曲、违拗症、情感性自主神经改变。 五、伴发不同症状和体征意识障碍的病因诊断: 认知障碍 认知:外界信息——加工处理——心理活动——获取知识or应用知识。 认知包括:记忆、语言、视空间、执行、计算、理解、推断。 一、记忆障碍: A、瞬时记忆≤2秒。 B、短时记忆≥1分钟。 C、长时记忆。 根据长时记忆分: A、遗忘:a、顺行性。b、逆行性。c、系统成分性。d、选择性。e、暂 时性。 B、记忆减退:指识记、保持、回忆、再认均减退。 C、记忆错误:a、记忆恍惚——似曾相识。b、错构——在时间顺序上 错构。c、虚构。 D、记忆增强:指对远事记忆异常性增加。 二、失语: 包括:自发说话、听理解、复述、命名、阅读、书写。 根据解剖-临床来分类: (一)、外侧裂周围失语:共同特点均有复述障碍。 1、Broca失语: 优势额下回后部——自发性说话障碍为主,仅简单的句式or词,其 他各方面均有障碍。 2、Wernicke失语: 优势颞上回后部——听理解障碍,言语增多,词不达意,其它各方面 均有障碍。 3、传导性失语: 优势缘上回、Wernicke——外侧裂周围弓状束障碍——Wernike区与 Broca区联系障碍——言语流利、大量错词、句式完整、听理解障碍 较轻、其它各方面亦受损、复述障碍最重。 (二)、经皮质性失语综合症:共同特点:复述相对保留。 1、经皮质运动性失语: 优势额叶分水岭区障碍——优势Broca附近or优势额叶侧面——类 似于Broca失语,但较Broca失语轻。 2、经皮质感觉性失语: 优势颞顶叶分水岭区障碍——优势Wernike区附近——类似于 Wernike,较Wernike轻。

神经干细胞在神经系统疾病中的研究应用进展

中国组织化学与细胞化学杂志 CHINESE JOURNAL OF HISTOCHEMISTRY AND CYTOCHEMISTRY 第27卷第6期2018年12月 V ol .27.No .6December .2018 〔收稿日期〕2018-10-10 〔修回日期〕2018-12-03 〔基金项目〕 重庆市基础与前沿研究计划项目(CSTC2014j -cyjA10077) 〔作者简介〕牟长河,男(1977年),汉族,主治医师 *通讯作者(To whom correspondence should be addressed):Haolei1102@https://www.doczj.com/doc/868505434.html, 神经干细胞在神经系统疾病中的研究应用进展 牟长河1 ,郝磊 2* (1中国人民解放军陆军第958医院神经内科,重庆 400020;2中国科学院大学附属重庆仁济医院神经内科, 重庆400062) 〔摘要〕随着神经干细胞理论的提出,为神经系统疾病的治疗带来了很大的希望。神经干细胞(NSCs )是指自我更新、且具有分化为神经元、星形胶质细胞、少突胶质细胞等多向分化潜能的细胞。当中枢神经系统受到损伤或退行性变时,内源性神经干细胞开始启动神经修复,但受到数量及微环境的影响,作用非常有限。近年,人们采用各种体外培养方法,可以获得一定数量的外源性神经干细胞,在神经干细胞移植治疗各种神经系统疾病,包括缺血性脑卒中、帕金森病、阿尔茨海默病和脊髓损伤等方面做了很多动物及临床前研究。本文综述神经干细胞移植在神经系统疾病治疗中的应用。 〔关键词〕神经干细胞;缺血性脑卒中;帕金森病;阿尔茨海默病;脊髓损伤 〔中图分类号〕R329.29 〔文献标识码〕A DOI :10.16705/ j. cnki. 1004-1850. 2018. 06. 013 The progress in application of neural stem cells in neurological diseases Mu changhe 1, Hao lei 2* (1Department of neurology, No.958 hospital of the Chinese People’s Liberation Army, Chongqing 400020; 2Department of neurology, Renji hospital of Chongqing, the University of Chinese Academy of Sciences, Chongqing, 400062) 〔Abstract 〕The theory of neural stem cells has brought great hope for the treatment of neurological diseases. Neural stem cells (NSCs) refer to multipotential cells that are capable of self-renew and differentiation into neurons, astrocytes, and oligodendrocytes. When the central nervous system is damaged or degenerative, endogenous neural stem cells begin to initiate repair. But their effect is very limited due to their quantity and the microenvironment. In recent years, various in vitro culture methods have been used to obtain a certain quantity of exogenous neural stem cells. There are many animal and preclinical studies on neural stem cell transplantation for the treatment of various neurological diseases including ischemic stroke, Parkinson’s disease, Alzheimer’s disease and spinal cord injury. Here the application of neural stem cell transplantation in the treatment of neurological diseases was reviewed. 〔Keywords 〕Neural stem cells; ischemic stroke; Parkinson’s disease; Alzheimer ’s disease; spinal cord injury 干细胞(Stem Cells ,SCs )是指具有无限自我更新能力和多向分化潜能的一类细胞。当中枢神经系统受到损伤或退行性变时,受到数量及微环境的影响,内源性干细胞的修复作用非常有限,几乎不能进行有效的神经元和胶质细胞的修复,此时干细胞移植治疗具有非常广阔的前景,为脑梗死、帕金森、阿尔茨海默病、脊髓损伤等神经系统疾病的细胞移植治疗带来了新的希望。 1 神经干细胞特性及来源 神经干细胞(NSCs )是指自我更新、且具有分化为神经元、星形胶质细胞、少突胶质细胞等多向分化潜能的细胞。其在神经系统中主要作为一种储备细胞,即当神经系统受到损伤时,如急性缺血性脑梗死、神经退行性疾病等,这些干细胞便开始增殖、迁移及分化为相应的组织细胞,以便实现结构和功能的代偿。NSCs 不表达成熟细胞抗原,具有低免疫原性,因此在移植后相对较少发生异体排斥反应,有利于其存活。NSCs 来源于神经组织,从哺乳动物胚胎期的大部分脑区、成年期的脑室下区、海马齿状回的颗粒下层、纹状体、嗅球、皮质、脊髓等部位均可成功分离出NSCs ,并可以采用添加bFGF 和EGF 因子的无血清培养基进行体外培养扩增[1-8]。受到供体组织来源及伦理学限制,直接从神经组织分离培养NSCs 是不切实际的。近期研究发现,NSCs 尚可

中国神经系统线粒体病的诊治指南

神经指南:中国神经系统线粒体病的诊治指南 2016-02-02中华神经科杂志神经病学俱乐部 线粒体病是指由于线粒体DNA(mitochondrial DNA,mtDNA)或核DNA缺 陷引起线粒体呼吸链氧化磷酸化功能障碍为特点的一组遗传性疾病,不包括其 他因素导致的继发性线粒体功能障碍性疾病。成年人mtDNA突变率为1/5000,而线粒体病核基因突变率为2.9/10万。我国至今没有线粒体病的流行病学资料,但mtDNA突变是我国遗传性视神经病最常见的原因,mtDNA 的3243点突变出现在1.69%的糖尿病患者,国内多个医院几十、上百或上 千例线粒体病的报道,提示该病并不十分罕见。线粒体病的临床表现涉及人体许多系统,单独或重叠出现脑病、听神经病、视神经病、心肌病、糖尿病、肾病、肝病、血液病、胃肠肌病、骨骼肌病及周围神经病等。本指南重点阐述神经系统线粒体病的诊断治疗策略。 (a:线粒体疾病的常见临床表现;b:不同类型线粒体疾病的临床图片。上左 上,Leigh综合征的3T头颅MRI黑水像,可见双侧尾状核和壳核高信号;上中,Leber遗传性视神经病急性期眼底图,可见视盘及肿胀的神经纤维层,血管 充盈且模糊;上右,骨骼肌切片行改良的高墨瑞三色法染色见破碎红纤维;下左:一位表现为肌病,乳酸酸中毒和铁粒幼红细胞性贫血综合征的患者骨髓检查铁染可见环形铁粒幼红细胞[红细胞前体核周可见铁负载线粒体晕轮];下中:患者表现为慢性假性肠梗阻,无机械性梗阻证据,腹部平片提示大量肠管扩张;下右:四腔心脏大体标本提示肥厚性心肌病,包括心脏肥大和不对称的中隔肥厚。引自:Vafai SB, Mootha VK.Mitochondrial disorders as windows into an ancient organelle.Nature. 2012 Nov 15;491(7424):374-83)

不只是靠谱!干细胞为很多不可治愈的神经性疾病带来新的方法(龚老师)

不只是靠谱!干细胞为很多不可治愈的神经性疾病带来新的方法 神经系统疾病是发生于中枢神经系统、周围神经系统、植物神经系统的以感觉、运动、意识、植物神经功能障碍为主要表现的疾病,包括帕金森病、卒中、肌萎缩性侧索硬化症(渐冻症)、亨廷顿病、脊髓损伤、脑肿瘤、外伤性脑损伤等。由于神经损伤后病理改变复杂,神经再生速度缓慢,再生神经与周围组织粘连,神经肌肉萎缩,运动终板退化变性等,多种因素制约常使治疗结果不能令人满意。 然而经过各种动物实验以及临床运用发现,神经干细胞发生增殖、迁移、分化,最终整合到神经元网络中,在神经系统疾病治疗中发挥着重要作用! 下面我们就来看看我们的神经干细胞针对具体神经系统疾病的神奇作用。 干细胞治疗帕金森 帕金森病是最常见的神经退行性改变疾病之一,主要病理变化是黑质纹状体的多巴胺能神经元退行性改变。持续的疾病过程导致多巴胺能神经元损害,有效控制缺失的多巴胺神经元,增加神经细胞数量是治疗帕金森病的核心。 临床治疗不能逆转或阻止疾病进展,但通过移植神经干细胞可使神经元及恢复神经支配的纹状体存活长达十年。几个开放性临床试验已经证实其治疗效果。 研究表明,干细胞技术有产生大量多巴胺能神经元的潜力。一些患者在干细胞治疗后可几年不接受左旋多巴的治疗而重新开始独立的生活。 研究表明,干细胞移植具有阻止疾病进程的作用。表达神经保护性因子的人体干细胞的植入可阻止现存神经元的死亡,如神经胶质细胞源性神经营养因子。 研究表明,一些生长因子( 神经胶质源性神经营养因子、脑源性神经营养因子、类胰岛素生长因子及血管内皮生长因子) 在神经退行性疾病模型中有保护作用,并在主要疾病的病灶处提供支持。 研究表明,生长因子,如碱性成纤维细胞生长因子、表皮生长因子、神经生长因子、胶质细胞源性神经营养因子、脑源性神经营养因子等也有促进干细胞增殖分化为神经细胞的能力。在生长因子的参与下,干细胞可增殖分化成神经细胞,如使

相关主题
文本预览
相关文档 最新文档